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A B S T R A C T

Background: Although the emergence and spread of antibiotic resistance have been well studied for

endemic infections, comparably little is understood for epidemic infections such as influenza. The

availability of antimicrobial treatments for epidemic diseases raises the urgent question of how to

deploy treatments to achieve maximum benefit despite resistance evolution. Recent simulation studies

have shown that the number of cases prevented by antimicrobials can be maximized by delaying the use

of treatments during an epidemic. Those studies focus on indirect effects of antimicrobial use: pre-

venting disease among untreated individuals. Here, we identify and examine direct effects of antimicro-

bial use: the number of successfully treated cases.

Methodology: We develop mathematical models to study how the schedule of antiviral use influences

the success or failure of subsequent use due to the spread of resistant strains.

Results: Direct effects are maximized by postponing drug use, even with unlimited stockpiles of drugs.

This occurs because the early use of antimicrobials disproportionately drives emergence and spread of

antibiotic resistance, leading to subsequent treatment failure. However, for antimicrobials with low

effect on transmission, the relative benefit of delaying antimicrobial deployment is greatly reduced

and can only be reaped if the trajectory of the epidemic can be accurately estimated early.

Conclusions and implications: Health planners face uncertainties during epidemics, including the pos-

sibility of early containment. Hence, despite the optimal deployment time near the epidemic peak, it will

often be preferable to initiate widespread antimicrobial use as early as possible, particularly if the drug is

ineffective in reducing transmission.
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INTRODUCTION

An extensive body of research explores the way in

which the schedule of antimicrobial usage is ex-

pected to influence the emergence and spread of

antibiotic resistance. For example, theoretical

models have been developed to address antibiotic

resistant strains of Haemophilus influenzae and

Streptococcus pneumoniae in the community [1–3],

and methicillin-resistant Staphylococcus aureus and

vancomycin-resistant enterococci in hospitals

[4–13]. For the most part, this body of work deals

with endemic disease; only recently have epidemi-

ologists considered the dynamics of resistance evo-

lution in pathogens that undergo epidemic spread.

There is a good reason for this historical asymmetry

of interest: until recently, we lacked antimicrobials

that were effective against common epidemic dis-

eases. The current generation of anti-infleunza

therapies—oseltamivir and zanamivir—changes

this. These drugs act against seasonal and pan-

demic influenza, both of which are characterized

by epidemic rather than endemic dynamics. Thus,

we urgently need to understand how the schedule of

antimicrobial use benefits the patient population,

and how the evolution of antimicrobial resistance

impacts this process.

In doing so, it is important to account for both the

direct and the indirect effects of antimicrobial use

[14]:

(1) The ‘direct effects’ of antimicrobial use ac-

crue from the reduction in mortality and

morbidity in treated individuals. Once anti-

microbial resistance evolves and spreads,

however, further drug use can fail to confer

the direct benefit of successful treatment.

(2) The ‘indirect effects’ of antimicrobial use

manifest as changes in the trajectory of an

epidemic. Thus the use of antimicrobials can

ultimately alter the total number of cases—

treated or otherwise—that occurs over the

course of the epidemic.

A series of studies has recently addressed the in-

direct effects of antiviral usage [15–21]. For example,

Wu et al. [22], Meng et al. [23], Handel et al. [24],

Moghadas et al. [25], Althouse et al. [26] and

Hansen and Day [27] explore optimal schedules of

antimicrobial use during an epidemic, but focus on

the indirect effect of these drugs, i.e. the resulting

changes in the epidemic curves for resistant and

sensitive pathogens. (Though Wu et al. [22] do

acknowledge the importance of having low levels

of resistance to maximize antiviral treatment effect-

iveness, they do not explicitly quantify the direct ef-

fects of treatment). Because these studies disregard

the direct effects of antimicrobial use on treated in-

dividuals, the entire benefit of treatment in those

models comes from keeping the effective reproduct-

ive number low once herd immunity is generated.

That is, in these models, antivirals derive value from

reducing the spread of infections late in the epi-

demic and thereby reduce the amount of ‘overshoot’

[28], beyond the minimum number of cases to es-

tablish herd immunity (Fig. 1). (One can infer direct

effects from e.g. Wu et al. [22] as the difference be-

tween the total attack rate and the resistant attack

rate while under antiviral treatment, but this is not a

focus in that article.)

In this article, we examine how the schedule of

antimicrobial use during an epidemic influences dir-

ect and indirect effects and then infer how these in-

fluences are caused by the timing of resistance

evolution. We begin with a model that allows us to

track both the direct and indirect effects of antiviral

use, and we use it to explore how the timing of drug

use affects each type of benefit. We then turn to the

specific case of influenza. Based on recent estimates

of epidemiological parameters, we argue that direct

rather than indirect effects are responsible for most

of the benefits of treating seasonal influenza with

currently available antivirals. We present an analyt-

ical model of resistance evolution during an influ-

enza epidemic, and use this model to show how the

timing of antiviral use can be controlled to maximize

the direct benefits derived from an antiviral stock-

pile. For this model, we consider the case in which

the antimicrobial does not reduce disease transmis-

sion, as has been found for the drug oseltamivir used

to treat influenza [29, 30].

METHODOLOGY

A model of antiviral resistance evolution

We model the dynamics of the epidemic using a

susceptible-infected-removed (SIR) compartment

model, expanded to track sensitive and resistant in-

fection, and treated and untreated patient classes

(Fig. 2). In this model, X is the fraction of uninfected

individuals in the population of size N, YSU is the

fraction infected with sensitive virus and untreated,

YST is the fraction infected with sensitive virus and

treated, YR is infected with resistant virus (treated or
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not) and Z is the fraction of recovered individuals.

Resistance evolves in treated individuals infected

with drug-sensitive virus at a rate � per case per unit

time. We assume that resistance does not evolve in

the absence of treatment. Untreated and treated re-

sistant individuals recover from infection spontan-

eously at a rate �. Treated sensitive cases recover

at rate �=ð1� eÞ so that e can be viewed as the

reduction in duration of infection due to treatment.

Transmission is by mass action, � is the trans-

mission parameter, and resistance imposes a

transmission cost of c on the virus. In addition to

reducing the duration of infection via e, treatment

also reduces the transmissibility of the virus as ex-

pressed by the parameter �.

We consider population-level strategies in which

the drugs, once initially deployed at time �, are used

continuously until they run out or the epidemic is

over. During the period of drug treatment, a fraction

f of the new cases receive the drug. The stockpile of

drugs consists of k treatment courses. The indirect

effects of treatment are given by the number of cases

prevented by use of the antimicrobial. The direct ef-

fects are given by the cumulative number of success-

fully treated cases through the end of the epidemic.

We include two indicator variables to track drug use:

K tracks the number of remaining treatment courses

starting from k, and A tracks the number of success-

fully treated patients starting from zero.

The model, illustrated in Figure 2, is specified by

the following system of differential equations.

_X ¼ ��X ðYSU þ ð1� �ÞYSTÞ � �ð1� cÞXYR

_Y SU ¼ ð1� f �Þ �X ðYSU þ ð1� �ÞYSTÞ � � YSU

_Y ST ¼ f � �X ðYSU þ ð1� �ÞYSTÞ

� ð�=ð1� eÞÞ YST � � YST

_Y R ¼ �ð1� cÞX YR � � YR þ � YST

_Z ¼ � ðYSU þ YRÞ þ ð�=ð1� eÞÞ YST

ð1Þ

where the dot above each state variable indicates a

time derivative and where � = 1 if ðt � �& K > 1Þ and

� = 0 otherwise. The indicators change according to

_K ¼ �f � �X ðYSU þ ð1� �ÞYST þ ð1� cÞYRÞN

_A ¼ ð�=ð1� eÞÞYSTN:

ð2Þ

This model structure is similar to that of Lipsitch

et al. [17] but we do not consider any prophylaxis.

Apart from slight differences in parametrization, the

other distinguishing features are (i) we include vari-

ables that track the number of successfully treated

cases (A) and the remaining stockpile size (K), and

(ii) their de novo mutation to resistance occurs at

transmission while in our model it can occur at any

time during infection.

To quantify the indirect effects of treatment, we

track the number of cases prevented. Let ! be the

number of individuals infected by the end of an epi-

demic (the final epidemic size) in which no treat-

ment is used (i.e. f = 0), which is N times the

solution of x ¼ 1� e�R0x [31]. If Z1 is the fraction

Figure 2. A schematic diagram of the epidemic model.

Susceptible individuals (X) are infected by drug-sensitive

(YSU and YST) and drug-resistant (YR) strains by mass action

as given in Equation (1). If antimicrobial treatment is ongoing

(� = 1), a fraction f of the infected individuals are treated and a

fraction 1� f are not; otherwise no individuals are treated.

Sensitive treated cases evolve resistance at rate �. Sensitive

cases recover at rate � in the absence of drug treatment and at

rate �=ð1� eÞ in the presence of drug treatment; resistant

cases recover at rate � irrespective of treatment. All recovered

individuals enter the removed class (Z). Individuals passing

through the red ring increment the tally A of successfully

treated cases

Figure 1. Epidemic trajectory in an SIR model after reference

[28]. Overshoot is the number of cases exceeding the min-

imum cases needed to generate herd immunity
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of recovered individuals at the end of the epidemic

with treatment, the number of cases prevented by

treatment is then ! �NZ1. To quantify the direct

effects, we track the cumulative number of success-

fully treated cases through the end of the epidemic,

given by A as t!1.

Table 1 provides a summary of the parameters

used in this model along with values used in the nu-

merical analysis. Seasonal influenza has a basic re-

productive number of around R0 ¼ 1:3 [32] while the

pandemic strain of 1918 had an R0 of 2–3 [33]. We

therefore set the basic reproductive number of the

disease to R0 ¼ 1:8 corresponding to a strain of in-

fluenza that has the potential to cause a pandemic

(see also [34]). Influenza typically lasts 6 days [35, 36],

giving a recovery rate of � ¼ 0:17 per day. We used a

population size N of a million to model a medium

sized city. The default mutation rate �was set to a low

value of 0.01; this is similar to values used by Wu et al.

[22] which were based on observations that de novo

resistance occurred in 0.4 and 5.5% of outpatient

adults and outpatient children, respectively [37].

The mutation rate and other parameters were given

wide ranges to reflect uncertainty in current know-

ledge (e.g. the efficacy of the drug) or our interest

in understanding the effect of varying a parameter

(e.g. time of drug deployment, �).

RESULTS

Numerical analysis

Figure 3 shows the direct and indirect effects of treat-

ment as a function of the time at which antimicrobial

treatment is initiated. The six panels illustrate six

different parameter sets. In all six panels, there is a

limited stockpile with doses enough to cover only

one 10th of the total population. In the top row

panels, there is no cost of resistance, whereas in

the bottom row resistant strains suffer a 10% trans-

mission cost. In the left column, drug use reduces

the duration of infectiousness, in the center column

drug use reduces transmissibility, and in the right

column drug use reduces both duration and

transmissibility.

Indirect and direct effects are not equivalent.

Indirect effects represent cases entirely avoided,

whereas direct effects represent cases that occur

but are successfully treated. A health planner faced

with a pandemic should aim to maximize neither the

direct effects by themselves, nor the indirect effects

by themselves. Rather, a planner would typically aim

to maximize some weighted sum of the direct and

indirect effects, where the weighting � of direct ef-

fects reflects the value of a case successfully treated

relative to a case avoided entirely. The panels in

Figure 3 therefore show a weighted sum of direct

and indirect effects as well, where the weight is

chosen as � ¼ 0:33 to reflect treatment’s reduction

in risk of lower respiratory complications [38]. A

number of general results emerge.

First, in all cases the direct effects of antimicro-

bials are maximized by postponing the onset of anti-

microbial usage until well into the epidemic. These

results derive from a simple observation about re-

sistance dynamics in an epidemic setting: the timing

of the appearance of initial resistant clades will have

a major effect on the subsequent prevalence of

Table 1. Parameters of the model

Symbol Parameter description Value

R0;SU Basic reproductive number (sensitive, untreated) 1.8

M Rate of spontaneous recovery 0.17 per day

B Transmission parameter R0 � �

c Cost of resistance to transmission 0, 0.1

� Rate of evolution to resistance 0.01 per case per day

e Reduction in infection duration due to treatment 0, 0.5

� Reduction in disease transmission due to treatment 0, 0.5

� Time at which drugs are deployed 60 days

f Fraction of new cases receiving drug 0.5

N Population size 106

k Drug stockpile size N or 0.1 N
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resistant strains in the population. Figure 4 illus-

trates this principle. When resistance evolves early

in a growing population, a larger clade results than

when resistance emerges late in the epidemic.

Deploying drugs right from the onset of the epi-

demic risks early evolution of resistance and thus

takes the chance that a large fraction of the epidemic

cases will be resistant. Assuming that the initial

cases are drug sensitive, postponing drug use for a

few weeks gives sensitive clones a sufficient head

start that the large majority of cases in the epidemic

will be drug sensitive. (Note the analogy between

evolution of resistance in this model and mutation

in the Luria-Delbruck process [39]. Under the Luria-

Delbruck process, the number of mutants arising in

an exponentially growing bacterial culture has a

skewed distribution with a high variance. This high

variation is precisely due to the unpredictability

of the timing of mutations during exponential

growth, where early mutation events lead to large

clades and later mutation events lead to small

clades.) We further note that the reduced direct

effect from early deployment is also partially due to

the fact that early treatment limits the number of

sensitive cases when the drug affects transmission.

If treatment is started too late, the epidemic will

Figure 3. Effects of antimicrobial therapy as a function of the time at which treatment is deployed. Direct effects (solid line) are

measured in thousands of cases treated successfully, i.e. by treatment of individuals infected with drug-sensitive strains. Indirect

effects (dashed line) reflect the change in the epidemic trajectory due to antimicrobial use: the indirect effects of treatment are

quantified by the decrease in the number of cases in thousands when treatment is used relative to the number that would have

occurred in the absence of treatment. The weighted sum of effects (indirect effects + 0.33*direct effects) is shown with red dot-

dashed lines. In the top panels (A–C) the cost of resistance c is zero; in the bottom panels (D–F) cost c = 0.1. A and D: treatment

reduces duration of infection (e ¼ 0:5) but not transmissibility (� = 0). B and E: treatment reduces transmissibility (� ¼ 0:5) but

not duration (e= 0). C and F: treatment reduces duration (e ¼ 0:5) and transmissibility (� ¼ 0:5). Unless indicated otherwise, the

other parameters are as given in Table 1 with stockpile size k ¼ 0:1N

If resistance arises later, only
a small resistant clade ensues

If resistance arises early, a
large resistant clade results

Time

Figure 4. The timing at which the first resistant clade arises

has a strong impact on the subsequent prevalence of resistant

strains in the population. If the first resistant strain arises early

in the epidemic, a large resistance clade (blue) is created. If the

first resistant strain arises after several generations of trans-

mission, the resulting resistant clade (red) is far smaller
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conclude before the stockpile has been exhausted

and the unused courses will be wasted. As a result,

there is an intermediate optimum time to initiate

treatment.

Second, when there is no cost of resistance, the

indirect effects are also maximized by postponing

the onset of antimicrobial use. Assuming that the

epidemic cannot be contained, indirect effects result

from minimizing the degree of overshoot, i.e.

minimizing the number of cases beyond the number

that would be required to reach the epidemic thresh-

old (Fig. 1). If drugs are deployed too early, the stock-

pile will be exhausted before reaching the epidemic

peak and large resistant clades will render treatment

less effective at reducing the effective reproductive

number; if drugs are deployed too late, treatment

courses will go unused. Thus again we see an inter-

mediate optimum time to start treatment near the

epidemic peak, as noted by Hansen and Day [27], Wu

et al. [22] and Althouse et al. [26].

Third, when resistance imposes fitness costs, in-

direct effects can be larger when treatment is

initiated early. This effect arises because the resist-

ant strains now have relatively ‘low’ fitness once the

drugs run out, so that starting early and producing

large resistant clades reduces the overall size of the

epidemic. Looking at the weighted sum of direct and

indirect effects, the optimal times again shift to later

in the epidemic but the cost of waiting is often

minimal.

Fourth, the effects of antimicrobial use are similar

whether they come about through a reduction of

duration or a reduction of transmissibility.

We have also investigated the effect of the de novo

mutation rate � on direct and indirect effects and

their weighted sum (Fig. 5) Low mutation rates lead

to few resistant clades and therefore more success-

fully treated cases—high direct effects—while high

rates lead to large resistant clades and low direct

effects. However, the resistance mutation rate has

the opposite effect on indirect effects when there is a

transmission cost of resistance. This is because re-

sistant strains are less fit than sensitive strains and

therefore the final epidemic size is lower with more

resistant viruses. When there is no resistance cost

but the drug reduces transmission, there is a greater

indirect effect under low mutation rates because the

drug is effective in preventing cases when there are

more sensitive cases.

Application to influenza

In this section, we apply the model to influenza A

virus and treatment with the antiviral oseltamivir

(Tamiflu). Although oseltamivir can shorten the dur-

ation of illness and reduce the severity of symptoms

[40–42], Yang et al. [29] have argued that unlike

osteltamivir prophylaxis, oseltamivir treatment of in-

fected cases has little or no ability to prevent trans-

mission (see also [30, 43, 44]). This finding makes

sense because most transmission occurs before

treatment has substantive effect on viral titre [18].

If a drug has no effect on transmission, the indir-

ect effects of treatment are zero but the direct effects

may be substantial. Figure 6 shows direct effects in

the case where the drug is not effective in reducing
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Figure 5. The effect of rate of mutation to resistance (�) on direct and indirect effects. A: the drug does not reduce disease

transmission (� = 0) and resistance comes with cost c = 0.1; B: the drug does reduce disease transmission (� ¼ 0:5) and resist-

ance comes with cost c = 0.1; C: the drug reduces transmission (� ¼ 0:5) but resistance is cost-free (c = 0). Treatment start time �

is set to 60 days; the efficacy of the drug to reduce infection duration is e= 0; stockpile size is k ¼ 0:1N; the remaining parameters

except � are as given in Table 1
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either transmission or duration of infection (� = 0,

e= 0). Panel A shows that when drug efficacy in

reducing transmission is zero, the indirect effects

are zero, but direct effects remain high. Again the

optimal time to start treatment according to the

direct criterion is near the peak of the epidemic.

(Panel B) shows the effects of treatment when there

is a small cost of resistance. Figure 6 explores the

direct effects of treatment for limited stockpiles

(Panel C) and unlimited stockpiles (Panel D) when

varying both starting time � and the proportion of

cases treated, f. Whether or not doses are limited,

the optimal start time is still near the peak of the

epidemic. Starting earlier results in a mild decrease

in direct effects but this decrease is much smaller

than the case in which antimicrobials can reduce

transmission (Fig. 3) because in that case the size

of the sensitive outbreak is reduced by early

deployment.

In the Appendix 1, we present an analytical model

to show how and why these effects arise.

DISCUSSION

The theory of how antimicrobials should be used in a

population differs in character between epidemic

and endemic disease. In epidemics, case numbers

rise approximately exponentially at first before

declining to low numbers. There is a need to recon-

sider the optimization of control strategies under

such conditions. By considering the indirect effects

of antimicrobial use, recent work has found that

the optimal time to commence treatment in a

population is well into the course of an epidemic

[21, 22, 26, 27]. We have examined a different effect

of drugs: the direct effects of successful treatment.

Our analysis shows that delaying the deployment of

drug treatments in a population increases the

A B

C D

Figure 6. Effects under zero effect of treatment on transmission rate (� = 0) and recovery time (e= 0). A, B: direct and indirect

effects and weighted sum as a function of the starting time � with no cost c of resistance (panel A) and a small cost, c = 0.1 (panel

B). Here, the fraction treated is f = 0.5. C, D: direct effects of drugs as a function of both treatment start time � and proportion of

cases treated f, with limited stockpile (k=N ¼ 0:1, panel C) and unlimited stockpile (k=N ¼ 1, panel D) of drugs. Here, the cost of

resistance is set to zero. The other parameters are as given in Table 1: recovery rate � ¼ 0:17, mutation rate � ¼ 0:01, population

size N ¼ 106, basic reproductive ratio for susceptible untreated cases R0;SU ¼ 1:8;� is computed from R0;SU and �. The effects are

given in units of thousands of cases
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number of successfully treated cases even if there is

an unlimited stockpile of a drug. The reason for the

advantage of delay is that it prevents large clades of

resistant virus from arising early in the epidemic.

The size of a resistant clade depends on the number

of cases in the population at the time a resistant

mutant appears. It is also strongly influenced by

the rate at which resistance arises de novo by muta-

tion. Delaying treatment until near the epidemic

peak keeps the relative frequency of drug resistant

infections low.

How much does it matter whether treatment

starts near the peak of the epidemic? Where anti-

microbials have little efficacy in reducing transmis-

sion, which may apply to influenza A [29, 44], the

direct effects are not much lower than if drugs start

to be deployed near the beginning of the epidemic

compared with starting deployment near the peak

(Fig. 6). Because sensitive strains have equal fitness

to resistant strains, as the epidemic initially grows

exponentially there is a large and growing pool of

(sensitive) cases that can successfully be treated.

Although this sensitive pool would be larger if drugs

are deployed later in the epidemic, on average it

would not be much larger as long as the mutation

rate is low.

Other considerations also argue against exces-

sively delaying the deployment of antimicrobials.

Early on in the course of an epidemic there is con-

siderable uncertainty about its future trajectory.

Misestimating the course of the disease and waiting

too long to initiate drug use carries the risk of failing

to use the full stockpile before the epidemic is over.

This is arguably worse than running out of drugs

before the epidemic is finished [20]. Early in an epi-

demic, there may be other reasons for immediate

and aggressive use of available drugs. Most import-

antly, there may be a non-zero probability of success-

ful containment and eradication of the outbreak if

the drug reduces transmission sufficiently or if other

effective measures can be applied [34, 45, 46].

Withholding available antiviral treatment from indi-

vidual patients who could potentially benefit from

their use also poses an ethical problem, pitting the

rights of the individual against the good of the col-

lective. On the balance, we expect that in most situ-

ations immediate use of a stockpile is likely to be the

best approach. If stockpiles of two drugs are avail-

able, the approach proposed by Wu et al. [22] may be

particularly effective: use the smaller stockpile first

as a way to delay the use of the larger stockpile and

thus delay the evolution of resistance to this latter

drug. In any event we will rarely if ever detect the very

first cases of an epidemic in real time; by the time a

problem is identified the epidemic may have pro-

gressed far enough that immediate use of the stock-

pile will be optimal.

CONCLUSIONS AND IMPLICATIONS

This study distinguishes between the direct and in-

direct effects of deploying antimicrobial drugs. The

indirect effects of lowering the final epidemic size—

that is, averting cases—are large whenever the anti-

microbials have substantial efficacy in reducing

transmission or duration of disease. This benefit is

often taken to be an important objective of disease

control strategies [e.g. 27], but planners will also

want to consider the direct effects of antimicrobial

use on infected patients. In particular, when anti-

virals have little effect on transmission, there is little

indirect effect but the direct effects of treating cases

successfully can be substantial. These direct effects

accrue as long as resistant clades are small and

available treatments are used before the epidemic

ends. The direct effects count the treatment of sen-

sitive cases regardless of whether drugs change the

epidemic trajectory. In principle, a particular usage

policy might result in more successful instances of

treatment because it has the highly undesirable con-

sequence of creating a larger epidemic and therefore

offering more patients to treat. Thus maximizing dir-

ect effects should not be used alone as an objective

in disease control planning. Instead, planners will

typically want to make decisions based on a com-

posite of both direct and indirect effects.
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APPENDIX 1

ANALYSIS OF A SIMPLIFIED MODEL

Here, we analyse a simplified version of the model

for the case in which the drug does not affect trans-

mission though it may reduce symptoms. In the

Results, we discuss how these conditions apply to

treatment of influenza A virus with oseltamivir.

We begin with a general function describing the

trajectory of the epidemic, and then investigate how

the timing of treatment influences the evolution and

spread of resistance and the consequent instances

of treatment failure. In the analytical model, as in

Figure 6, treatment does not reduce transmission;

neither the timing of resistance evolution nor the

schedule of antiviral therapy exerts an influence on

the net trajectory of the epidemic. The value of drug

use lies entirely in reducing the morbidity suffered by

the treated individual. There is no transmission cost

of resistance and no selective differential operating

between resistant and sensitive strains.

We define the epidemic trajectory F(s) as the cur-

rent number of infectious cases in a population after

s transmission events have taken place. Note that by

parameterizing this curve in terms of cumulative

transmission events s rather than calendar time t,

we use a variable-speed clock that ticks every time

a new case occurs. This approach considerably

simplifies the analysis. We further assume that once

treatment is initiated, all infected cases are treated

(f = 1) until the drug supply is exhausted.

The epidemic trajectory

To provide an example of the epidemic trajectory

function F(s) we use an SIR model without births

or deaths [31]. The parameters of this model are

the total population size N, the transmission coeffi-

cient � and the recovery rate �. Let X, Y, Z track the

proportion of susceptible, infectious and recovered

individuals. We do not differentiate between resist-

ant and sensitive strains here. The differential equa-

tions for this process are

dX

dt
¼ ��XY

dY

dt
¼ �XY � �Y

The fraction of recovered individuals, Z is

1� ðX þ YÞ. The basic reproductive number is

R0 ¼ �=�.

Now define s ¼ NðY þ ZÞ ¼ Nð1� XÞ, which

tracks time through transmissions. This transmis-

sion-counting variable “ticks” at each transmission

event. The above system can be rewritten as

ds

dt
¼ �ðN� sÞY

dY

dt
¼ �ðN� sÞY=N� �Y
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and so

dY

ds
¼

dY=dt

ds=dt
¼

1

N
�

�

�ðN� sÞ
¼

1

N
�

1

R0ðN� sÞ

for Y 6¼ 0. The solution of this differential equation

with initial condition Yð0Þ ¼ 1=N is ð1þ sÞ=

Nþ ð1=R0Þ log ð1� s=NÞ. Thus, for this model the

epidemic trajectory is

FðsÞ ¼ N YðsÞ ¼ 1þ sþ
N

R0
log

N� s

N

� �
: ð3Þ

Unlimited doses

First, consider the case in which health planners

have access to an unlimited stockpile of the antiviral.

We consider the case in which drug resistance and

sensitivity are neutral: there is no advantage to sen-

sitive virus in the absence of treatment (c = 0) or to

resistant virus in the presence of treatment

(� ¼ e ¼ 0). Let ! be the final size of the epidemic,

	 be the probability of mutation to resistance per

transmission, and 
 be the case number at which

treatment is initiated in the population. A mutant

appears at case number s with probability 	 and at

frequency of 1=FðsÞwhich will remain unchanged for

the remainder of the epidemic on average because it

is selectively neutral. At case s there are !� s

remaining cases in the epidemic and therefore the

mutant at s will have ð!� sÞ=FðsÞ descendants. The

direct effects of antiviral use, denoted by �, is the

number of successfully treated cases which is ap-

proximately

�ð
Þ&ð!� 
Þ �
Z !




	
ð!� sÞ

FðsÞ
ds: ð4Þ

Here the ð!� 
Þ term represents the total number

of treated cases, successful or unsuccessful, and the

integral represents the number of treatment failures

due to resistance. The approximation assumes that

mutation from sensitivity to resistance is rare and

does not directly alter the number of drug sensitive

cases.

We aim to select a starting point 
 to maximize

the number of successful treatments. If an interior

maximum exists, a necessary condition is that

d�=d
 ¼ 0. To evaluate this derivative of �, we

apply the Leibniz rule for differentiation under the

integral sign:

d�

d

¼
ð!� 
Þ	

Fð
Þ
� 1:

Thus the extremum �̂ , if it exists, occurs at 
 ¼ 
̂

where

Fð
̂ Þ ¼ ð!� 
̂ Þ	: ð5Þ

This extremum is a maximum; the second deriva-

tive is

d2�

d
2
¼
�	Fð
Þ � dFð
Þ

d
 ð!� 
Þ	

Fð
Þ2
:

The quantities 	, Fð
Þ, and ð!� 
Þ are all positive;

dFð
Þ=d
 is also positive at 
 ¼ 
̂ , in the case of an

epidemic with a single peak, as illustrated below.

Therefore for any 
̂ , the second derivative d2�=d
2

< 0 and � is maximized at 
̂ .

The epidemic trajectory F(s) can take any func-

tional form, but we illustrate in Figure 7A how the

analysis is applied to the standard SIR model [31]

using Equation (3). The straight line in the right hand

side of Equation (5) has a positive intercept !	 and

crosses the rising epidemic curve Fð
Þ. Because

many cases occur rapidly near the peak of the epi-

demic, this intercept is still relatively late in the epi-

demic in terms of calendar time units. Our model

reveals that even with an unlimited supply of the

drug, it is not optimal to start treatment in the popu-

lation at the beginning of the epidemic. Starting

treatment too early creates large clades of resistant

viruses; as a result many treatment failures will

occur.

A B

Figure 7. Solutions for the optimal starting time of treat-

ments 
̂ when the supply of the drug is (A) unlimited and

(B) limited. In each case the epidemic trajectory Fð
Þ (solid

curve) is scaled by the reciprocal of the population size, 1/N.

Treatment start time 
 is also scaled by 1=N. A: unlimited

stockpile. The dashed line is ð!� 
Þ	 which intersects with

the epidemic trajectory Fð
Þ (solid curve) at the optimum, 
̂ .

B: limited stockpile: the dashed curve is the harmonic

mean number of cases from the start of treatment in the popu-

lation until the drug runs out. This curve intersects the epi-

demic trajectory F(s) (solid curve) at the optimum, 
̂ .

This example uses a standard SIR model with no birth

or death. The parameters here are as given in Table 1:

R0 ¼ 1:8; � ¼ 0:17; 	 ¼ 0:01; k=N ¼ 0:1
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Limited doses

Second, we consider the case in which the number of

antiviral treatment courses is limited. Here, we de-

rive an expression for the number of successful treat-

ments � with a minor modification of Equation (4).

If k courses of treatment are available and all are

used before the end of epidemic, the number of suc-

cessful treatments is given by

�ð
Þ ¼ k �

Z 
þk




	
ð
 þ k � sÞ

FðsÞ
ds: ð6Þ

If doses still remain after the epidemic has ended,

the number of successful treatments is again given

by Equation (4). Otherwise, to find the optimal case

number on which to initiate treatment, we consider

the derivative with respect to 
, again applying

Leibniz’s rule so that

d�

d

¼ 	

k

Fð
Þ
�

Z 
þk




1

FðsÞ
ds

� �
:

This derivative is zero when

Fð
̂ Þ ¼
kZ 
̂þk


̂

½1=FðsÞ� ds

:

This relation holds when the number of infectious

cases at the start of treatment in the population is

equal to the harmonic mean of the number of cases

until the drug runs out.

With a single epidemic peak, this implies that 
̂ is

just left of the peak: F(t) must rise from that point,

then drop below Fð
̂ Þ. Therefore, Fð
̂ Þ > Fð
̂ þ kÞ.

The second derivative is

d2�

d
2
¼ 	

�k

Fð
Þ2
�

1

Fð
 þ kÞ
�

1

Fð
Þ

� �� �

which is negative at 
 ¼ 
̂ because 	; k; Fð
Þ are all

positive and because Fð
̂ Þ > Fð
̂ þ kÞ. Figure 7B il-

lustrates the position of the optimal start time 
̂ near

the peak of the epidemic. If there were multiple

waves in the epidemic curve F(s), both conditions

on the derivatives would only hold for the peaks.

The optimal placement of 
 is near the peak be-

cause that is when the frequency of resistant

lineages will be the lowest when they arise

(i.e. 1=FðsÞ). By this heuristic argument, it is clear

that for a single epidemic wave it is optimal to place

all treatment courses into a single contiguous block

near the peak rather than say (i) treating only a frac-

tion of cases once the drug starts to be used or (ii)

treating all people in discontinuous blocks of time

(Hansen and Day [27] show this result for indirect

effects using different models and methods).

If the rate of mutation to resistance is high, the

probability of early emergence of resistance is high

along with the risk of large resistant viral clades.

Although the mutation rate does not affect the opti-

mal time to start treating cases, the higher the mu-

tation, the stronger the need to start treatment near

the epidemic peak to minimize the impact of treat-

ment failure. This can be understood mathematic-

ally through the second derivative of the direct

effects expression �ð
Þ which is proportional to

the mutation rate.
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