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Summar y To study the involvement of DNA mismatch-repair genes in sporadic breast cancer, matched normal and tumoral DNA samples of
22 patients were analysed for genetic instability and loss of heterozygosity (LOH) with 42 microsatellites at or linked to hMLH1 (3p21), hMSH2
(2p16), hMSH3 (5q11–q13), hMSH6 (2p16), hPMS1 (2q32) and hPMS2 (7p22) loci. Chromosomal regions 3p21 and 5q11–q13 were found
hemizygously deleted in 46% and 23% of patients respectively. Half of the patients deleted at hMLH1 were also deleted at hMSH3. The
shortest regions of overlapping (SRO) deletions were delimited by markers D3S1298 and D3S1266 at 3p21 and by D5S647 and D5S418 at
5q11–q13. Currently, the genes hMLH1 (3p21) and hMSH3 (5q11–q13) are the only known candidates located within these regions. The
consequence of these allelic losses is still unclear because none of the breast cancers examined displayed microsatellite instability, a
hallmark of mismatch-repair defect during replication error correction. We suggest that hMLH1 and hMSH3 could be involved in breast
tumorigenesis through cellular functions other than replication error correction.
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Breast cancer is the most frequent neoplasia that affects women in
the Western world. It is a heterogeneous disease, which displays a
broad spectrum of clinical and pathological characteristics, and
like most solid tumours is thought to develop through the accumu-
lation of genetic alterations leading to uncontrolled cellular
growth. Loss of heterozygosity (LOH) studies in non-hereditary
breast tumours have shown deletions at a frequency ranging
from 20% to 50% in several chromosomal arms (reviewed in Sato
et al, 1990; Cornelisse et al, 1992; Bi�che and Lidereau, 1995),
suggesting the involvement of several tumour-suppressor genes in
breast carcinogenesis.

Recently, another type of gene, encoding components of the
DNA mismatch-repair system, has been linked to hereditary
non-polyposis colorectal cancer (HNPCC) (Fishel et al, 1993;
Leach et al, 1993; Bronner et al, 1994; Nicolaides et al, 1994;
Papadopoulos et al, 1994, 1995). These genes have been found
mutated in HNPCC and are presumably involved in certain
sporadic forms of cancer (Leach et al, 1993; Nicolaides et al,
1994; Papadopoulos et al, 1994, 1995; Liu et al, 1995; Risinger
et al, 1996). Their defects generally lead to a genome-wide
instability of microsatellites in tumoral cells referred to as
the replication error (RER) phenotype. In addition to HNPCC,
the RER phenotype was observed in a number of sporadic
cancers (Han et al, 1993; Speicher, 1995) including breast
cancer (Yee et al, 1994; Karnik et al, 1995; Paulson et al, 1996),
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thus suggesting that deficiency in DNA repair could be
involved in breast carcinogenesis. Like suppressor genes
(Knudson, 1971), mismatch-repair mutants are inherited as
recessive traits that eventually become dominant because of
somatic mutations inactivating the second allele. This second
mutational step may be revealed as LOH which was reported at
the hMLH1 locus in HNPCC patients (Hemminki et al, 1994) as
well as in sporadic colorectal cancers (Tomlinson et al, 1996).

Based on these observations, we examined the involvement of
mismatch-repair genes in sporadic breast cancer by microsatellite
instability and LOH analyses. We have screened 22 primary breast
carcinomas using 42 polymorphic microsatellites within or closely
linked to hMLH1, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2
loci. We found that hMLH1 and hMSH3 were frequently deleted in
tumoral cells, suggesting their possible involvement in sporadic
breast cancer.

MATERIALS AND METHODS

DNA samples

Matched tumoral and normal sample pairs were obtained
from 22 breast carcinoma patients (ages 40Ð90; mean, 58.09;
median, 60), including ten metastatic cases, who underwent
surgery at the Montreal H�tel-Dieu Hospital. This is an
unselected group of apparent sporadic cases with limited
clinical information. Because family histories were unavailable,
it was expected that, if any, only 5Ð10% of the samples would
be from patients with a familial form of the disease (Newman
et al, 1988). DNA was isolated from fresh material by a
standard procedure using digestion with proteinase K and
phenol/chloroform extractions.
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Microsatellite analysis

Matched DNA sample pairs were genotyped by polymerase
chain reaction (PCR) at the 42 following highly polymorphic
(62Ð90% heterozygosity) microsatellite loci: on chromosome
3p14Ðp26 (hMLH1), D3S1286, D3S1266, D3S1745, D3S1561,
D3S1611, D3S1612, D3S1298, D3S1260, D3S3559, D3S3582,
D3S3647, D3S1588, D3S1582, D3S1613, D3S1234, D3S1300
and D3S1312; on 5p14Ðq21 (hMSH3), D5S416, D5S477,
D5S651, D5S674, D5S426, D5S395, D5S418, D5S430, D5S491,
D5S398, D5S431, D5S624, D5S427, D5S668, D5S647, D5S629,
D5S428and D5S433; on 2q32 (hPMS1), D2S318 and D2S118;
on 2p16 (hMSH2/hMSH6), D2S391 and D2S288; on 7p22
(hPMS2), D7S531 and D7S517. The corresponding PCR
primers were provided by Research Genetics. The chromosomal
assignment of these microsatellites and genes was performed
by integrating genetic, radiation hybrid and STS/YAC data
from several sources (Gyapay et al, 1994; Hudson et al, 1995;
Gemmill et al, 1995). Thirty amplification cycles of 1 min
at 94°C, 1 min at 50Ð60°C and 1 min at 72°C were carried
out in 20 µl of 10 mM tris-HCl (pH 8.3), 50 mM potassium
chloride, 1.5 mM magnesium chloride containing 0.2 µM of
each primer, 50 µM dNTPs, 1 µCi of [32P]αCTP (ICN;
specific activity 3000 Ci mmolÐ1), 5 ng of genomic DNA, and
0.4 U TaqDNA polymerase (BRL). The products were fraction-
ated by denaturing electrophoresis in a 6% polyacrylamide gel,
subsequently dried and autoradiographed. LOH was defined
visually as the disappearance or significant reduction in the
intensity of one allele in tumoral DNA compared with the
normal DNA sample as described in Baccichet et al (1997).
Only informative (heterozygous) loci were considered for LOH
frequency calculations.
© Cancer Research Campaign 1999

Table 1 Summary of the LOH data for the analyse

DNA mismatch-repa

Cases hMLH1 hMSH3 h
(3p21) (5q11–q13)

1 LOH H
3 LOH H
5 H H
7 H H
9 LOH LOH
11 LOH LOH
13 LOH LOH
15 H H
17 LOH H
19 H H
21 H H
23 H H
25 H H
27 H H
29 LOH LOH
31 H H
33 LOH H
35 H H
37 LOH LOH
39 H H
41 H H
43 LOH H
LOH 45.45% 22.7%
frequency

LOH, loss of heterozygosity, H, heterozygote, NI, no
Single-strand conformational polymorphism (SSCP)
analysis

The typing of hMLH1 exon 8 polymorphism by SSCP analysis
using previously published oligonucleotides (Han et al, 1995) was
performed as described in Zietkiewicz et al (1992).

RESULTS

Our microsatellite analysis (Figure 1) revealed LOH in 10 out of the
22 patients in at least one of the mismatch-repair loci tested (Table 1).

Detection of LOH on chromosome 3p21

Out of the 22 patients, ten (46%) exhibited LOH in at least one of
the microsatellite markers located on chromosome 3p21. Patient 3
lost an allele at D3S1745and D3S1561, but maintained heterozy-
gosity at the distal neighbouring locus D3S1266; patient 43
showed LOH at every marker distal to D3S1611and D3S1612, but
retained both alleles at D3S1298 (Figure 2). These results
suggested that the shortest region of overlapping (SRO) deletions
delimited by D3S1298 and D3S1266 included hMLH1 at
3p21Ðp22 (Figure 2). In addition to the intragenic D3S1611
marker (Papadopoulos et al, 1994), we analysed by SSCP a bial-
lelic polymorphism in exon 8 of hMLH1 to show hemizygous
deletion in the three informative cases (not shown).

Several genes have been shown to be included in LOH regions
on chromosome 3p (Figure 2). We extended the allelotyping to
investigate the possible involvement of the SCLC region, which
was shown to be homozygously deleted in small-cell lung cancer
cell lines (Daly et al, 1993), as well as the FHIT and PTPRGgenes
(Figure 2). Among the ten patients with LOH at hMLH1, four
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d mismatch repair-related chromosomal regions

ir-related region

PMS1 hMSH2 hPMS2
(2q32) hMSH6(2p16) (7p22)

H H H
H NI H
H H H
NI H NI

LOH LOH LOH
LOH H H

H H H
H H H
H H H
H H H
NI H H
H NI H
H H H
H H H
H H H
H H H
H H H
H H H
H H H
H H H
H H H
H H H

10% 5% 4.7%

n-informative.
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Figure 1 Examples of LOH and heterozygosity of the 3p21 and 5q11–q13
regions. Patients 9, 11, 25 and 35 analysed with marker D3S1745 and
patients 3, 5, 11 and 13 analysed with marker D5S427; arrowheads indicate
the deleted alleles in tumours; (N) normal and (T) tumoral DNA
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Figure 2 LOH profiles around the 3p21 region and the shortest region of
overlapping deletion (SRO). ■, LOH; , no LOH; ■■, non-informative; ■■nd , not
done
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101  D5S428
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Figure 3 LOH profiles around the 5q11–q13 region and the shortest region
of overlapping deletion (SRO). ■, LOH; , no LOH; ■■, non-informative
retained heterozygosity at proximal markers (Figure 2). For
instance, in patient 11, markers D3S1298 through D3S1286
revealed LOH, but at markers proximal to D3S1260both alleles
were retained thus excluding the SCLC region as well as FHIT and
PTPRGas deletion targets. Similarly, these loci were excluded
from the SRO in patient 43 (Figure 2). The SCLC region delimited
by markers D3S1588and D3S1613(Daly et al, 1993) was partly
affected by LOH in patients 3 and 29. Particular attention was
placed on FHIT because abnormal transcription of this gene was
reported in 30% of breast cancer patients (Negrini et al, 1996).
Markers linked to the FHIT locus, including D3S1300which maps
within intron 5 of the FHIT gene (Man et al, 1996), were deleted in
4 out of the 11 cases informative at this locus (36%), which were
all also deleted for hMLH1 (not shown). Therefore, 3p deletions
represent two groups, one with small deletions affecting the
hMLH1 locus and another with larger deletions that include the
hMLH1, SCLC and FHIT loci (Figure 2).

Detection of LOH on chromosome 5q11–q13

As shown in Figure 3, 5 out of the 22 informative cases (23%) were
hemizygously deleted at one or more marker loci tightly linked to
the hMSH3locus. All of these patients with LOH at 5q11Ðq13 were
also deleted in the 3p21 region (Figure 2 and 3). This non-random
distribution of concomitant deletions was statistically significant (P
~ 0.02, chi-squared test). Large deletions were seen in patients 9
and 37, whereas others exhibited restricted LOH: patient 13 with
LOH at D5S430retained heterozygosity at every marker proximal
to D5S418, whereas patient 29 was heterozygous at D5S647thus
delimiting the SRO between D5S418and D5S647at 5q11Ðq13
(Figure 3). The tumour-suppressor genes APC and MCC both
located on chromosome 5q21 were excluded from deletions
involving hMSH3in two of the patients (13 and 29) heterozygous
for markers linked to APC and MCC regions (Figure 3). Thus,
hMSH3is a good candidate as the target of 5q11Ðq13 deletions.
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In contrast to hMLH1 and hMSH3, we found only two patients
that were affected by allelic deletions at other tested loci: 1 out of
21 informative cases at hPMS2, 1 out of 20 at hMSH2/hMSH6
and 2 out of 20 at hPMS1 (Table 1), including patient 9 who
displayed LOH at all investigated loci. The low rate of allelic
losses (5Ð10%) affecting the chromosomes 2p16, 2q31Ðq33 and
7p15Ðpter may reflect the baseline frequency of LOH in breast
cancer (Chen et al, 1992).

Microsatellite instability

None of the 22 tumours displayed the RER phenotype as judged by
the absence of instability at the 42 microsatellites tested (a total of
572 independent comparisons). Although our markers were already
shown as sensitive to detecting RER in sporadic colorectal cancers
(Benachenhou et al, 1998a), we additionally examined two markers
GGAA4D07and GGAA2E02recently reported as unstable in 30%
(11 out of 37) and 41% (15 out of 37) of breast cancer patients
respectively (Paulson et al, 1996). These two markers did not reveal
any instability in the 22 tumours examined here (data not shown).
Our findings were thus consistent with studies of two large cohorts
of breast cancer patients that failed to detect significant levels of
microsatellite instability (Lothe et al, 1993; Wooster et al, 1994).
© Cancer Research Campaign 1999
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DISCUSSION

The activation of oncogenes, the loss or inactivation of repressor
genes and impaired mismatch-repair function are known to be
involved in the development of solid tumours. Defects in DNA
mismatch-repair genes lead to replication errors revealed as
instability in microsatellite markers (Leach et al, 1993; Bronner et
al, 1994; Papadopoulos et al, 1994). A proposal that deficient
DNA repair was a predisposing factor in sporadic breast cancer
(Helzlsouer et al, 1996; Parshad et al, 1996) was promoted by
reports of microsatellite instability in breast tumours (Yee et al,
1994; Karnik et al, 1995; Paulson et al, 1996). By allelotyping the
mismatch-repair genes hMLH1, hMSH2, hMSH3, hMSH6, hPMS1
and hPMS2, we have shown that 46% and 23% of the breast
tumours tested were affected by allelic losses at hMLH1 and
hMSH3 respectively. Because none of the tumour tissues were
microdissected, these figures should be considered conservative as
some allelic losses could have been masked by contaminating
genetic material of normal cells. Other alterations such as small
deletions, point mutations, gene rearrangements, or DNA methyla-
tion, if they also contribute to inactivation of these loci, could
escape detection by our approach. Further studies are required to
explore these possibilities.

Interstitial deletion of chromosome 3p is one of the most
common genetic rearrangements observed in tumour cells (Pandis
et al, 1993). The region 3p14Ðp23 has been shown to be deleted in
small-cell lung carcinomas (Petersen et al, 1997), non-small-cell
lung carcinomas (Benachenhou et al, 1998b) renal cell carcinomas
(Foster et al, 1994) and uterine cervical carcinomas (Kohno et al,
1993). In breast cancer, LOH ranging from 30% to 47% were
observed at two separate regions, 3p13Ðp14 and 3p21Ðp25 (Chen
et al, 1994) or 3p14.3Ðp21.1 and 3p24.3Ðp25.1 (Matsumoto et al,
1997), suggesting the involvement of several tumour-suppressor
genes. PTPRG, a protein-tyrosine phosphatase gene, and FHIT
that encodes the human diadenosine triphosphate hydrolase
(Barnes et al, 1996), both localized within the 3p13Ðp14 region,
are potential candidates as targets of deletions in primary breast
tumours (LaForgia et al, 1991; Negrini et al, 1996; Ohta et al,
1996). Furthermore, a 3p21.3 region (SCLC) was shown to be
homozygously deleted in SCLC cell lines (Daly et al, 1993). Our
allelotyping data narrow down the critically deleted region on
chromosome 3p21 (Figure 2) to an interval delimited by markers
D3S1298and D3S1266, thus excluding SCLC, FHIT and PTPRG
from the SRO (Figure 2). In another study, we showed that the
smallest region of overlapping deletions in non-small-cell lung
cancer patients was refined to a 1-cM interval between markers
D3S1561and D3S1612(Benachenhou et al, 1998b). The only
known candidate which remains in the deleted region is thus
hMLH1. Do hemizygous deletions of this gene promote cancer
progression, or is hMLH1 only in linkage to a yet unidentified
tumour-suppressor gene needs to be investigated further?

Deletions of chromosome 5q were previously reported in
several tumour types, including colorectal cancers (Solomon et al,
1987; Vogelstein et al, 1988; Ashton-Rickart et al, 1991), lung
cancers (Ashton-Rickart et al, 1991; DÕAmico et al, 1992;
Benachenhou et al, 1998b), and oesophageal cancers (Boynton et
al, 1992). At least two known tumour suppressors, APCand MCC,
are localized within this region. Reports of 5q21 deletions in
18Ð29% of sporadic breast cancers suggests the involvement of
APC and MCC (Thompson et al, 1993; Medeiros et al, 1994).
Although some deletions on 5q overlap with the APC/MCC
© Cancer Research Campaign 1999
region, our results exclude these loci from the SRO in 40% of the
5q deleted patients. Delimited by D5S418and D5S647, this SRO
is 43.5 cM away from APCand MCC (Figure 3). Allelic losses at
5q13.1Ðq21 in 33% of ovarian cancers (Tavassoli et al, 1996) as
well as in 42% of NSCLC (Benachenhou et al, 1998b) also
occurred outside the APC-containing region. Thus, genes other
than APC/MCC have to be considered as targets of 5q11Ðq13
deletions. hMSH3is a good candidate as the target of 5q11Ðq13
deletions, although the existence of a yet unidentified adjacent
gene cannot be ruled out.

None of the tumors analysed in this study displayed microsatel-
lite instability, a hallmark of a deficiency in the replication errors
correction. Expecting a 30% incidence of instability as reported by
Paulson et al (1996), the probability of not detecting a single
unstable tumour in our sample of 22 was as low as 0.0014 (Po =
eÐ0.3 × 22). The absence of RER is, however, consistent with earlier
reports indicating a virtual absence of microsatellite instability in
breast tumour cells (Han et al, 1993; Lothe et al, 1993; Wooster
et al, 1994). Moreover, considering four studies (Han et al, 1993;
Lothe et al, 1993; Wooster et al, 1994; this study) in which no
evidence of RER was obtained (i.e. no more than a single insta-
bility per sample), we estimated the average rate of somatic
microsatellite mutations at 5 × 10Ð3 (12 out of 2556), a frequency
similar to the one from T-lymphocytes (3 × 10Ð3) (Hackman et al,
1995). It is difficult to explain the variability in the reported preva-
lence of RER+ breast tumours ranging from 0% to 30%. Because
the random sampling effect was rather unlikely, this discrepancy
could be related to sample stratification, to criteria used to define
RER+ tumours (Dietmaier et al, 1997) and the nature of the
markers used to reveal this phenotype (Arzimanoglou et al, 1998),
or requires other explanations.

We are, thus, left with patients associated with hemizygous
deletions at two mismatch-repair loci and no RER. If the non-
deleted hMLH1 and hMSH3 alleles are still active, this could
explain the absence of a RER phenotype. At this point, it is diffi-
cult to decide whether hemizygous deletions of hMLH1 and
hMSH3genes promote breast tumorigenesis, or whether LOH at
these loci only indicates linkage with as yet unknown tumour-
suppressor loci. However, concomitant deletions of hMSH3and
hMLH1 in a number of patients raise unanswered questions about
their relationship. hMSH2and hMSH6or hMSH3proteins bind
the mismatch as heterodimers called, respectively, hMutSα and
hMutSβ (Drummond et al, 1995; Palombo et al, 1996), which
are then recognized by the heterodimer hMutLα composed of
hMLH1/hPMS2. Therefore, a gene dosage effect affecting the stoi-
chiometry and the activity of the heteromolecular mismatch-repair
complex may be sufficient to promote cancer by impairing func-
tions other than the correction of replication errors. Mismatch-
repair proteins are involved in a variety of vital cellular processes,
including the homologous recombination (Jones et al, 1987;
deWind et al, 1995), the mediation of the G2 checkpoint (Hawn et
al, 1995), transcription-coupled nucleotide excision repair (Mellon
et al, 1996) and in the recognition of DNA damage and/or in the
signalling pathway contributing to the generation of apoptotic
cells (Kat et al, 1993; Mu et al, 1997). Interestingly, the influence
of environmental factors on the genome stability in cells defective
in nucleotide excision repair and mismatch-repair could be
substantial. In this regard, it has been recently demonstrated that
homozygous as well as heterozygous hMSH2mutant mammalian
cells have a propensity to accumulate potentially mutagenic oxida-
tive DNA damage (DeWeese et al, 1997) that may promote the
British Journal of Cancer (1999) 79(7/8), 1012–1017
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development of cancer through defects in genes sensitive to exoge-
nous factors (Mellon et al, 1996; DeWeese et al, 1997). In addition,
a heterozygous mutation in hMLH1 in a human-derived cancer cell
line was shown to significantly reduce transcription-coupled repair
involved in selective removal of DNA damage from the tran-
scribed strands of active genes (Mellon et al, 1996b), pointing to
the possibility that allelic deletion of hMLH1 and/or hMSH3could
have the same effect. We propose that a subtle defect in the repair
of DNA damage, which is less likely to be lethal to the carrying
cells, could have an even more profound impact on tumorigenesis,
thus placing individuals at increased cancer risk.

In conclusion, our allelotyping analysis of sporadic breast carci-
nomas demonstrated that two DNA mismatch-repair loci, hMLH1
and hMSH3, are frequently affected by LOH at chromosomal
regions 3p21 and 5q11Ðq13 respectively. We suggest that hMLH1
and hMSH3deletion could promote cancer progression through a
dosage effect affecting cellular functions other than replication
errors correction. Whether or not hMLH1 and hMSH3 are real
targets of the deletions is still under investigation, but the identifi-
cation of genes with suppressor activity for malignancy at 3p21
and 5q11Ðq13 is extremely important considering the frequency of
LOH at these regions in several major forms of cancer.
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