Hindawi Publishing Corporation

Journal of Tropical Medicine

Volume 2012, Article ID 628475, 13 pages
doi:10.1155/2012/628475

Review Article

Dengue Virus Entry as Target for Antiviral Therapy

Marijke M. E. Alen and Dominique Schols

Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven,

3000 Leuven, Belgium

Correspondence should be addressed to Dominique Schols, dominique.schols@rega.kuleuven.be

Received 26 September 2011; Accepted 10 November 2011

Academic Editor: Jean-Paul Gonzalez

Copyright © 2012 M. M. E Alen and D. Schols. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is
imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop
an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV
entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several
cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV
receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to
inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry

inhibitors are discussed.

1. Introduction

Dengue virus (DENV) is a single-stranded, positive-sense
enveloped RNA virus of the Flaviviridae family that is trans-
mitted by Aedes aegypti and Aedes albopictus. There exist 4
different serotypes of DENV. Each serotype shares around
65% of the genome, and, despite of the differences, each
serotype causes nearly identical syndromes in humans and
circulates in the same ecological niche [1]. Dengue virus
causes clinical syndromes in humans, ranging from an acute
self-limited febrile illness (dengue fever, DF) to a severe and
life-threatening vascular leakage and shock (dengue hemor-
rhagic fever/dengue shock syndrome, DHF/DSS) [2, 3]. In
the last decade, due to a decline of vector control efforts,
DENV has reemerged in tropical areas and is considered
as the most common arthropod-borne tropical disease that
endangers an estimated 2.5 billion people [4, 5]. Every year,
50 million infections occur, including 500,000 hospitaliza-
tions for DHF, mainly among children, with a case fatality
rate exceeding 5% in some areas. At present, diagnosis is
largely clinical, treatment is supportive through hydration,
and disease control is limited by eradication of the mosquito.
Many efforts have been made in the search for a suitable
vaccine, but the lack of an animal model and the need for

a high immunogenicity vaccine against all four serotypes and
a low reactogenicity are posing huge challenges in the dengue
vaccine development [6, 7]. As there is no vaccine available,
the search for antiviral products is imperative. Antivirals
previously designed against flaviviruses have principally
focused on inhibition of viral RNA replication. Ribavirin
[8], mycophenolic acid [9], and adenosine analogues [10]
are believed to act as inhibitors of the RNA-dependent RNA
polymerase. Due to low efficacy of these types of compounds
[9, 11, 12], more tolerable, highly potent DENV inhibitors
are urgently needed. In the past few years, progression
has been made in unraveling the host cell pathways upon
DENV infection. It is proposed that viral epitopes on the
surface of DENV can trigger cellular immune responses and
subsequently the development of a severe disease. Therefore,
these epitopes are potential targets for the development of a
new class of antiviral products, DENV entry inhibitors. Inhi-
bition of DENV attachment and entry into the host cell can
inhibit immune activation. The cellular immune response is
believed to play an important role in antibody-dependent
enhancement (ADE). This is a phenomenon where cross-
reacting nonneutralizing antibodies generated to the first
DENV infection will recognize a heterologous DENV during
a secondary infection with another serotype. The DENV-Ab
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FIGURE 1: Schematic overview of the DENV membrane fusion process (modified figure from Stiasny et al., Amino Acids, 2009 [25]). (a)
Prefusion conformation of the E-protein consists of homodimers on the virus surface. (b) Low endosomal pH triggers dissociation of the E-
dimers into monomers which leads to the insertion of the fusion peptide with the endosomal target membrane. (c) A stable E-protein trimer
is folded in a hairpin-like structure. (d) Hemifusion intermediate in which only the outer leaflets of viral and target cellular membranes have
fused. (e) Formation of the postfusion E-trimer and opening of the fusion pore allow the release of the viral RNA into the cytoplasm.

complex enhances DENV access to Fc-receptor bearing cells
[13, 14]. This results in the proliferation of T cells and
the production of proinflammatory cytokines that have an
indirect effect on the vascular endothelial cells leading to
plasma leakage and DHF [3, 4, 15].

This paper will focus on the entry process of DENV and
on all identified cellular DENV receptors. A better under-
standing of the role of the structural envelope protein
would aid the research and development of entry inhibitors
against flaviviruses. Inhibition of virus attachment is a
valuable antiviral strategy because it forms the first barrier to
block infection. Specific molecules preventing the interaction
between the host and DENV envelope are discussed.

2. DENV Entry

2.1. Entry Process. The infectious entry of DENV in its target
cells, mainly dendritic cells [16], monocytes, and macro-
phages, is mediated by the viral envelope glycoprotein E via
receptor-mediated endocytosis [17]. The E-protein is the
major component (53 kDa) of the virion surface and is ar-
ranged as 90 homodimers in mature virions [18]. Recent

reports demonstrated that DENV enters its host cell via
clathrin-mediated endocytosis [19, 20], comparable with
other flaviviruses [21, 22]. Evidence for flavivirus entry via
this pathway is based on the use of inhibitors of clathrin-
mediated uptake, such as chlorpromazine. However, DENV
entry via a nonclassical endocytic pathway independent from
clathrin has also been described [23]. It seems that the
entry pathway chosen by DENV is highly dependent on the
cell type and viral strain. In case of the classical endocytic
pathway, there is an uptake of the receptor-bound virus by
clathrin-coated vesicles. These vesicles fuse with early endo-
somes to deliver their cargo into the cytoplasm. The E-
protein responds to the reduced pH of the endosome with a
large conformational rearrangement [24, 25]. The low pH
triggers dissociation of the E-homodimer, which then leads
to the insertion of the fusion peptide into the target cell
membrane forming a bridge between the virus and the
host. Next, a stable trimer of the E-protein is folded into
a hairpin-like structure and forces the target membrane to
bend towards the viral membrane, and eventually fusion
takes place [24, 26, 27]. The fusion results in the release of
viral RNA into the cytoplasm for initiation of replication and
translation (Figure 1).
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TasLE 1: Susceptible cell types for DENV infection and putative DENV receptors.

Species Cell type Cell description DENV receptor(s) References
Monkey Vero Kidney epithelium cells Heparan sulfate (HS) (28, 29]
Glycoprotein (74 kDa) [30]
LLC-MK2 Kidney cells Glycosphingolipid [31]
Human Monocytes Primary myeloid cells CD14/LPS [32]
HSP70/HSP90 [33]
Fc-receptor [13,14,17]
Dendritic cells Primary myeloid cells DC-SIGN [34, 35]
Macrophages Primary myeloid cells Mannose receptor [36]
CLEC5A (37]
Huh Hepatocytes HS [38, 39]
HepG2 Hepatocytes Laminin receptor, GRP78, HS [40, 41]
HMEC-1 Dermal endothelium B3 integrin [42]
Hamster BHK Kidney fibroblast cells HS [43]
Glycosphingolipid [44]
CHO Ovary cells HS [28, 29]
Insect C6/36 A. albopictus larvae cells Laminin receptor (37/67 kDa) [45]
HSP related (45kDa) (46, 47]
Prohibitin (35 kDa) [48]
CCL-125 A. Aegypti larvae cells Prohibitin (35kDa) [48]
AP-61 A. pseudoscutellaris larvae cells Glycosphingolipid [31]

2.1.1. Human Cell DENV Attachment and Receptors. Prior to
fusion, DENV needs to attach to specific cellular receptors.
Because DENV can infect a variety of different cell types
isolated from different hosts (human, insect, monkey, and
even hamster), the virus must interact with a wide variety
of cellular receptors. In the last decade, several candidate
attachment factor/receptors are identified (Table 1).

(1) Immune Cells (Monocytes, Dendritic Cells, and Macro-
phages). Since 1977, monocytes are considered to be permis-
sive for DENV infection [70]. More recent, phenotyping of
peripheral blood mononuclear cells (PBMCs) from pediatric
DF and DHEF cases resulted in the identification of monocytes
as DENV target cells [71]. First, it was believed that mono-
cytes are important during secondary DENV infections dur-
ing the ADE process, because of their Fc-receptor expression.
The complex formed between the nonneutralizing antibody
and the virus can bind to Fc-receptors and enhance infec-
tion in neighbouring susceptible cells [13, 14, 17]. There is
evidence for the expression of a trypsin-sensitive receptor
on monocytes facilitating DENV infection [72]. Later, it
was shown that DENV can enter monocytes in a CD14-
dependent manner, because lipopolysaccharide (LPS) can
inhibit the infection [32]. After LPS binding, heat shock
protein (HSP) 70 and HSP90 are clustered around CD14,
preventing them from interacting with DENV [33]. This
indicates that HSP70 and HSP90 are part of a receptor com-
plex in monocytes.

More detailed observation of the natural DENV infection
changes the idea of monocytes being the first target cells.

Following intradermal injection of DENV-2 in mice, repre-
senting the bite of an infected mosquito, DENV occurs to
replicate in the skin [73]. The primary DENV target cells in
the skin are believed to be immature dendritic cells (DCs)
or Langerhans cells [16, 74-76]. Immature DCs are very
efficient in capturing pathogens whereas mature DCs are rel-
atively resistant to infection. The search for cellular receptors
responsible for DENV capture leads to the identification of
cell-surface C-type lectin DC-specific intercellular adhesion
molecule 3-grabbing nonintegrin (DC-SIGN; CD209) [34,
35, 61, 77]. DC-SIGN, mainly expressed by immature DC
as a tetramer, is a member of the calcium-dependent C-type
lectin family and is composed out of four domains: a cyto-
plasmic domain responsible for signaling and internalization
due to the presence of a dileucine motif, a transmembrane
domain, seven to eight extracellular neck repeats implicated
in the oligomerization of DC-SIGN, and a carbohydrate
recognition domain (CRD) (Figure 2) [78]. The CRD recog-
nizes high-mannose N-glycans and fucose-containing blood
group antigens [79, 80]. Importantly, DC-SIGN can bind
a variety of pathogens like human immunodeficiency virus
(HIV) [81], hepatitis C virus (HCV) [82], Ebola virus [83],
and several bacteria, parasites, and yeasts [84]. Many of
these pathogens have developed strategies to manipulate DC-
SIGN signaling to escape from an immune response [84].
Following antigen capture in the periphery, DCs maturate by
upregulation of the costimulatory molecules and migrate to
secondary lymphoid organs. Activated DCs are stimulators
of naive T cells and they initiate production of cytokines
and chemokines [85]. Inhibition of the initial interaction
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TaBLE 2: Overview of all described DENV entry inhibitors.
Class Compound Serotype* Cell line References
Fusion inhibitors 10AN1 DENV-2 LLC-MK2 [49]
DN59 DENV-2 LLC-MK2 [50]
Compound 6 DENV-1-4 A549, BHK [51]
Tetracycline derivates DENV-2 BHK [52]
Doxorubicin derivate DENV-1, -2, -3 Vero, C6/36 [53]
NITD448 DENV-2 BHK, C6/36 [54]
Glycosidase inhibitors Castanospermine DENV-1-4 BHK [55, 56]
DENV-2 Huh-7 (55]
DNJ DENV-1 Mouse neuro 2a cells [56]
NN-DNJ DENV-2 BHK [57]
Alkylated iminocyclitol DENV-2 BHK [58]
OSL-9511 DENV-2 BHK [59]
CM-9-78 DENV-2 BHK [60]
CBAs Con A, WGA DENV-2 BHK [43]
HHA, GNA, UDA DENV-1-4 Raji/DC-SIGN, MDDC [61,62]
DENV-1-4 Huh-7, U87/DC-SIGN Unpublished results
DENV-1-4 Raji/L-SIGN, U87/L-SIGN Unpublished results
PRM-S DENV-2 MDDC [62]
Heparan mimetics GAG DENV-2 Vero [28]
Heparin DENV-2 Vero [28,29]
DENV-2 BHK [43]
DENV-2 Hepatocytes [38]
Suramin DENV-2 Vero, BHK [28, 63]
PI-88 DENV-2 BHK and in mice [63]
PPS DENV-2 BHK [63]
Fucoidan DENV-2 BHK [64]
Sulfated galactomannan DENV-1 C6/36 [65]
DL-galactan DENV-2, -3 Vero, HepG2 [66]
Carrageenan DENV-2, -3 Vero, HepG2 [66, 67]
a-D-glucan DENV-2 BHK [68]
Dextran sulfate 8000 DENV-2 Hepatocytes, Vero [66]
DS (MW > 500,000Da)  DENV-2 Raji/DC-SIGN [61]
Zosteric acid DENV-1-4 LLC-MK2 [69]

* Serotype: The serotype mentioned is the serotype that has been tested and found susceptible to inhibition by the compound. Non-mentioned serotypes were

not tested or could not be inhibited by the compound.

between DENV and DC could prevent an immune response.
DC-SIGN could be a target for antiviral therapy by interrupt-
ing the viral entry process.

Besides DC, macrophages play a key role in the immuno-
pathogenesis of DENV infection as a source of immunomod-
ulatory cytokines [86]. Recently, Miller et al. showed that the
mannose receptor (MR; CD206) mediates DENV infection
in macrophages by recognition of the glycoproteins on the
viral envelope [36]. MR is also present on monocyte-derived
DC (MDDC), and anti-MR antibodies can inhibit DENV
infection, although to a lesser extent than anti-DC-SIGN
antibodies do [62]. MR differs from DC-SIGN in ligand
specificity and acts as an internalization receptor for DENV
instead of an attachment factor. Another C-type lectin,

CLEC5A (C-type lectin domain family 5, member A) ex-
pressed by human macrophages can also interact with DENV
and acts as a signaling receptor for the release of proin-
flammatory cytokines [37]. However, whereas the DC-SIGN-
DENYV interaction is calcium-dependent, CLEC5A binding
to itsligand is not dependent on calcium. Mannan and fucose
can inhibit the interaction between CLEC5A and DENYV,
indicating that the interaction is carbohydrate-dependent
[37]. However, a glycan array demonstrated that there is no
binding signal between CLEC5A and N-glycans of mammals
or insects [87]. The molecular interaction between CLEC5A
and DENV remains to be elucidated.

Immune cells, in particular dendritic cells, are the most
relevant cells to use in the discovery of antiviral drugs against
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FIGURE 2: Structure of DC-SIGN. DC-SIGN, mainly expressed by
human dendritic cells in the skin, is composed out of four domains:
(A) cytoplasmic domain containing internalization signals, (B)
transmembrane domain, (C) 7 or 8 extracellular neck repeats impli-
cated in the oligomerization of DC-SIGN, and (D) carbohydrate
recognition domain which can interact calcium-dependently with a
variety of pathogens.

dengue virus, but the isolation of these cells and the charac-
terization is labour intensive and time consuming.

(2) Liver Cells. The liver is an important target organ of den-
gue, in particular in DHF and DSS, because liver enzymes are
usually elevated [88] and apoptosis of hepatocytes has been
reported [89]. The interaction of DENV with liver cells has
been studied.

Heparan sulfate (HS), the most ubiquitous member of
the glycosaminoglycan (GAG) family, present on human
hepatocytes, is described as a putative receptor for DENV
(28,29, 38, 43]. HS is also expressed by Vero cells, CHO cells,
and BHK cells which are widely used in the study of dengue
virus infection because of the easy cell growth conditions.
HS very often acts as an attachment factor to concentrate
the virus on the cell surface to facilitate binding to a second
receptor. However, the contribution of HS to internalize
DENV appears to vary in a serotype-specific manner [39,
90]. In Vero cells, a putative glycoprotein coreceptor is char-
acterized of 74kDa binding DENV-4 in a carbohydrate-
dependent manner [30]. Another carbohydrate molecule
characterized to interact with all four serotypes of DENV in
BHK cells and insect cells is the terminal disaccharide of a
glycosphingolipid, neolactotetraosylceramide [31, 44].

Besides HS [38, 39], glucose-regulated protein 78
(GRP78) is identified as a possible liver receptor in hepato-
cytes [40]. Wati et al. showed that GRP78 is also upregulated
in DENV-infected monocytes and acts as a chaperone for
viral-protein production during DENV infection [91]. Liver
cells are important target cells during dengue virus infection,
and the liver cell line Huh-7 has easy growth conditions. In
general, liver cells are not widely used for studying dengue
virus infection, but liver cells have more clinical relevance
in contrast to monkey cells (Vero) or hamster cells (BHK)
and should get more attention to use in screening discovery
programs for antiviral drugs.

(3) Endothelial Cells. Liver/lymph node-specific ICAM-3
grabbing nonintegrin (L-SIGN) is a DC-SIGN-related trans-
membrane C-type lectin expressed on endothelial cells in

liver, lymph nodes, and placenta [92, 93]. Similar to DC-
SIGN, L-SIGN is a calcium-dependent carbohydrate-binding
protein and can interact with HIV [92], HCV [82], Ebola
virus [83], West Nile virus [94], and DENV [35]. Although
endothelial cells [95] and liver endothelial cells [89] are
permissive for DENV and L-SIGN-expression makes unsus-
ceptible cells susceptible for DENV infection, the in vivo
role for L-SIGN in DENV entry remains to be established.
Upregulation of 53 integrin has been observed following
DENYV infection in human endothelial cells [42], and DENV
entry is highly dependent on the expression of 83 integrin.
This indicates that 3 integrin can act as an important
secondary receptor for DENV entry in endothelial cells.

2.1.2. Mosquito Cell DENV Attachment and Receptors. DENV
entry into mosquito cells is poorly understood. Previously,
electron microscopic studies in the Aedes Albopictus mosqui-
to cell line, C6/36, have shown that DENV penetrates directly
into the cytoplasm by fusion at the plasma membrane [96].
In contrast, experiments concentrating on cell fusion of
mosquito cells and virus inhibition with acidotropic agents
have provided evidence of viral uptake through receptor-
mediated endocytosis [97]. Recently, according to overlay
protein-binding assays, two surface proteins on C6/36 cells
with molecular masses 80 en 67 kDa have been demonstrated
to interact with all four serotypes of DENV [98]. This is
in contrast with other reports, where a surface protein of
45kDa was identified as a receptor for DENV-4 in C6/36
cells [46] which was later designated as a heat-shock-
related protein (HSP related) [47]. Also, the 37/67 kDa pro-
tein was identified as the laminin receptor expressed by
C6/36 cells and hepatocytes [41, 45]. However, the binding
capacity of DENV to interact with the laminin receptor is
serotype-specific (only DENV-3 and DENV-4) and cell-type-
dependent (only detected in larvae cells and not in adult
mosquito cells). Recently, prohibitin is characterized as a
DENV-2 receptor in insect cells [48]. However, it is unclear
if this conserved eukaryotic protein plays a role in DENV
infection in mammalian cells.

3. The DENV Envelope

The DENV E-protein induces protective immunity, and fla-
vivirus serological classification is based on its antigenic vari-
ation. During replication, the virion assumes three confor-
mational states: the immature, mature, and fusion-activated
form. In the immature state, the E-protein is arranged as
a heterodimer and generates a “spiky” surface because the
premembrane protein (prM) covers the fusion peptide. In
the Golgi apparatus, the virion maturates after a rearrange-
ment of the E-protein. The E-heterodimer transforms to an
E-homodimer and results in a “smooth” virion surface. After
a furin cleavage of the prM to pr and M, the virion is fully
maturated and can be released from the host cell. Upon
fusion, the low endosomal pH triggers the rearrangement of
the E-homodimer into a trimer [99].

The E-protein monomer is composed out of S-barrels
organized in three structural domains (Figure 3). The central
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FIGURE 3: Location of the 2 N-glycans on the envelope protein of
DENV. The DENV E-protein dimer carries 2 N-glycans on each
monomer at Asn67 and Asnl53. B-strands are shown as ribbons
with arrows, a-helices are shown as coiled ribbons. Thin tubes
represent connecting loops. Domain I is shown is red, domain IT
is shown in yellow and contains the fusion peptide near Asnl53.
Domain I1I is shown in blue. Disulfide bridges are shown in orange.
In green, the ligand N-octyl-D-glucoside is shown, which interacts
with the hydrophobic pocket between domains I and II (modified
figure from Modis et al., PNAS, 2003) [100].

domain I contains the aminoterminus and contains two
disulphide bridges. Domain II is an extended finger-like
domain that bears the fusion peptide and stabilizes the dimer.
This sequence contains three disulphide bridges and is rich
in glycine. Between domain I and domain II is a binding
pocket that can interact with a hydrophobic ligand, the
detergent 5-N-octyl-glucoside. This pocket is an important
target for antiviral therapy because mutations in this region
can alter virulence and the pH necessary for the induction of
conformational changes. The immunoglobulin-like domain
III contains the receptor-binding motif, the C-terminal
domain, and one disulphide bond [100, 101]. Monoclonal
antibodies recognizing domain III are the most efficient of
blocking DENV [102, 103] and this domain is therefore an
interesting target for antiviral therapy.

Because DC-SIGN is identified as a receptor for DENV
in primary DC in the skin and DC-SIGN recognizes high-
mannose sugars, carbohydrates present on the E-protein
of DENV could be important for viral attachment. The
E-protein has two potential glycosylation sites: Asn67 and
Asn153. Glycosylation at Asnl53 is conserved in flaviviruses,
with the exception of Kunjin virus [104] and is located
near the fusion peptide in domain II [100, 101] (Figure 3).
Glycosylation at Asn67 is unique for DENV [101]. The glyco-
sylation at Asn67 is demonstrated to be essential for infection
of MDDC, indicating an interaction between DC-SIGN and
the glycan at Asn67 [105, 106]. Generally, the function of
glycosylation of surface proteins is proper folding of the
protein, trafficking in the endoplasmic reticulum, interaction
with receptors, and influencing virus immunogenicity [107].

There are some contradictions in terms of necessity
of glycosylation of Asn67 and Asnl53 during DENV viral
progeny. Johnson et al. postulated that DENV-1 and DENV-3
have both sites glycosylated and that DENV-2 and DENV-
4 have only one N-glycan at Asn-67 [108]. In contrast, a
study comparing the number of glycans in multiple isolates
of DENV belonging to all four serotypes led to the consensus
that all DENV strains have two N-glycans on the E-protein
[109]. Nevertheless, mutant DENV lacking the glycosyla-
tion at Asn153 can replicate in mammalian and insect cells,
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indicating that this glycosylation is not essential for viral
replication [105, 110]. However, there is a change in pheno-
type because ablation of glycosylation at Asn153 in DENV
is associated with the induction of smaller plaques in com-
parison to the wild type virus [105]. Asn153 is proximal to
the fusion peptide, and therefore deglycosylation at Asn153
showed also an altered pH-dependent fusion activity and
displays a lower stability [111, 112].

DENV lacking the glycosylation at Asn67 results in a re-
plication-defective phenotype, because this virus infects
mammalian cells weakly and there is a reduced secretion
of DENV E-protein. Replication in mosquito cells was not
affected, because the mosquito cells restore the N-glycosyl-
ation at Asn67 with a compensatory site-mutation (K64N)
generating a new glycosylation site [105, 113]. These data are
in contrast with other published results, where was demon-
strated that DENV lacking the Asn67-linked glycosylation
can grow efficiently in mammalian cells, depending on the
viral strain and the amino acid substitution abolishing the
glycosylation process [110]. A compensatory mutation was
detected (N124S) to repair the growth defect without creat-
ing a new glycosylation site. Thus, the glycan at Asn67 is not
necessary for virus growth, but a critical role for this glycan in
virion release from mosquito cells was demonstrated [110].

Virions produced in the mosquito vector and human
host may have structurally different N-linked glycans,
because the glycosylation patterns are fundamentally differ-
ent [109, 114]. N-glycosylation in mammalian cells is often
of the complex type because a lot of different processing
enzymes could add a diversity of monosaccharides. Glycans
produced in insect cells are far less complex, because of less
diversity in processing enzymes, and usually contain more
high-mannose and pauci-mannose-type glycans. DC-SIGN
can distinguish between mosquito and mammalian cell-
derived alphavirus [115] and West Nile virus [94], resulting
in a more efficient infection by a mosquito-derived virus, but
this was not the case for DENV [109].

4. DENV Entry Inhibitors

4.1. Fusion Inhibitors. By docking experiments and physic-
ochemical algorithms using the structural data of the E-
protein, small molecules and peptides targeting the hy-
drophobic pocket are characterized as entry inhibitors of
DENV (Table 2) [49-51]. Nicholson et al. showed that two
peptide entry inhibitors, DN59 and 10AN1, could inhibit
ADE in vitro, indicating that entry inhibitors could prevent
development of the more severe disease outcome of dengue,
DHF/DSS [116]. Tetracycline derivates have been shown
to interact with the hydrophobic pocket of the E-protein
(Figure 3) and, due to steric hindrance, prevent conforma-
tional rearrangements of the E-protein and subsequently
prevent viral fusion [52]. A derivate of the antibiotic doxoru-
bicin, SA-17, has a structure partially similar to tetracycline.
SA-17 has been demonstrated to have antiviral activity
against DENV serotype 1, 2, and 3 in Vero and C6/36 cells
and interferes with viral entry by binding to the hydropho-
bic pocket of the E-protein without being virucidal [53].
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Recently, two fusion assays using C6/36 cells have been opti-
mized to examine the antifusion activities of a variety of
compounds. NITD448, selected in docking experiments, was
demonstrated to inhibit DENV-2 fusion by binding to the
hydrophobic pocket of the E-protein [54]. All these com-
pounds can serve as lead compounds for further drug discov-
ery and for further elucidation of the entry process of DENV.

4.2. Glycosidase Inhibitors. Because of the risk of ADE, it is
very important to achieve maximal protection to the same
extent against all four serotypes with one drug or vaccine.
Inhibitors targeting host cell processes, as glycosylation pro-
cesses, are interesting targets and could overcome this prob-
lem. We will further focus on some a-glycosidase inhibitors
that affect the modification of N-glycosylation of the viral
proteins in the endoplasmic reticulum (ER).

The two lead compounds in inhibiting glycoprotein
folding are imino sugars deoxynojirimycin (DNJ) and cas-
tanospermine (CSP) which mimic glucose (reviewed in
[117]). CSP is a natural alkaloid derived from the black bean
and is water soluble. CSP inhibits all four DENV serotypes
by reducing the number of secreted particles, due to inappro-
priate glycoprotein folding, and by decreasing the infectivity
of the secreted DENV particles [55, 56]. DNJ exerts the same
mechanism of action as castanospermine [56]. Because of the
low efficacy and cytotoxic effects, the development of imino
sugars is limited. Alkylated iminocyclitol derivates, contain-
ing an imino sugar head group and an N-alkyl side chain,
proved to be more potent against DENV-2 and less cytotoxic
than DNJ [58]. N-alkylated derivates of DNJ (N-nonyl-DN]J
(NN-DNJ)) have been shown to have increased antiviral
potency compared to DNJ, but cytotoxic effects were also
increased [57, 118]. However, NN-DNJ and a CSP derivate
both reduced significantly viremia in a dengue fever mouse
model [119]. Further optimization of the chemical structure
of the imino sugar DNJ leads to the production of N-pentyl-
(1-hydroxycyclohexyl)-DNJ (OSL-9511), an iminocyclitol
with a DNJ head group, which showed reduced cytotoxicity
and retained antiviral activity against DENV [59]. To
improve the antiviral efficacy, a hydroxyl group was removed
and an oxygen atom was added. This resulted in a new
compound, CM-9-78, with exerted high anti-DENV activity
and very low cytotoxicity [60]. Recently, the compound CM-
9-78 and another variant CM-10-78 were tested in vivo
and were shown to reduce viremia modestly by 2-fold. To
improve the antiviral efficacy in vivo, a combination therapy
was tested with ribavirin, a compound with a different
antiviral mechanism of action. Whereas ribavirin by itself
did not reduce viremia [119], combination of CM-10-78 and
ribavirin demonstrated a clear enhancement in the reduction
of viremia [120].

To conclude, there is a limited use of glycosidase in-
hibitors because of their toxicity and low specificity, but
these compounds indeed help to understand the process of
the E-protein glycosylation. In the last decade, not much
progression has been made in the development of inhibitors
targeting host glycosidase enzymes by biochemical modifica-
tions, but combination with other classes of inhibitors seems
to achieve the best antiviral efficacy.

4.3. Carbohydrate-Binding Agents (CBAs). The CBAs form
a large group of natural proteins, and they can be isolated
from different organisms. Concanavalin A, isolated from
the Jack bean, binds to mannose residues and wheat germ
agglutinin (WGA) binds to N-acetylglucosamine (Glc-NAc)
residues. Both compounds can reduce DENV induced plaque
formation in BHK cells [43]. A competition assay, using
mannose, proved that the inhibitory effect of Con A was due
to binding a-mannose residues on the viral protein, because
mannose successfully competed with Con A [43]. Recently,
three plant lectins, Hippeastrum hybrid (HHA), Galanthus
nivalis (GNA), and Urtica dioica (UDA), isolated from the
amaryllis, snowdrop, and stinging nettle, respectively, have
been shown to inhibit DENV-2 infection in Raji/DC-SIGN
cells [61]. Binding studies revealed that the CBAs act during
the adsorption phase of the virus to the host cell. HHA and
GNA have been shown to interact with mannose-residues
[121, 122], and UDA can recognize specifically Glc-NAc
residues [123]. Mannose and Glc-NAc molecules are present
in the backbone of the high-mannose type glycans on the
viral envelope protein. Because DC-SIGN can also recognize
these sugar molecules, the interaction between DC-SIGN
and DENV E-glycoprotein is disrupted by HHA, GNA,
and UDA. DC-SIGN, present on DC in the skin [16], is
important during the first steps of a natural infection and
thus forms an important target to focus on. The antiviral
activity profile of the CBAs has been extended using different
cell types. Recently, the antiviral activity of HHA, GNA, and
UDA has been demonstrated in primary MDDC against all
four DENV serotypes, and, importantly, the potency of the
three CBAs was much higher in MDDC than in DC-SIGN
transfected cell lines, such as Raji/DC-SIGN [62]. Raji cells
and U87 cells transfected with L-SIGN, a DC-SIGN-related
receptor, can be infected with DENV and this infection can
also be inhibited with the three plant lectins (Figure 4 and
unpublished data). However, since plant lectins are expensive
to isolate in large quantities and not orally bioavailable, the
search for nonpeptidic small molecules is necessary. PRM-
S is a highly soluble nonpeptidic small-size carbohydrate-
binding antibiotic and proved to inhibit DENV-2 in MDDC
[62]. These data indicate that targeting the initial interaction
between the N-glycans on the DENV envelope and the host
cell is promising and that the CBAs have broad spectrum
antiviral activity.

4.4. Heparan Mimetics. Because HS is a putative receptor for
DENY, it is interesting to target the E-protein-HS interaction
with soluble GAGs and other highly charged polyanions
mimicking HS to prevent DENV entry (Table 2). GAG and
heparin, a more highly sulfated protein than HS, can prevent
binding of DENV to Vero cells and BHK cells [28]. Domain
III of the E-protein is responsible for the interaction with
HS [124]. It has been widely assumed that domain III is
conserved within each DENV serotype and it is a good
target for vaccines, because it contains epitopes recognized
by neutralizing antibodies [102, 103].

The pharmaceutical product suramin, a small polyanion
mimicking the structure of HS, and persulfated GAGs can
bind to the polyanion-binding site of the DENV E-protein
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FIGURE 4: Antiviral activity of HHA in DC-SIGN and L-SIGN transfected cell lines. (a) U87, U87/DC-SIGN, and U87/L-SIGN cells were
infected with DENV-2 in the presence or absence of HHA. DENV-2 infection was analyzed by confocal microscopy using specific DENV
antibodies as previously described [62]. The cell nucleus is shown in blue (Dapi) and DENV-2 infected cells are shown in green (anti-DENV
Ab + Alexa 488). (b) Raji/L-SIGN cells were infected with DENV-2 in the presence or absence of HHA, and viral infection was analyzed by
flow cytometry using specific DENV antibodies. The open histogram represents uninfected cells. The upper left red histogram shows the
virus control (VC), and the mean fluorescence of intensity (MFI) is indicated in each panel. HHA was added at different concentrations
(400-80-16 nM), and the MFI shows the dose-dependent inhibition of the DENV-2 infection in Raji/L-SIGN cells. Comparable antiviral

activity of HHA in Raji/DC-SIGN cells was obtained [61].

[125] and can inhibit DENV infection. Pentosan polysulfate
(PPS) and the sulfated polysaccharide PI-88, which are
currently in clinical trials for antitumor activity, inhibit
DENV-2 infection in BHK cells. In IFN-a/y receptor knock-
out mice, a mouse model for DENV, PI-88 demonstrated an
increase in survival time [63] whereas suramin and PPS did
not show a beneficial effect in vivo.

Fucoidan, a sulfated polysaccharide isolated from marine
alga, has specifically antiviral activity against DENV-2 in
BHK cells and not against the other serotypes [64]. This is in
agreement with others, where was demonstrated that sulfated
polysaccharides from red seaweeds, carrageenan, and DL-
galactan had antiviral activity against DENV-2 and DENV-
3 but a very weak and no antiviral activity against DENV-4
and DENV-1, respectively, in human hepatocytes and Vero
cells. The polysaccharides were not inhibitory in mosquito
cells. Together with the fact that sulfated galactomannans
are proved to be inhibitors of DENV-1 in C6/36 cells [65],
these data indicate that the antiviral activity of sulfated
polysaccharides is serotype- and cell-type-dependent [66].

Heparin analogues often have anticoagulant activities
and this forms a major restriction factor for their use as
antiviral product. Thus the search for polysaccharides with
fewer side effects is imperative. DL-galactan from red sea-
weed lacks cytotoxic effects and anticoagulant properties
and exhibits a high antiviral activity against DENV-2 [126].
Next, two a-D-glucans were isolated from a widely used
Chinese herb with several therapeutic activities. These two

polysaccharides exhibit anti-DENV-2 activity in BHK cells
and sulfated derivates of one of the compounds proved
even to be more potent [68]. This is in accordance with
previous findings demonstrating that the antiviral activity of
polysaccharides increases with molecular weight and degree
of sulfation [28, 125].

There are some contrasting data concerning the antiviral
activity of dextran sulfate. Dextran sulfate with molecular
weight 8000 Da (DS8000) has been shown to have antiviral
activity against DENV-2 in human hepatocytes and Vero
cells [66]. This is in contrast with our data, where DS5000
had no antiviral activity against DENV-2 in Raji/DC-SIGN
cells and Vero cells [61]. High molecular weight DS (MW =
500,000 Da) had no antiviral activity against DENV in Vero
cells [28, 61], but recently this compound had been shown to
inhibit DENV-2 in human Raji/DC-SIGN cells [61]. These
data reinforce the idea that the entry process and thereby
the antiviral activity of sulfated polyanions is cell-type- and
serotype-dependent.

Another sulfated compound is the antiadhesive com-
pound p-sulfoxy-cinnamic acid, zosteric acid, derived from
a marine eelgrass. It showed to be nontoxic and inhibitory
against all four serotypes in LLC-MK2 cells [69]. It has been
shown that this compound promotes inappropriate virus-
cell attachment and prevents virus entry.

In general, binding studies revealed that polysaccharides
act during virus adsorption and internalization [66, 127].
The mechanism of action of carrageenan is by inhibition
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of a postadsorption process, namely, the release of the viral
nucleocapsid into the cytoplasm, probably due to the inter-
action with the E-protein [67]. The antiviral effect of HS
mimetics is probably due to steric hindrance and the negative
charged sulfate groups, but there is a dose-limiting effect
due to their anticoagulant activity. The antiviral activity of
sulfated polyanions is cell-type- and serotype-dependent and
thus not suitable for further clinical testing.

5. Conclusion

DENV is able to infect many types of host cells and this
resulted in the identification of several putative DENV recep-
tors. DCs in the skin are believed to be the first target cells,
and therefore DC-SIGN is assumed to be the most important
DENV receptor until now. The unraveling of the entry
process of DENV into the host cell and the recent progresses
in virtual screening and docking techniques have lead to the
development of a new class of DENV inhibitors, entry in-
hibitors. This class of compounds has great potential to
be used either alone or in combination therapy with viral
replication inhibitors. It has been shown that entry inhibitors
can prevent ADE in human cells and subsequently immune
activation [116]. This indicates a very important feature
for further development of entry inhibitors and for future
clinical studies.
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