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Abstract

Functional MRI (fMRI) study of naturalistic conditions, for example, movie watching,

usually focuses on shared responses across subjects. However, individual differences

have been attracting increasing attention in search of group differences or associa-

tions with behavioral outcomes. Individual differences are typically studied by

directly modeling the pair-wise intersubject correlation matrix or projecting the rela-

tions onto a single dimension. We contend that it is critical to examine whether there

are one or more consistent responses underlying the whole sample, because multiple

components, if exist, may undermine the intersubject relations using the previous

methods. We propose to use principal component analysis (PCA) to examine the het-

erogeneity of brain responses across subjects and project the individual variability

into higher dimensions. By analyzing an fMRI dataset of children and adults watching

a cartoon movie, we showed evidence of two consistent responses in the sup-

ramarginal gyrus and other regions. While the first components in many regions rep-

resented a response pattern mostly in older children and adults, the second

components mainly represented the younger children. The second components in

the supramarginal network resembled a delayed version of the first PCs for 4 s

(2 TR), indicating slower responses in the younger children than the older children

and adults. The analyses highlight the importance of identifying multiple consistent

responses in responses to naturalistic stimuli. This PCA-based approach could be

complementary to the commonly used intersubject correlation to analyze movie-

watching data.
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1 | INTRODUCTION

Neuroimaging study of brain functions has observed a paradigm shift

from using well-controlled experimental tasks or completely

unconstrained resting state to using more naturalistic and complex

stimuli such as movies and stories (Hasson, Nir, Levy, Fuhrmann, &

Malach, 2004; Nastase, Gazzola, Hasson, & Keysers, 2019; Sonkusare,

Breakspear, & Guo, 2019). Compared with the resting state, the natu-

ralistic condition is more confined to the inputs, which could ensure

that different subjects follow similar brain states. On the other hand,
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the stimuli are more naturalistic than arbitrarily defined trials and

tasks, and maybe more efficient to elicit higher-order brain functions.

When watching or listening to the same naturalistic stimuli, different

subjects tend to have similar brain responses in certain brain regions

(Hasson et al., 2004), which can be examined by using intersubject

correlations (Chen et al., 2016; Nastase et al., 2019).

In addition to the study of shared responses, a growing research

interest has begun focusing on the individual differences of responses

during naturalistic conditions (Chen, Taylor, Shin, Reynolds, &

Cox, 2017; Finn et al., 2020). Differences in shared responses have

been shown between children and adults (Cantlon & Li, 2013;

Moraczewski, Chen, & Redcay, 2018; Petroni et al., 2018), during

aging (Campbell et al., 2015), as well as in mental disorders, such as

autism spectrum disorder (Byrge, Dubois, Tyszka, Adolphs, &

Kennedy, 2015; Hasson et al., 2009; Salmi et al., 2013) and schizo-

phrenia (Yang et al., 2019). Within a healthy subject group, the inter-

subject correlations of brain responses were also correlated with the

similarities of subjective ratings of the stimuli (Jääskeläinen

et al., 2016; Nummenmaa et al., 2012), and subjects' trait-like charac-

teristics such as paranoia (Finn, Corlett, Chen, Bandettini, &

Constable, 2018) and cognitive style (Bacha-Trams et al., 2018).

The methods for studying the individual differences in responses

to naturalistic stimuli are still being developed (Chen et al., 2017; Finn

et al., 2020). For a given brain region (or voxel), each subject i has a

response time series xi(t), which can be partitioned into three compo-

nents (Nastase et al., 2019):

xi tð Þ¼ c tð Þþ idi tð Þþ εi tð Þ ð1Þ

where c(t) represents the consistent response across subjects, idi(t)

represents the idiosyncratic response for each subject i, and ε(t) repre-

sent noises. The idiosyncratic response idi(t) ideally is unique to each

subject, therefore it is usually referred to as the source of individual

differences. This is true by its definition. However, if everyone has dif-

ferent responses, it is difficult to link the responses to individual mea-

sures or group differences. In a real case scenario, it is usually

assumed that there is an underlying canonical responses pattern (Finn

et al., 2020), which is present across subjects but weights differently

for individuals. The model can then be modified with an additional

weight parameter ai:

xi tð Þ¼ ai �c tð Þþ idi tð Þþεi tð Þ ð2Þ

The estimates of ai can then be used to correlate with group or indi-

vidual differences. Here the model is different from Finn et al. (2020)

because they added the weight parameter to the idiosyncratic term id

(t) rather than c(t). However, essentially the two models are the same

because they both assume an underlying canonical response, and indi-

vidual differences arise from the weightings.

A straightforward way to obtain ai is to first estimate the con-

sistent component c(t) and correlate each subject's time series xi(t)

with c(t). c(t) is usually calculated by excluding the examined sub-

ject and averaging the remaining subjects to avoid bias, a strategy

also known as leave-one-out (LOO) (Nastase et al., 2019). An alter-

native strategy is to calculate a pairwise intersubject correlations

matrix, which projects ai into two dimensions. The differences

between pairs of subjects can be compared by using linear mixed-

effect modeling (Chen et al., 2017). Moreover, a few models have

been proposed to translate individuals' behavioral measures into

pair-wise relationships, for example, Nearest Neighbors model and

Anna Karenina model (Finn et al., 2020). The pair-wise relations in

brain activity measures and those in behavioral measures can then

be correlated to verify which model can best describe the inter-

subject relationships.

There are two main limitations to the current methods. First, the

representational similarity approach depends on the hypothesis of

the relationships. For example, Anna Karenina model assumes that the

subjects with higher scores of a behavioral measure tend to have simi-

lar responses, but those with lower scores all respond differently. A

model may not be appropriate for certain domains and may not be

able to capture complex relationships such as a nonmonotonic devel-

opmental curve. Second, it is usually implicitly assumed that there is

only one consistent component. However, this may not be true in a

real case scenario. For example, children may comprehend a cartoon

movie differently from adults, or males and females may pay attention

to different scenes and objects. Therefore, we may need to assume

multiple consistent components among all the subjects. Equation (2)

can then be expanded to include two consistent components c1(t)

and c2(t):

xi tð Þ¼ ai �c1 tð Þþbi �c2 tð Þþ idi tð Þþ εi tð Þ ð3Þ

Now there are two sets of parameters to represent individual differ-

ences, ai and bi . LOO correlation method cannot recover both sets of

parameters. In addition, the pair-wise correlation matrix may also be

difficult to capture using simple models such as Anna Karenina model.

We take development as an example. A certain function may start

to develop after a certain age and then reach a plateau. If the function

requires a certain pattern of brain responses, then the weight parame-

ters ai for that response will look like Figure 1a. A developmental

curve may also look like Figure 1b, where the likelihood to respond to

a certain pattern first increases and then decreases as age increases.

Figure 1d,e shows the pair-wise intersubject correlations for the two

developmental curves. Matrix 1D can be described by Anna Karenina

model. However, new models are needed to describe the relationships

in matrix 1E. Alternatively, we can calculate LOO intersubject correla-

tions, and the individual LOO correlations can reflect the hypothetical

developmental trends (Figure 1g,h). A more complex scenarios are

that the two consistent components may both exist and are indepen-

dent (Figure 1c). The pair-wise correlations become more complicated

to be modeled (Figure 1f). In addition, the LOO correlations can only

show an averaged age effect but cannot recover the two separate

trends (Figure 1i).

To untangle the complex intersubject relationships, we proposed

a principal component analysis (PCA)-based analysis strategy. The

time series of all the subjects form a matrix X (time points � subject).
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PCA identifies a transformation matrix W to transform the individual

response matrix X into a series of principal components (PCs) T:

T¼X�W ð4Þ

The PCs are all orthogonal. The first PC explains the largest variance

of the data, and the remaining PCs similarly maximize the explained

variance of the remaining variance. The variance explained by each

PC is indexed by the eigenvalue of the covariance matrix of X, which

could be an indicator of whether there are multiple consistent

response patterns. In the first two hypothetical developmental func-

tions, a single component explained a large portion of variance

(Figure 1j,k). In contrast, in the third case with two consistent

responses, the first two components both explained large portions of

variance (Figure 1l).

Usually, we are only interested in the first few PCs. For the ith

PC, its relations to individuals' time series are as follow:

ti ¼X�wi ð5Þ

If we assume the first or second PCs as consistent responses, then

the weight vector wi may reflect the weight of each subject on the

consistent responses. We calculated the loadings of the first PCs

for the first two hypothetical developmental functions, and the

loadings showed similar patterns as the developmental functions

and the individual LOO correlations (Figure 1m,n). Moreover, the

loadings of the first two PCs from the third scenario can differenti-

ate the developmental patterns of the two consistent components

(Figure 1o).

The study of group differences, for example, a case–control

study, also faces a similar problem. For example, we may expect

that a group of subjects with a mental disorder have lower inter-

subject correlations. On the other hand, all healthy subjects might

have consistent responses. However, the critical question becomes

whether the patient group has diminished responses at all or has a

different canonical response from those in the healthy group. One

can compare pair-wise intersubject correlations between groups to

answer this question (Chen et al., 2016; Chen et al., 2017). How-

ever, it could be overlooked if one only used the LOO-based

method.

In summary, we have briefly reviewed the methods for studying

individual differences in response to naturalistic stimuli. We argue

that it is critical to examine whether there are multiple consistent

components. We, therefore, propose a PCA-based approach to first

indicate whether there are potentially multiple consistent compo-

nents, and then examine individual loadings of these components.

F IGURE 1 Illustrations of developmental effects of shared responses in a brain region. (a) and (b) illustrate two hypothetical developmental
functions of consistent responses. The age range was set between 0 and 30 years, which overlaps with the empirical data. Note that the
consistent responses in (a) and (b) may be independent. (c) shows the scenario where the two separate consistent components are present. (d–f)
show the pair-wise correlation matrices across subjects. (g–i) show the intersubject correlations calculated using the leave-one-out (LOO) method
against the subjects' age. (j–l) show the percentage of variances explained by the first 10 principal components (PCs) from principal component
analysis (PCA). (m–o) show the PC loadings of the first one or two PCs against age
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Age and biological sex are two common factors that affect the individ-

ual differences in brain structures and functions (Dosenbach

et al., 2010; Lenroot et al., 2007). By using the movie-watching para-

digm, two previous studies have shown higher intersubject correla-

tions in adults compared with children (Cantlon & Li, 2013;

Moraczewski et al., 2018). In the current study, by analyzing another

publicly available fMRI dataset of children and adults who watched an

animated movie, we ask whether there are multiple consistent

response patterns in the sample. We applied our PCA-based approach

and showed evidence of second consistent components in certain

brain regions. We also examined the relations between the PCA-

based approach and the commonly used LOO correlations in the real

fMRI data.

2 | MATERIALS AND METHODS

2.1 | Data and task

The fMRI data were obtained through openneuro (https://openneuro.

org/), with accession #: ds000228. There are in total of 155 subjects,

with 33 adults (18–39 years old) and 122 children subjects (3–

12 years old). We adopted the same criteria to remove data with poor

spatial coverage and large head motion (see below) as our previous

article with only adult subjects analyzed (Di & Biswal, 2020). As a

result, the adult group included 17 females and 12 males. The age

range was 18–39 years (mean = 24.6, SD = 5.3). The children group

included 28 females and 25 males. The age range was 3.5–12.3 years

(mean = 7.0, SD = 2.5). The original study was approved by the Com-

mittee on the Use of Humans as Experimental Subjects at the Massa-

chusetts Institute of Technology.

During the fMRI scan, the subjects watched a silent version of

the Pixar animated movie “Partly Cloudy,” which is 5.6 min long

(https://www.pixar.com/partly-cloudy#partly-cloudy-1). Brain MRI

images were acquired on a 3-Tesla Siemens Tim Trio scanner. Youn-

ger children were scanned using one of two 32-channel custom head

coils, and older children and adults were scanned using the standard

Siemens 32-channel head coil. Functional images were collected with

a gradient-echo EPI sequence sensitive to blood-oxygen-level-

dependent (BOLD) contrast in 32 interleaved near-axial slices (EPI fac-

tor: 64; TR: 2 s, TE: 30 ms, flip angle: 90�). The subjects were recruited

for different studies with slightly different voxel size and slice gaps,

(a) 3.13 mm isotropic with no gap; (b) 3.13 mm isotropic with 10%

gap; (c) 3 mm isotropic with 20% gap; and (d) 3 mm isotropic with

10% gap. During the preprocessing, all the functional images were

resampled to 3 mm isotropic voxel size. 168 functional images

were acquired for each subject, with four dummy scans collected

before the real scans to allow for steady-state magnetization.

T1-weighted structural images were collected in 176 interleaved sag-

ittal slices with 1 mm isotropic voxels (GRAPPA parallel imaging,

acceleration factor of 3; FOV: 256 mm). For more information on the

dataset please refers to Richardson, Lisandrelli, Riobueno-Naylor, and

Saxe (2018).

2.2 | FMRI data processing

2.2.1 | Preprocessing

FMRI data processing and analyses were performed using SPM12

(SPM: RRID:SCR_007037; https://www.fil.ion.ucl.ac.uk/spm/) and

MATLAB (R2017b) scripts. A subject's T1-weighted structural image

was first segmented into gray matter, white matter, cerebrospinal

fluid, and other tissue types and was normalized into standard Mon-

treal Neurological Institute (MNI) space. The T1 images were then

skull stripped based on the segmentation results. Next, all the func-

tional images of a subject were realigned to the first image and cor-

egistered to the skull-stripped T1 image of the same subject.

Framewise displacement was calculated for the translation and rota-

tion directions for each subject (Di & Biswal, 2015). Subjects who had

maximum framewise displacement greater than 1.5 mm or 1.5� were

discarded from further analysis. The functional images were then nor-

malized to MNI space using the parameters obtained from the seg-

mentation step with a resampled voxel size of 3 � 3 � 3 mm3. The

functional images were then spatially smoothed using a Gaussian ker-

nel of 8 mm. Lastly, a voxel-wise general linear model (GLM) was built

for each subject to model head motion effects (Friston's 24-parameter

model) (Friston, Williams, Howard, Frackowiak, & Turner, 1996), low-

frequency drift via a discrete cosine basis set (1/128 Hz cutoff), and a

constant offset. The residuals of the GLM were saved as a 4-D image

series, which were used for further intersubject correlation analysis.

Regarding the potential head motion effects, we first calculated

framewise displacement in translation and rotation separately (Di &

Biswal, 2015), and removed subjects with maximum framewise dis-

placement greater than 1.5 mm or 1.5�. As a result, 82 subjects were

included in the final analysis. Second, we performed PCA on the

framewise displacement time series in translation and rotation.

The first components explained 4.66 and 4.30% of the variance in the

two directions, respectively, suggesting that there were very limited

intersubject correlations of head movements across subjects (also see

Supplementary Figure S1). Third, in preprocessing 24 head motion

variables have been removed from the fMRI time series. Lastly, we

calculated mean framewise displacement in translation and rotation

for each subject. The children group showed significantly larger mean

framewise displacement in rotation compared with the adult group

(t = 6.04, p < .001) (see Supplementary Section S1 for details). In later

analyses considering age effects or behavioral correlations, we

regressed out the mean framewise displacements in translation and

rotation from the PC loadings and compared the results before

and after the regression.

2.2.2 | Dimension reduction

We first focused on a small number of large-scale networks, which

enabled us to perform an in-depth analysis of their time courses and

individual variations. We performed spatial independent component

analysis (ICA) to define large-scale networks by using Group ICA of
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fMRI Toolbox (GIFT: RRID:SCR_001953; http://mialab.mrn.org/

software/gift) (Calhoun, Adali, Pearlson, & Pekar, 2001). Twenty com-

ponents were extracted. The resulting IC maps were visually

inspected, and 15 maps were included in the subsequent analysis as

functionally meaningful brain networks. The full maps of all the 20 ICs

can be found at https://neurovault.org/collections/7173/. For each

IC, a time series was back-reconstructed to each subject using the

group ICA method, resulting in a 168 (time points) � 82 (subject)

matrix. To avoid confusion with PCA in the current paper, we refer to

the IC maps as networks below. Second, we performed PCA on a

voxel basis to study the spatial distributions.

2.3 | Principal component analysis

For each network (IC) or voxel, we performed PCA on a 168 (time

points) � 82 (subject) matrix X. The time series of each subject (each

column) was first z transformed, which is a critical step in PCA. Then,

PCA was performed in MATLAB by using the singular value decompo-

sition algorithm. The eigenvalues of the covariance matrix of X were

obtained. The percentage variance explained by each PC was then be

calculated as the corresponding eigenvalue divided by the sum of all

the eigenvalues. The PC scores (time series) and the associated

weighting for each subject wi were also obtained. PC loadings were

calculated as the PC weights multiplying the square root of the

eigenvalue.

To determine whether a PC explained greater variance than the

random level, we performed a circular time-shift randomization to

determine the null distributions (Kauppi, Jääskeläinen, Sams, &

Tohka, 2010). The time-shift method can preserve the autocorrela-

tions in the BOLD time series, which is preferable to a simple permu-

tation test. Specifically, each subject's time series were added a delay

drawn from a discrete uniform distribution of 0–167 with replace-

ment, then the PCA was performed, and the variances explained by

the first PC were obtained. The process was repeated 10,000 times to

form a null distribution. The variances explained by the first two PCs

from the real fMRI data were compared with the null distributions to

obtain the p values. It is noteworthy that the null distributions were

calculated based on the first PC, which is a conservative choice for

the statistics of the second PCs.

For the ICA-based analysis, we performed the circular time-shift ran-

domizations for every network (ICs). We adopted a threshold of p < .001

to account for the multiple comparisons. An alternative approach is to

use false discovery rate (FDR) correction. However, FDR depends on the

overall distributions of all the regions. It may make the thresholding dif-

ferent among different spatial scales. We, therefore, adopt the same

threshold of p < .001 for the ICA-based and voxel-wise analyses, which

was more stringent than FDR corrected p < .05 in the current case. The

randomization was quite computationally expensive for the voxel-wise

analysis. Therefore, we performed PCA on 1000 regions (Schaefer

et al., 2018) and calculated the local null distributions. The voxel-wise

PCA results were compared with the null distribution in a local region to

compute the p values.

Because the later PCs may represent only a small number of

subjects, we evaluated whether the PCs could be reliability identi-

fied with sample variations. We performed bootstrapping along the

subject dimension 1000 times. PCA was performed on the boot-

strapping samples, and the correlations of the PCs were calculated

among the samples. The goal is to verify whether the identified PCs

were consistent across the bootstrapping samples. The 95% confi-

dence interval of the variance explained by the second PCs was

also obtained. This analysis was only performed for the ICA-based

analysis.

2.4 | Cross-correlation and delay estimates

Because we found that the second PC score in some networks

seemed to be delayed to the first PC, we calculated cross-

correlations between the two PC scores to confirm this. The auto-

correlation in BOLD signals could produce spurious cross-

correlations (Dean & Dunsmuir, 2016), therefore, we performed

simulations with components of hemodynamic response function

(HRF) convolution. Specifically, we generated two Gaussian time

series with 168 time points and convolved them with the canonical

HRF in SPM. Cross-correlations were then calculated, and the max-

imum absolute value of the cross-correlations was obtained. The

procedure was repeated 100,000 times to form a null distribution

of the maximum value. The 95 percentile of the distribution was

used as the critical value for the cross-correlation analysis for the

real fMRI data.

We also calculated the time lags between the time series of every

subject with reference to the first PC score by obtaining the time

point of maximum absolute cross-correlation. Because single subject

time series were noisy, we set a maximum lag of ±5 time points in sea-

rch of lags.

2.5 | Behavioral correlates

We next asked whether the first two PCs of different networks can

provide complementary information in explaining the variability of a

behavioral measure. Test scores of theory of mind performance are

available for the children subjects (n = 53). The theory of mind battery

includes custom-made stories and questions that require an under-

standing of the characters' mental states. The theory of mind task per-

formance was summarized as the proportion of correct questions out

of the 24 items. More information about the task and scores can be

found in Richardson et al. (2018). The analysis was only performed for

the ICA-based analysis, where the second PC explained significant

variance (i.e., the supramarginal network). We first examined simple

correlations between the first or second PC loadings and the theory

of mind performance. Next, we put the two PC loadings together in a

linear regression model to explain the variance of the theory of mind

performance. The t statistics corresponding to the two PC loading

regressors were obtained.
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2.6 | LOO correlation and the relations to
PCA-based method

Although the main focus of this study is to apply PCA to identify

potentially multiple consistent responses, PCA can also provide mea-

sures on intersubject correlations. Specifically, we asked whether the

variance explained by the first PC is related to the averaged inter-

subject correlations and whether the loadings of PC1 are related to

the individual LOO correlations. For a specific region, we calculated

LOO intersubject correlations on the 168 (time points) � 82 (subject)

matrix X. Specifically, a subject's time series was held out and the con-

sistent component was calculated by averaging the remaining 81 sub-

jects. Then the correlation between the subject's time series and the

averaged time series was calculated. Each subject then had a LOO

correlation value. The LOO correlations were Fisher's z transformed,

averaged, and then transformed back to r values to form an averaged

intersubject correlation in a region.

We first examine the relationships on all the 20 networks (ICs).

The averaged intersubject correlations were squared to match with

the variance quantity. We then calculated the correlations between

the variance explained by the first PC and the squared mean correla-

tions across the 20 networks. Next, for each network, we calculated

the correlations between the first PC loadings and individual LOO cor-

relations. The same analysis was also performed on the 1000 regions

of interest (ROIs).

The rationale for including the noise ICs in the analysis is to reveal

more general relations between PCA and LOO correlations. Imagine if

all the time series are noise, given the high dimensionality (number of

subjects), then the first PC may not be identified as the averaged time

series. But if there are underlying consistent signals, then the first PC

may turn out to be very similar to the averaged time series, that is, the

consistent response. This will in turn give rise to high correlations

between PC1 loadings and individual LOO correlations. We

performed a simple simulation to reveal such a relationship. We gen-

erated a 168 � 82 matrix with a 168 Gaussian vector representing

the consistent response and a 168 � 82 Gaussian random matrix rep-

resenting the noises. The consistent component had different weights

for subjects drawn from a uniform distribution between 0 and 1. And

finally, the subjects' weights were multiplied by an overall weight

value from a uniform random distribution (from 0 to 1) to vary the

overall levels of intersubject correlations. The procedure was repeated

1000 times. We then calculated PCA and LOO correlations and exam-

ined their relations.

3 | RESULTS

3.1 | ICA-based analysis

We first performed PCA on the 15 large-scale networks and obtained

the percentage of variances explained by the PCs (Figure 2). The first

PCs of all the 15 networks explained more than chance-level variance

at p < .001. Among the six networks that explained the highest vari-

ance (more than 15%), five were visual related networks and the

remaining IC 17 was located in the supramarginal gyrus. These are

consistent with our previous voxel-wise analysis in only adult subjects

(Di & Biswal, 2020). For the second PCs, only the supramarginal net-

work (IC17) explained more than chance-level variance (6.01%,

p < .001). Supplementary Figure S4 shows the variance explained by

all the PCs in this network. It is noteworthy that the variance

explained by the second PC would be much less than those explained

by the first one. But it may be still meaningful, because the differences

may reflect the number of subjects represented in different PCs. To

evaluate the stability of the PC2, we performed a bootstrapping along

the subject dimension. Supplementary Figure S5A and S5B show that

PC2 could be reliability identified among the bootstrapping samples.

F IGURE 2 (a) Maps of 15 independent components (ICs) that are included in the current analysis. The group averaged maps were
thresholded at z > 2.3. (b) Percentage of variance explained by the first three principal components for the 15 networks (ICs). The bar colors
correspond to the network colors in panel (a). The asterisk represents p < .001 by using a circular time-shift randomization method. The brain
networks were visualized with BrainNet Viewer (RRID: SCR_009446) (Xia, Wang, & He, 2013)
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In addition, the 95% confidence interval of the explained variance by

PC2 was between 5.65% and 7.50%.

The pair-wise correlation matrix in the supramarginal network

clearly showed a trend of greater intersubject correlations in older

subjects (Figure 3a). The PC1 loadings were mostly positive and were

greater as age increased and reached a plateau during the adult age

range. In contrast, the PC2 loadings were positive for the younger

children but mostly negative for the adults. No clear sex differences

can be found in both PCs. We also calculated the LOO intersubject

correlations (Figure 3d), which turned out to be very similar to the

PC1 loadings (r ≈ 1, p < .001, see also the scatter plot in Supplemen-

tary Figure S6). The mean framewise displacement in rotation showed

small but statistically significant correlations with both PC1 loading

(r = �.30, p = .007) and PC2 loading (r = .29, p = .009). We, there-

fore, regressed out the mean framewise displacements from the two

PC loadings. The age effects on the adjusted PC loadings remain very

similar to what is on the original PC loadings (Figure S2).

Figure 4a shows the time series of the first two PCs (PC scores) in

the supramarginal network. Interestingly, PC2 looked similar to PC1

but seemed delayed compared with the PC1. Cross-correlation analy-

sis confirmed a 2-TR (4 s) delay between them (Figure 4b). Further-

more, we examined whether the loadings of the PC2 reflect the lags

of an individual's time series. We calculated the time shifts between

each individual's time series with reference to the PC1 time series.

Eighty out of the 82 subjects had a � 1 to 1 time points shifts. The

individual's time shifts related to PC1 were highly correlated with the

PC2 loadings (Figure 4c). In Supplementary Figure S8, we show indi-

vidual time series with subjects ordered according to age (top row)

and the PC2 loadings (bottom row). It shows clearly that for older sub-

jects the time series appeared to be faster compared with the younger

subjects. The time lags became clearer when the subjects were sorted

by the PC2 loadings.

We next asked whether the two PCs of the supramarginal net-

work (IC17) can provide complementary information in explaining the

variations of the theory of mind task performance (proportion cor-

rect). The first PC loadings were positively correlated with the theory

of mind performance (r = .468, p < .001, Figure 5a), and the second

PC loading was negatively correlated with the theory of mind perfor-

mance (r = �.398, p = .003, Figure 5b). However, when including

both the first two PC loadings in a linear regression model to predict

the theory of mind performance, only the first PC loadings had a sta-

tistical significant effect (tPC1 = 2.47, pPC1 = .017; tPC2 = �1.44,

pPC2 = .157). This is probably due to the fact that the two PC loadings

were correlated (r = �.532, p < .001). We also regressed out the

mean framewise displacement in both translation and rotation from

the PC loadings. The correlations between the adjusted PC loadings

and the theory of mind performances remained significant (PC1:

r = .428, p = .001; PC2: r = �.278, p = .044). Lastly, the LOO

F IGURE 3 (a) Correlation
matrix of the supramarginal gyrus
network (independent component
17) across the 82 subjects. The
subjects were sorted by age in an
ascending order. (b and c)
Principal component (PC) loadings
for the first and second PCs as
functions of age. (d) Leave-one-
out (LOO) intersubject
correlations as a function of age.
The brain slice illustrates the
location of the network
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intersubject correlations were also correlated with theory of mind per-

formance (r = .461, p < .001).

3.2 | Spatial distributions of variances explained by
the second PCs

The left panel of Figure 6 shows the spatial distributions of significant

second PCs at p < .001. For reference, the PC1 variance map is shown

in the right panel. One major cluster of the PC2 map covered the sup-

ramarginal gyrus and extended to the posterior parietal lobe and pos-

terior visual regions. We further increased the threshold to 5% to

break it into three small clusters, including two clusters covering the

left and right supramarginal gyrus and one cluster in posterior visual

areas. We extracted the averaged time series in these clusters and

performed PCA. The first two PC loadings in the three clusters were

very similar to those of the supramarginal network (IC 17), that is, the

first PC loadings reflected a maturation age effect and the second PC

loadings reflected higher weights in younger children.

Outside the major cluster, there were three clusters larger than

40 voxels at p < .001, including the precuneus and left and right sen-

sorimotor regions. The precuneus, which is part of the default mode

network, is particularly interesting given its role in theory of mind

processing (Richardson et al., 2018). The first two PCs and their load-

ings of the precuneus are shown in Figure 7. Similar to the sup-

ramarginal network (IC 17), the first PC loadings showed a maturation

age effect and the second PC loadings had higher weights in younger

children. The PC2 time series also seemed to be a delayed version of

PC1 but with a 2-TR (4 s) lag (Figure 7a,d).

The left and right sensorimotor regions had very similar time courses

and age effects. Figure 8 shows the left sensorimotor region as an exam-

ple. In contrast to the previous networks and regions, the PC1 loadings of

the left sensorimotor region first increased with age in the children group

but decreased with age in the adult group. Conversely, the PC2 loadings

F IGURE 4 (a) Principal component
(PC) scores of the first two PCs in the
supramarginal network (independent
component 17). The brain slice illustrates
the location of the network. (b) Cross-
correlations between the first two PCs.
The red lines indicate p < .05 of absolute
peak cross-correlations. (c) Time shifts of
individual's time series with reference to

the first PC score as a function of the PC2
loading

F IGURE 5 Correlations
between theory of mind (ToM)
performance (proportion of
correct) and principal component
(PC) loadings for the first two PCs
of the supramarginal gyrus
network (independent component
17). The brain slice illustrates the
location of the network

DI AND BISWAL 3339



had higher weights in the adult group. The cross-correlation between PC1

and PC2 also had maximum correlation at 2-TR (4 s) lag, but PC2 was

2-TR in advance. Because PC1 had large weights in younger subjects and

PC2 had larger weights in older subjects and PC, the cross-correlation indi-

cated that the older group had a faster brain activity compared with the

younger group, which is consistent with the previous networks and

regions. Lastly, when regressing out framewise displacement from the PC

loadings, the age effects remained very similar (Supplementary Figure S3).

3.3 | Relations to LOO correlations

Lastly, we asked whether the PCA-based measures are related to

the commonly used intersubject correlation measures. Among the

20 networks (ICs) and the 1000 ROIs, we found almost perfect lin-

ear relations between the squared mean intersubject correlations

and the percentage of variance explained by the first PCs

(Figure 9a,b). However, their relations were off the y = x% line,

F IGURE 6 Percentage of variance explained by the second (a) and first (b) principal components (PCs) from the voxel-wise analysis (c). The
voxels in (a) were thresholded at p < .001. The voxels in B were thresholded at 9%. The brain networks were visualized with BrainNet Viewer
(RRID: SCR_009446) (Xia et al., 2013)

F IGURE 7 (a) The time series of the first two principal components (PC scores) for the precuneus region (depicted in the brain slice). (b and c)
The first and second principal component (PC) loadings as functions of age. (d) The cross-correlations between the two PCs. The red lines indicate
p < .05 of absolute peak cross-correlations
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F IGURE 8 (a) The time series of the first two principal components (PC scores) for the left sensorimotor region (depicted in the brain slice).
(b and c) The first and second principal component (PC) loadings as functions of age. (d) The cross-correlations between the two PCs. The red
lines indicate p < .05 of absolute peak cross-correlations

F IGURE 9 Upper row, correlations between the squared mean intersubject correlations using leave-one-out (LOO) method and the variance
explained by the first principal component (PC). Lower row, the correlations between the first PC loadings and individual LOO correlations as
functions of the variance explained by the first PC
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suggesting that their quantities were not directly comparable. A

similar relation can be found in the simulations (Figure 9c).

As expected, we found that the correlations between PC1 load-

ings and individual LOO correlations are related to the noise level of a

region. We, therefore, plotted the correlations against the variance

explained by the first PC in a network (Figure 9d) and ROI (Figure 9e).

We found that if the variance explained by the first PC was higher

than 5%, that is, there are likely underlying consistent responses, then

the correlations between the PC1 loadings and individual LOO corre-

lations were higher than 0.95. But if there were very low variance

explained by the first PC, then the correlation could drop to 0.5. The

two networks with low correlations in Figure 9d were both consid-

ered noise components, which were excluded in the current analysis.

Such a relationship was confirmed by the simulation data (Figure 9f).

The simulation results further showed that in noisy conditions the cor-

relations between PC1 loadings and individual LOO correlations var-

ied in a wide range. But if there were underlying consistent signals,

then their correlations could be close to 1. In Supplementary

Figure S9, we further show that the correlations between PC1 load-

ings and LOO correlations were related to whether PC1 could capture

the averaged signals. In other words, the higher the correlations between

PC1 and averaged signals, the higher the correlations between PC1 load-

ings and LOO correlations.

4 | DISCUSSION

In the current article, we proposed a PCA-based framework to study

the individual differences in response to naturalistic stimuli in fMRI

data. On a movie watching dataset of children and adults, we showed

evidence of second PCs in distributed brain regions, which may repre-

sent a second consistent response to the movie in the tested sample.

The two PCs showed different distributions in age but not in biologi-

cal sex, suggesting that the two consistent responses represent differ-

ent age groups. The regions that showed the second consistent

responses were in the supramarginal gyrus, posterior parietal lobe,

visual areas, the precuneus, and sensorimotor regions. Interestingly, in

the supramarginal gyrus, the second PC represented delayed

responses than the first PC for 4 s (2 TR), suggesting the children

around 5 years old may have delayed responses compared with the

adults. The results indicate the importance of studying potentially

multiple consistent responses in large samples.

By calculating the eigenvalues of the covariance matrix, we pro-

vided evidence of potentially multiple consistent responses in the

sample, which cannot be identified by using intersubject correlations.

It is noteworthy that the variance explained by the second PCs in the

current study was around 5–6%, which were much smaller than those

by the first PCs. It may reflect the fact that the second PCs only repre-

sented a small number of subjects but not that the correlations among

them were lower. By using bootstrapping on the subject dimension,

we showed that the second PC in the supramarginal gyrus was reliable

against subject sampling, which supports the former interpretation. As

the sample sizes in neuroimaging studies become larger and larger, it

becomes more important to identify subgroups of subjects with dis-

tinct but consistent responses from other subjects. PCA provides an

unsupervised tool to visualize and identify the potential subgroups.

The regions that showed evidence of a second consistent compo-

nents included the supramarginal gyrus, the posterior parietal lobe,

higher visual areas, the precuneus, and sensorimotor regions. Except

for the sensorimotor regions, the other regions seemed to follow simi-

lar subject weightings. That is, the first PC represented an increasingly

similar response as age increased, and the second PC represented a

higher similar response in children around age 5. These all suggest

that the children around 5 years old showed a unique pattern of brain

responses compared with both the adults and the other children

groups.

The supramarginal network is a critical region involving in the the-

ory of mind process (Silani, Lamm, Ruff, & Singer, 2013) and the

understandings of others' pain (Bruneau, Jacoby, & Saxe, 2015). In

the current results, the loadings of both PC1 and PC2 were correlated

with the theory of mind performance, further confirming its role in

the understanding of the movie. Interestingly, we found that the PC2

seemed to be a delayed version with reference to the PC1, and the

PC2 loadings could reflect the delays of an individual's time series.

This suggests a multivariate nature of functional developments in this

region. For the youngest children in this sample, theory of mind has

not been fully developed. The functional responses in the sup-

ramarginal gyrus did not show similarity among each other nor with

the older children or adults. For children around 5 years old, the the-

ory of mind ability has started developing, but the brain responses

may be less reliable and slower compared with adults. As growing

older, the responses become more reliable and similar to the adults. A

study has shown that when the same movie was shown the second

time to children of 6–7 years old, the responses shifted earlier than

those from the first presentation (Richardson & Saxe, 2020), further

support that the brain response time may reflect the ability of the

understanding the movie. The anticipatory response when watching a

movie the second time has also been illustrated in a recent study by

using the Hidden Markov Model (Lee, Aly, & Baldassano, 2021).

One consideration related to the delays in BOLD signals is the

inherent autocorrelation (Friston et al., 2000; Friston, Jezzard, &

Turner, 1994). Usually, the BOLD signals have a high autocorrelation

at 1-TR (2 s) lag and remain a small autocorrelation at 2-TR (4 s) lag.

This means that if the delays are with 2 s, then PCA probably will not

able to identify two distinguished components. Moreover, PCA forces

the latter PCs to be orthogonal to the former PCs, meaning the signals

related to PC1 have been removed from PC2. This may make PC2

look spikier than PC1. In other words, PC2 does not simply represent

one particular group of subjects, but those after considering the PC1

effects. One can think of PC2 as a higher-order deviation to PC1 that

captures certain individual variations in the sample.

In the voxel-wise analysis, we observed distributed regions in the

posterior parietal lobe, higher visual areas, the precuneus, and sensori-

motor regions who showed evidence of second consistent compo-

nents. The precuneus is particularly interesting given its role in theory

of mind processing (Richardson et al., 2018). The other regions may
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be related to attention and sensorimotor processing. Previous studies

have suggested that children and adults activate different brain

regions when watching real versus cartoon movies (Han, Jiang, &

Humphreys, 2007; Han, Jiang, Humphreys, Zhou, & Cai, 2005). They

found that the medial prefrontal cortex was activated in children but

not adults when watching cartoon movies. Although the regions iden-

tified are different, all the studies have suggested different brain

response patterns between children and adults.

PCA is an unsupervised approach that relaxes the assumptions on

the interindividual relationships. It is particularly useful for continuous

variables such as age, where the exact timing of developments may be

unknown or the developmental effects may not be monotonic. Two

previous studies have compared the pair-wise intersubject correla-

tions between children and adults and found reduced intersubject cor-

relations in children (Cantlon & Li, 2013; Moraczewski et al., 2018).

These were done by defining specific age groups. When using the

PCA-based approach or LOO-based approach (Campbell et al., 2015),

age can be treated as a continuous variable, so that the age effects

can be modeled as developmental trajectories. On the other hand,

when using the intersubject representational similarity analysis

approach (Finn et al., 2020), the age effect may be captured by Anna

Karenina model, where only older subjects respond more similarly to

each other. However, this model cannot capture a nonmonotonic age

effect or different consistent responses. One may need to develop

new models to capture complex age effects when using the represen-

tational similarity approach.

In addition to the information about multiple consistent compo-

nents, PCA can also provide similar information as LOO intersubject

correlations. The variance explained by the first PC is a similar mea-

sure as averaged intersubject correlations. The current results showed

that across brain regions the variance explained by the first PC was

almost perfectly correlated with the averaged intersubject correla-

tions. Moreover, the loadings of the first PC provide a simple way to

project the consistent response to an individual's dimension, which is

easier than correlating each subject's time series with the LOO aver-

aged time series (Nastase et al., 2019). The current results showed

very high correlations between PC1 loadings and LOO intersubject

correlations in real fMRI data. A simple simulation also suggested that

when there were underlying consistent components, PC1 loadings

and LOO correlations were highly correlated. Therefore, the PCA-

based method can provide similar information as LOO intersubject

correlations.

There are also limitations regarding the PCA-based method. First,

the baseline of the variance explained by the first PC is not zero (the x-

intercept in Figure 9ac) and is related to the number of subjects. When

there are n subjects, imagine if the first PC is randomly assigned as one

subject's time series, it will explain 1/n variance. Therefore, the variance

explained by the first PC cannot be compared between different sample

sizes. Second, statistical testing for the PCA-related parameters is not

straightforward. In the current study, we adopted randomization-based

nonparametric methods, which are time-consuming.

A more general challenge in studying naturalistic stimuli is the

interpretations of the observed consistent responses. It becomes

more difficult when multiple consistent responses are identified. In

the current data, we found that delays of the signals may explain the

differences between the two PCs. There may be other factors that

could contribute to the differences. Future studies may need to for-

mulate testable hypotheses regarding the brain responses in different

age groups to examine the causes of the differences further. More

generally, when there are multiple consistent responses, reverse cor-

relation technique (Hasson et al., 2004; Richardson et al., 2018) could

be used to identify the events represented in different consistent

responses. Advanced encoding models may also be helpful to explain

the underlying coding of different consistent responses (Bartels,

Zeki, & Logothetis, 2008; Nishimoto et al., 2011). But it could be diffi-

cult when the effects of interest are higher-order social processes

such as theory of mind. Second, studies have shown that the shared

responses are dynamic (Di & Biswal, 2020; Simony et al., 2016). The

presence of multiple response components and their relations may

also be sensitive to the movie context, thus showing fluctuations. For

example, delays in responses may only occur to certain events but not

throughout the whole time series. Further studies may take dynamics

into account to fully characterize the individual differences in

responses. Lastly, the current study is limited by the sample size and

scan time of each subject. Further study is needed with a larger sam-

ple size and longer scan time to evaluate the generalizability and reli-

ability of the current findings.

5 | CONCLUSION

When watching movies, the brain may respond similarly or idiosyn-

cratically across individuals. It is also possible that multiple consistent

responses exist in different subgroups, which is overlooked by the

currently available methods. We proposed a PCA-based approach to

analyze the individual differences in response to naturalistic stimuli,

which can detect the potential multiple consistent responses. With an

example movie watching data of children and young adults, we

showed evidence of two consistent responses in many brain regions,

one more weighted in the adults and the other more weighted in

younger children. The results highlight the importance of identifying

multiple consistent components when studying shared responses to

naturalistic stimuli. In addition, PCA could be a complementary

approach to analyze naturalistic stimuli data.

ACKNOWLEDGMENT

This study was supported by grants from the National Institute of

Health, United States (R01 AT009829; R01 DA038895).

DATA AVAILABILITY STATEMENT

The fMRI data were obtained through openneuro (https://openneuro.

org/), with accession #: ds000228.

ORCID

Xin Di https://orcid.org/0000-0002-2422-9016

Bharat B. Biswal https://orcid.org/0000-0002-3710-3500

DI AND BISWAL 3343

https://openneuro.org/
https://openneuro.org/
https://orcid.org/0000-0002-2422-9016
https://orcid.org/0000-0002-2422-9016
https://orcid.org/0000-0002-3710-3500
https://orcid.org/0000-0002-3710-3500


REFERENCES

Bacha-Trams, M., Alexandrov, Y. I., Broman, E., Glerean, E., Kauppila, M.,

Kauttonen, J., … Jääskeläinen, I. P. (2018). A drama movie activates

brains of holistic and analytical thinkers differentially. Social Cognitive

and Affective Neuroscience, 13, 1293–1304. https://doi.org/10.1093/
scan/nsy099

Bartels, A., Zeki, S., & Logothetis, N. K. (2008). Natural vision reveals

regional specialization to local motion and to contrast-invariant, global

flow in the human brain. Cerebral Cortex, 18, 705–717. https://doi.
org/10.1093/cercor/bhm107

Bruneau, E. G., Jacoby, N., & Saxe, R. (2015). Empathic control through

coordinated interaction of amygdala, theory of mind and extended

pain matrix brain regions. NeuroImage, 114, 105–119. https://doi.org/
10.1016/j.neuroimage.2015.04.034

Byrge, L., Dubois, J., Tyszka, J. M., Adolphs, R., & Kennedy, D. P. (2015).

Idiosyncratic brain activation patterns are associated with poor social

comprehension in autism. The Journal of Neuroscience, 35, 5837–5850.
https://doi.org/10.1523/JNEUROSCI.5182-14.2015

Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method

for making group inferences from functional MRI data using indepen-

dent component analysis. Human Brain Mapping, 14, 140–151.
Campbell, K. L., Shafto, M. A., Wright, P., Tsvetanov, K. A., Geerligs, L.,

Cusack, R., & Tyler, L. K. (2015). Idiosyncratic responding during

movie-watching predicted by age differences in attentional control.

Neurobiology of Aging, 36, 3045–3055. https://doi.org/10.1016/j.

neurobiolaging.2015.07.028

Cantlon, J. F., & Li, R. (2013). Neural activity during natural viewing of ses-

ame street statistically predicts test scores in early childhood. PLoS

Biology, 11, e1001462. https://doi.org/10.1371/journal.pbio.1001462

Chen, G., Shin, Y.-W., Taylor, P. A., Glen, D. R., Reynolds, R. C.,

Israel, R. B., & Cox, R. W. (2016). Untangling the relatedness among

correlations, part I: Nonparametric approaches to inter-subject correla-

tion analysis at the group level. NeuroImage, 142, 248–259. https://
doi.org/10.1016/j.neuroimage.2016.05.023

Chen, G., Taylor, P. A., Shin, Y.-W., Reynolds, R. C., & Cox, R. W. (2017).

Untangling the relatedness among correlations, part II: Inter-subject corre-

lation group analysis through linear mixed-effects modeling. NeuroImage,

147, 825–840. https://doi.org/10.1016/j.neuroimage.2016.08.029

Dean, R. T., & Dunsmuir, W. T. M. (2016). Dangers and uses of cross-

correlation in analyzing time series in perception, performance, move-

ment, and neuroscience: The importance of constructing transfer func-

tion autoregressive models. Behavior Research Methods, 48, 783–802.
https://doi.org/10.3758/s13428-015-0611-2

Di, X., & Biswal, B. B. (2015). Characterizations of resting-state modulatory

interactions in the human brain. Journal of Neurophysiology, 114,

2785–2796. https://doi.org/10.1152/jn.00893.2014
Di, X., & Biswal, B. B. (2020). Intersubject consistent dynamic connectivity

during natural vision revealed by functional MRI. NeuroImage, 216,

116698. https://doi.org/10.1016/j.neuroimage.2020.116698

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D.,

Church, J. A., … Schlaggar, B. L. (2010). Prediction of individual brain

maturity using fMRI. Science, 329, 1358–1361. https://doi.org/10.

1126/science.1194144

Finn, E. S., Corlett, P. R., Chen, G., Bandettini, P. A., & Constable, R. T.

(2018). Trait paranoia shapes inter-subject synchrony in brain activity

during an ambiguous social narrative. Nature Communications, 9, 2043.

https://doi.org/10.1038/s41467-018-04387-2

Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J.,

Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From

shared responses to individual differences during naturalistic neuroim-

aging. NeuroImage, 215, 116828. https://doi.org/10.1016/j.

neuroimage.2020.116828

Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI

time-series. Human Brain Mapping, 1, 153–171. https://doi.org/10.

1002/hbm.460010207

Friston, K. J., Josephs, O., Zarahn, E., Holmes, A. P., Rouquette, S., &

Poline, J.-B. (2000). To smooth or not to smooth?: Bias and efficiency

in fMRI time-series analysis. NeuroImage, 12, 196–208. https://doi.
org/10.1006/nimg.2000.0609

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996).

Movement-related effects in fMRI time-series. Magnetic Resonance in

Medicine, 35, 346–355. https://doi.org/10.1002/mrm.1910350312

Han, S., Jiang, Y., & Humphreys, G. W. (2007). Watching cartoons activates

the medial prefrontal cortex in children. Chinese Science Bulletin, 52,

3371–3375. https://doi.org/10.1007/s11434-007-0505-5
Han, S., Jiang, Y., Humphreys, G. W., Zhou, T., & Cai, P. (2005). Distinct

neural substrates for the perception of real and virtual visual worlds.

NeuroImage, 24, 928–935. https://doi.org/10.1016/j.neuroimage.

2004.09.046

Hasson, U., Avidan, G., Gelbard, H., Vallines, I., Harel, M., Minshew, N., &

Behrmann, M. (2009). Shared and idiosyncratic cortical activation pat-

terns in autism revealed under continuous real-life viewing conditions.

Autism Research, 2, 220–231. https://doi.org/10.1002/aur.89
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject

synchronization of cortical activity during natural vision. Science, 303,

1634–1640. https://doi.org/10.1126/science.1089506
Jääskeläinen, I. P., Pajula, J., Tohka, J., Lee, H.-J., Kuo, W.-J., & Lin, F.-H.

(2016). Brain hemodynamic activity during viewing and re-viewing of

comedy movies explained by experienced humor. Scientific Reports, 6,

27741. https://doi.org/10.1038/srep27741

Kauppi, J.-P., Jääskeläinen, I. P., Sams, M., & Tohka, J. (2010). Inter-subject

correlation of brain hemodynamic responses during watching a movie:

Localization in space and frequency. Frontiers in Neuroinformatics, 4, 5.

https://doi.org/10.3389/fninf.2010.00005

Lee, C. S., Aly, M., & Baldassano, C. (2021). Anticipation of temporally

structured events in the brain. eLife, 10, e64972. https://doi.org/10.

7554/eLife.64972

Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L.,

Clasen, L. S., … Giedd, J. N. (2007). Sexual dimorphism of brain devel-

opmental trajectories during childhood and adolescence. NeuroImage,

36, 1065–1073. https://doi.org/10.1016/j.neuroimage.2007.03.053

Moraczewski, D., Chen, G., & Redcay, E. (2018). Inter-subject synchrony as

an index of functional specialization in early childhood. Scientific

Reports, 8, 2252. https://doi.org/10.1038/s41598-018-20600-0

Nastase, S. A., Gazzola, V., Hasson, U., & Keysers, C. (2019). Measuring

shared responses across subjects using intersubject correlation. Social

Cognitive and Affective Neuroscience, 14, 667–685. https://doi.org/10.
1093/scan/nsz037

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L.

(2011). Reconstructing visual experiences from brain activity evoked

by natural movies. Current Biology, 21, 1641–1646. https://doi.org/10.
1016/j.cub.2011.08.031

Nummenmaa, L., Glerean, E., Viinikainen, M., Jääskeläinen, I. P., Hari, R., &

Sams, M. (2012). Emotions promote social interaction by synchroniz-

ing brain activity across individuals. Proceedings of the National Acad-

emy of Sciences of the United States of America, 109, 9599–9604.
https://doi.org/10.1073/pnas.1206095109

Petroni, A., Cohen, S. S., Ai, L., Langer, N., Henin, S., Vanderwal, T., … Parra,

L. C. (2018). The variability of neural responses to naturalistic videos

change with age and sex. eNeuro, 5(1), ENEURO.0244-17.2017.

https://doi.org/10.1523/ENEURO.0244-17.2017

Richardson, H., Lisandrelli, G., Riobueno-Naylor, A., & Saxe, R. (2018).

Development of the social brain from age three to twelve years.

Nature Communications, 9, 1–12. https://doi.org/10.1038/s41467-

018-03399-2

Richardson, H., & Saxe, R. (2020). Development of predictive responses in

theory of mind brain regions. Developmental Science, 23, e12863.

https://doi.org/10.1111/desc.12863

Salmi, J., Roine, U., Glerean, E., Lahnakoski, J., Nieminen-von Wendt, T.,

Tani, P., … Sams, M. (2013). The brains of high functioning autistic

3344 DI AND BISWAL

https://doi.org/10.1093/scan/nsy099
https://doi.org/10.1093/scan/nsy099
https://doi.org/10.1093/cercor/bhm107
https://doi.org/10.1093/cercor/bhm107
https://doi.org/10.1016/j.neuroimage.2015.04.034
https://doi.org/10.1016/j.neuroimage.2015.04.034
https://doi.org/10.1523/JNEUROSCI.5182-14.2015
https://doi.org/10.1016/j.neurobiolaging.2015.07.028
https://doi.org/10.1016/j.neurobiolaging.2015.07.028
https://doi.org/10.1371/journal.pbio.1001462
https://doi.org/10.1016/j.neuroimage.2016.05.023
https://doi.org/10.1016/j.neuroimage.2016.05.023
https://doi.org/10.1016/j.neuroimage.2016.08.029
https://doi.org/10.3758/s13428-015-0611-2
https://doi.org/10.1152/jn.00893.2014
https://doi.org/10.1016/j.neuroimage.2020.116698
https://doi.org/10.1126/science.1194144
https://doi.org/10.1126/science.1194144
https://doi.org/10.1038/s41467-018-04387-2
https://doi.org/10.1016/j.neuroimage.2020.116828
https://doi.org/10.1016/j.neuroimage.2020.116828
https://doi.org/10.1002/hbm.460010207
https://doi.org/10.1002/hbm.460010207
https://doi.org/10.1006/nimg.2000.0609
https://doi.org/10.1006/nimg.2000.0609
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1007/s11434-007-0505-5
https://doi.org/10.1016/j.neuroimage.2004.09.046
https://doi.org/10.1016/j.neuroimage.2004.09.046
https://doi.org/10.1002/aur.89
https://doi.org/10.1126/science.1089506
https://doi.org/10.1038/srep27741
https://doi.org/10.3389/fninf.2010.00005
https://doi.org/10.7554/eLife.64972
https://doi.org/10.7554/eLife.64972
https://doi.org/10.1016/j.neuroimage.2007.03.053
https://doi.org/10.1038/s41598-018-20600-0
https://doi.org/10.1093/scan/nsz037
https://doi.org/10.1093/scan/nsz037
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1073/pnas.1206095109
https://doi.org/10.1523/ENEURO.0244-17.2017
https://doi.org/10.1038/s41467-018-03399-2
https://doi.org/10.1038/s41467-018-03399-2
https://doi.org/10.1111/desc.12863


individuals do not synchronize with those of others. NeuroImage Clini-

cal, 3, 489–497. https://doi.org/10.1016/j.nicl.2013.10.011
Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N.,

Holmes, A. J., … Yeo, B. T. T. (2018). Local-global parcellation of the

human cerebral cortex from intrinsic functional connectivity MRI. Cerebral

cortex, 1991(28), 3095–3114. https://doi.org/10.1093/cercor/bhx179
Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right supramarginal

gyrus is crucial to overcome emotional egocentricity bias in social

judgments. The Journal of Neuroscience, 33, 15466–15476. https://doi.
org/10.1523/JNEUROSCI.1488-13.2013

Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., &

Hasson, U. (2016). Dynamic reconfiguration of the default mode net-

work during narrative comprehension. Nature Communications, 7,

12141. https://doi.org/10.1038/ncomms12141

Sonkusare, S., Breakspear, M., & Guo, C. (2019). Naturalistic stimuli in neu-

roscience: Critically acclaimed. Trends in Cognitive Sciences, 23, 699–
714. https://doi.org/10.1016/j.tics.2019.05.004

Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A network visualiza-

tion tool for human brain connectomics. PLoS One, 8, e68910. https://

doi.org/10.1371/journal.pone.0068910

Yang, Z., Wu, J., Xu, L., Deng, Z., Tang, Y., Gao, J., … Wang, J. (2019). Indi-

vidualized psychiatric imaging based on inter-subject neural synchroni-

zation in movie watching. NeuroImage, 216, 116227. https://doi.org/

10.1016/j.neuroimage.2019.116227

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Di, X., & Biswal, B. B. (2022). Principal

component analysis reveals multiple consistent responses to

naturalistic stimuli in children and adults. Human Brain

Mapping, 43(11), 3332–3345. https://doi.org/10.1002/hbm.

25568

DI AND BISWAL 3345

https://doi.org/10.1016/j.nicl.2013.10.011
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1523/JNEUROSCI.1488-13.2013
https://doi.org/10.1523/JNEUROSCI.1488-13.2013
https://doi.org/10.1038/ncomms12141
https://doi.org/10.1016/j.tics.2019.05.004
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1016/j.neuroimage.2019.116227
https://doi.org/10.1016/j.neuroimage.2019.116227
https://doi.org/10.1002/hbm.25568
https://doi.org/10.1002/hbm.25568

	Principal component analysis reveals multiple consistent responses to naturalistic stimuli in children and adults
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Data and task
	2.2  FMRI data processing
	2.2.1  Preprocessing
	2.2.2  Dimension reduction

	2.3  Principal component analysis
	2.4  Cross-correlation and delay estimates
	2.5  Behavioral correlates
	2.6  LOO correlation and the relations to PCA-based method

	3  RESULTS
	3.1  ICA-based analysis
	3.2  Spatial distributions of variances explained by the second PCs
	3.3  Relations to LOO correlations

	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


