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Abstract

The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly
into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS),
carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and
arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six
enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1) catalyzes the formation of N-
acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other
urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS
proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS) at
the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS
(zfNAGS-M) while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C). Both zfNAGS-M
and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both
proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the
presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km

app for acetyl coenzyme A
increased while the Km

app for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes
in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of
development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest
that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under physiological conditions zebrafish
NAGS catalyzes formation of N-acetylglutamate at the maximal rate.
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Introduction

Ammonia is an obligatory waste product of protein catabolism

that is highly toxic to the brain [1]. Fish and other aquatic animals

excrete ammonia directly into water, while most land animals use

either the urea cycle or the uric acid pathway to convert

neurotoxic ammonia into non-toxic urea or uric acid, which are

easily excreted [2]. Although adult fish excrete ammonia directly

into water, urea cycle enzymes have been found in 23 species of

fish [3]. The genomes of zebrafish, pufferfish (Fugu rubripes),

freshwater pufferfish (Tetraodon nigroviridis) and African coelacanth

(Latimeria chalumnae) encode enzymes and transporters needed for

the production of urea from nitrogenous waste [3,4]. Many fish

are capable of ureagenesis and there are several fish species for

which a need for the urea cycle can be explained. Lungfish are

periodically exposed to air and use the urea cycle to dispose of

ammonia during periods of water shortage [5–8]. Sharks, skates

and rays use urea as an osmolyte [9–14]. The urea cycle detoxifies

ammonia in the fish that live in alkaline water and cannot excrete

ammonia through the gills [15–20]. Since most fish rarely

encounter water with high ammonia concentration [21], the need

for ureagenesis in zebrafish and other fish is not clear. In these fish

the urea cycle may be important for embryonic development.

Zebrafish (Danio rerio), Atlantic cod (Gadus morhua) and rainbow

trout (Oncorhynchus mykiss) embryos excrete most of their nitrogen

waste as urea [22–25]. Indeed, mRNA and activities of several

urea cycle enzymes were present in developing rainbow trout,

Atlantic cod, Atlantic halibut (Hipoglossus hipoglossus), walking

catfish (Clarias batrachus), pacu (Piaractus mesopotamicus) and zebrafish

early in development [22,23,26–30]. However, expression of all

enzymes and transporters required for the function of urea cycle

were not measured in these studies.
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Five enzymes of the urea cycle catalyze conversion of ammonia

into urea. In addition, N-acetylglutamate synthase (NAGS; EC

2.3.1.1), ornithine/citrulline transporter (ORNT) and aspartate/

glutamate transporter (also known as either Aralar2 or citrin) are

required for the normal function of the urea cycle in mammals [1].

The first reaction of the urea cycle is the formation of

carbamylphosphate (CP). In mammals, carbamylphosphate syn-

thetase I (CPS1) produces CP from ammonia, bicarbonate and

ATP [1]. In fish, the formation of CP is catalyzed by

carbamylphosphate synthetase III (CPS3), with bicarbonate,

ATP and either glutamine or ammonia as substrates [9,30,31].

Ornithine transcarbamylase (OTC; EC 2.1.3.3), the next enzyme

in the pathway, catalyzes the formation of citrulline from CP and

ornithine [1]. ORNT transports citrulline into the cytoplasm,

where it is converted into urea and ornithine by argininosuccinate

synthase (ASS; EC 6.3.4.5), argininosuccinate lyase (ASL; EC

4.3.2.1) and arginase 1 (Arg1; EC 3.5.3.1) [1]. Urea is excreted

and ornithine is transported into mitochondria by ORNT for

another turn of the urea cycle [1].

N-acetylglutamate (NAG), which is formed enzymatically by

NAGS from glutamate and acetylcoenzyme A (AcCoA) is an

essential allosteric activator of CPS1; NAG deficiency results in a

block of ureagenesis [32,33]. NAG also activates CPS3, but the

effect of NAG on CPS3 activity varies in different fish species. In

Atlantic halibut, spiny dogfish (Squalus acanthias) and largemouth

bass (Micropterus salmoides) NAG is required for enzymatic activity of

CPS3 at low glutamine concentrations [9,30,31,34], but partially

purified CPS3 from the Lake Magadi tilapia (Oreochromis alcalicus)

remains active without NAG [16]. NAG has been found in the

liver of adult spiny dogfish, largemouth bass, rainbow trout and

gulf toadfish (Opsanus beta), as well as in the muscles of adult

rainbow trout and gulf toadfish [35] suggesting that NAGS is

expressed in these tissues.

L-arginine is an allosteric regulator of NAGS [3,32]. Microbial

and plant NAGS, which catalyze formation of NAG as the first

intermediate in arginine biosynthesis, are inhibited by L-arginine,

mammalian NAGS is activated by L-arginine whereas fish NAGS

is partially inhibited by L-arginine [3,36]. Therefore fish NAGS

appears to be an intermediate form on the evolutionary path from

microbial to mammalian NAGS. Experiments with partially

purified rat and E. coli NAGS have shown that L-arginine also

affects the oligomerization state of these two enzymes [37,38],

while the oligomerization state of purified recombinant NAGS

from Neisseria gonorrhoeae and Pseudomonas aeruginosa, which are

similar to E. coli NAGS, and vertebrate-like N-acetylglutamate

synthase/kinase from Maricaulis maris do not change in the

presence of L-arginine [39–42]. This diversity of biochemical

and biophysical properties of NAGS from different organisms may

be related to the changing role of NAG through evolution [43].

To aid in the understanding of NAGS evolution, we determined

the biochemical and biophysical properties of zebrafish NAGS,

and the effect of L-arginine on the oligomerization state and

catalytic properties of the enzyme. We also examined the

expression pattern of NAGS and all other urea cycle enzymes

and transporters in developing zebrafish to determine whether it

can explain ureotely in early zebrafish embryos.

Results and Discussion

Expression of Urea Cycle Genes During Zebrafish
Development

The mRNA expression pattern of NAGS and other urea cycle

genes during zebrafish development was determined using

quantitative RT-PCR. RNA from the adult fish was used as a

reference. The eight genes of the urea cycle have three distinct

patterns of expression in developing zebrafish (Figure 1). NAGS,

ASS, ASL, ORNT and citrin are expressed in the 32-cell embryos,

suggesting that these mRNA are maternal. These five genes are

also expressed in the late-blastula stage; their expression is low

during gastrulation and appears to increase at the tailbud stage

and during the first four days of development (Figure 1). Relative

expression of the NAGS, ASS, ASL, ORNT and Aralar1 is similar

or higher in adult fish than during development. The high relative

expression of ASS, ASL, ORNT and Aralar1 in adulthood is likely

related to their function in processes other than the urea cycle.

Interestingly, the relative expression of NAGS is higher in adult

zebrafish than in embryos suggesting that NAGS could also have a

role in zebrafish physiology beyond ureagenesis. Expression of

CPS3 and OTC is higher during embryogenesis than in adult

zebrafish (Figure 1). Since the only known functions of CPS3 and

OTC in fish are in urea and arginine biosynthesis [44,45] their

expression pattern is consistent with high rate of ureagenesis

during embryonic and larval development [25,26]. The relative

expression of Arg1 begins to increase after the first day of

development and continues to increase thereafter and, as a result,

is higher in adult than in developing zebrafish (Figure 1). A high

relative expression of Arg1 in adult zebrafish may be related to a

possible role of this enzyme in arginine catabolism. Alternatively,

the function of Arg1 could be to catalyze the formation of

ornithine, which could then be used as a precursor of polyamine

biosynthesis [46].

In situ hybridization has been used in other studies to determine

the tissue distribution of CPS3, OTC, ASS and ASL mRNA at

different developmental stages. At 32 hpf all four genes were

expressed in the embryonic endoderm [26]. Expression data for

ASS and ASL are also available in the curated collection of gene

expression data in zebrafish [47,48]. Late in the blastula stage

(30% epiboly) and during early gastrulation (50% epiboly) ASS is

expressed in the deep cell layer and the forerunner cell group,

respectively [48]. These two cell types later give rise to

mesodermal tissues in the tail [49]. ASS is expressed in the

endoderm at 5–9 and 14–19 somite stages (10 and 16 hpf,

respectively) [48]. The expression pattern of ASL is available for

three developmental stages. At 19–24 hpf, which corresponds to

20–25 somites and Prim-5 developmental stages, ASL mRNA is

expressed in the pronephric duct and solid lens vesicle [47]. Later,

at 24–30 hpf and 42–48 hpf, ASL mRNA is expressed in the lens

and pronephric duct [47], which is different from the ASL

expression pattern observed by LeMoine and Walsh [26].

Expression of ASL mRNA in the zebrafish lens suggests that

ASL may have similar function in the lens of fish and birds, where

ASL functions as d-crystalin [50–56] while expression in the

pronephric duct suggests that ASL could be involved in renal

arginine biosynthesis, similar to ASL function in mammals [57].

Expression of all eight urea cycle genes between the 24 and

105 hpf stages coincides with neurogenesis [49]. During this

period gills are forming [58] and developing zebrafish are

transitioning from ureotely to ammonotely [25]. Fish embryos

and larvae rely on protein and amino acids from the yolk sac to

synthesize cellular proteins needed for growth and development as

well as fuel embryogenesis and larval development before the onset

of feeding [59–63]. The use of amino acids for ATP synthesis

results in the production of ammonia [64]. This ammonia may not

easily diffuse out of fish embryos and larvae because direct contact

with water and fully formed gills are lacking [65,66], and would

accumulate in the fish embryos and larvae, as has been observed in

developing zebrafish [26]. Elevated ammonia could damage

Zebrafish NAGS
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tissues, especially the developing brain, if not converted into urea

by the urea cycle.

Developing zebrafish embryos appear to be ureotelic during the

first 48 hrs of development as they excrete between 40 and 80% of

nitrogen waste as urea in that period [25,67]. Between 48 and

72 hpf zebrafish become ammonotelic as they begin to excrete

ammonia via ionophore cells that express ammonia transporter

Rhcg1 [67–69]. Our results and an earlier study of CPS3, OTC,

ASS and ASL expression pattern [26] can explain production of

urea after the first day of zebrafish development. However, the

physiological process responsible for the excretion of urea during

the first 24 hpf remains to be elucidated as OTC and Arg1, both

required for urea production, are not expressed in developing

zebrafish during this time. One possibility is that arginase-2, which

is a mitochondrial enzyme that catalyzes the same reaction as

Arg1, could enable urea production in developing zebrafish

embryos before onset of expression of Arg-1. Arginase-2 is

expressed in the axial mesoderm and forerunner cells during

gastrulation; later in development arginase-2 mRNA is expressed

in the central nervous system and in the mucus secreting cells,

which are part of the immune system [47]. Therefore, only a

complicated transport of metabolites between different cell types

and tissues could account for urea production before the onset of

Arg1 expression.

Unlike mammals, which have two aspartate/glutamate trans-

porters Aralar1 and citrin, the zebrafish genome harbors only one

gene, annotated as Aralar1, with similarity to mammalian

aspartate/glutamate transporters. The protein sequence of zebra-

fish Aralar1 is 78% and 75% identical to human Aralar1 and

citrin, respectively, whereas human Aralar1 and citrin sequences

are 77% identical. Zebrafish Aralar was included in expression

analysis because of its role in mammalian ureagenesis [70] but

additional studies are needed to elucidate the role of Aralar in fish

physiology.

Our results show that five enzymes of the urea cycle, NAGS,

CPS3, OTC, ASS and ASL, and two transporters are all expressed

between 24 and 48 hpf. This expression pattern is also consistent

with the function of these enzymes in citrulline and/or arginine

biosynthesis. Onset of expression of Arg1 after hatching is not

unique to zebrafish and has also been observed in pacu, rainbow

trout and Atlantic cod [22,23,29], suggesting that urea cycle

enzymes may have different physiological roles at different

developmental stages. Additional experiments are needed to

identify precisely which cell types harbor urea cycle enzymes at

different developmental stages and to draw conclusions about

functions of the urea cycle in fish.

Domain Structure of Zebrafish NAGS
Mammalian NAGS proteins consist of three segments with

different degrees of sequence conservation, the mitochondrial

targeting sequence (MTS), the variable segment and the conserved

segment [71,72]. The NAGS genes and corresponding proteins

were identified in genomes of Nile tilapia (Oreochromis niloticus),

coelacanth [4] and platyfish (Xiphophorus maculates) and analyzed

with previously identified NAGS from zebrafish, pufferfish and

freshwater pufferfish [3]. Like mammalian NAGS, alignment of

fish NAGS revealed three regions of conservation: the MTS at the

Figure 1. Relative expression of urea cycle genes in developing
zebrafish. mRNA levels were measured at nine developmental stages:
32 cells, 30% epiboly (4.6 hpf), 90% epiboly (9 hpf), tailbud (10 hpf),
24 hpf, 48 hpf, 72 hpf, 96 hpf, 105 hpf, and normalized to the
abundance of each mRNA in adult zebrafish. The scales of y-axes differ
due to different expression patterns of zebrafish urea cycle genes.
doi:10.1371/journal.pone.0085597.g001

Zebrafish NAGS
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N-terminus followed by the variable segment and the conserved

segment, which comprises the amino acid kinase (AAK) and N-

acetyltransferase (NAT) structural domains (Figure 2A). The MTS

in fish NAGS is 40–58 amino acids long with approximately 50%

conservation (Figure 2B). The MTS appears to be absent from the

platyfish NAGS either because it is not imported into the

mitochondria or the corresponding sequence may be missing

from the current platyfish genome assembly. The MTS is

presumably removed upon import in the mitochondria, resulting

in the mature NAGS (NAGS-M). The variable segment of fish

NAGS proteins are poorly conserved and are between 10 and 45

amino acids long, which is shorter than the variable segment of

mammalian NAGS [71,72] (Figure 2B). Within the conserved

segment of fish NAGS (NAGS-C), the NAT domain has a higher

degree of conservation (62% identical amino acids) than the AAK

domain (38% identity). The N-terminus of zfNAGS-M protein was

chosen based on the prediction of MTS by the MitoProt software

package [73] while the N-terminus of zfNAGS-C was determined

based on the alignment of zebrafish and mammalian NAGS.

Biochemical Properties of Zebrafish NAGS
Zebrafish NAGS, which is partially inhibited by L-arginine, is

an intermediary on the evolutionary path of changing the allosteric

effect of arginine on NAGS from inhibition in microbes and plants

to activation in mammals [3]. The zfNAGS-M and zfNAGS-C

were overexpressed in E. coli and purified to homogeneity

(Figure 3). Denatured zfNAGS-M and zfNAGS-C migrated as

single bands of approximately 55 and 52 kDa, respectively

(Figure 3). This is in good agreement with the predicted molecular

weights of 55,498 and 52,752 Da for the zfNAGS-M and

zfNAGS-C, respectively.

Purified zfNAGS-M and zfNAGS-C were used to measure

enzymatic activities at variable concentrations of one of the

substrates while fixing the other substrate at a high concentration

to determine apparent maximal velocity (Vmax) and Km
app for

AcCoA and glutamate (Figure 4 and Figure S1, 1). The apparent

Vmax and Km
app were determined in the presence of varying

concentrations of arginine (Figure 4 and Figure S1, Table 1). The

apparent Vmax of zfNAGS-C was approximately double the Vmax

of zfNAGS-M (Table 1 and Figure 4). This effect of removing the

variable segment on enzymatic activity of zebrafish NAGS is

similar to the effect of removing the variable segment of mouse

and human NAGS [74]. The apparent Vmax of zfNAGS-M and

zfNAGS-C in the absence of arginine (Table 1) were comparable

to the corresponding Vmax of mouse NAGS [74]. The Km
app for

AcCoA and glutamate of both proteins (Table 1) were three- to

four-fold lower than corresponding Km
app of mammalian NAGS

[74]. The intramitochondrial concentrations of AcCoA and

glutamate in fish are not known, but if they are similar to

intramitochondrial concentrations of NAGS substrates in rat

hepatocytes (0.6–2.7 mM for AcCoA [75] and 3–15 mM for

glutamate [76]) that would suggest that zebrafish NAGS catalyzes

formation of NAG at close to the maximal rate.

Addition of L-arginine to zfNAGS-M and zfNAGS-C resulted

in a reduction of apparent Vmax of both proteins by approximately

30 and 50%, respectively (Figure 4 and Table 1). The effect of L-

arginine on Km
app differed for AcCoA and glutamate. The Km

app

Figure 2. Sequence conservation and domain structure of fish NAGS proteins. A. Domain structure of fish NAGS. MTS – mitochondrial
targeting signal shown in blue; VS – variable segment shown in yellow; AAK – amino acid kinase domain shown in red; NAT – N-acetyltransferase
domain shown in green. B. Sequence alignment of the N-terminal region of six fish NAGS proteins. Predicted MTS are shown in blue typeface. The
variable segment is highlighted in yellow. The first 33–35 amino acids of the AAK domain are shown in red typeface.
doi:10.1371/journal.pone.0085597.g002

Figure 3. Purification of recombinant zfNAGS-M and zfNAGS-C.
The zfNAGS-M (A) and zfNAGS-C (B) with the N-terminal polyhistidine
tag were overexpressed in E. coli and purified using nickel-affinity
column. Lane 1 – cell lysate; lane 2 – flow-through fraction; lane 3 –
wash fraction; lane 4 – elution with 125 mM imidazole; lane 5 – elution
with 250 mM imidazole; lane 6 – elution with 500 mM imidazole.
doi:10.1371/journal.pone.0085597.g003

Zebrafish NAGS
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of both proteins for AcCoA increased in the presence of L-arginine

while the Km
app for glutamate did not change (Figure 4 and

Table 1). Changes in both Km
app and apparent Vmax in the

presence of L-arginine and binding of arginine to both zfNAGS-M

and zfNAGS-C in the absence of substrates suggests a hyperbolic

mode of inhibition; for both proteins the concentration of arginine

that has half-maximal effect on the apparent Vmax and Km
app does

not exceed 0.65 mM. The intramitochondrial concentration of

arginine in fish is not known, but if it is similar to the L-arginine

levels in mammalian mitochondria (0.12–1.34 mM [77,78]), the

effect of L-arginine in vivo would be at most a 30% reduction in the

rate of NAG synthesis. The low Km
app for AcCoA and glutamate

relative to intramitochondrial concentrations of these metabolites

and likely low level of inhibition of zebrafish NAGS by L-arginine

Figure 4. Effect of L-arginine on biochemical properties of zfNAGS-M and zfNAGS-C. Km
app and apparent Vmax for AcCoA (A and C)

and glutamate (B and D) when increasing amounts of arginine were added to zfNAGS-M and zfNAGS–C. (Blue – Vmax; Magenta – Km
app).

Error bars represent standard errors of the fitting parameters for the Michaelis-Menten equation.
doi:10.1371/journal.pone.0085597.g004

Table 1. Comparison of biochemical properties of purified zebrafish and mouse NAGS proteins.

Protein L-Arginine Concentration AcCoA Glutamate

Vmax (U/mg) Km
app (mM) Vmax (U/mg) Km

app (mM)

zfNAGS-M 0 mM 19.1260.45a 0.2260.03a 19.6960.56a 1.1360.13a

0.2 mM 13.5060.29 0.3560.03 15.7560.17 1.0960.05

0.5 mM 13.1560.42 0.4760.05 13.2760.18 0.9460.06

2.0 mM 12.4860.33 0.6560.05 12.1960.10 1.0460.04

zfNAGS-C 0 mM 32.2061.8 0.2360.06 39.5161.78 1.1260.21

0.2 mM 29.2561.20 0.4060.07 26.0060.78 0.8060.12

0.5 mM 21.3460.87 0.3260.05 21.7361.43 0.8760.27

2.0 mM 16.5460.60 0.3660.05 13.7760.45 0.8160.13

mNAGS-Mb 0 mM 23.9060.74 1.0160.09 23.1560.93 2.9160.19

mNAGS-Cb 0 mM 37.2061.19 1.0360.09 38.2960.42 3.0260.10

aValues represent fitting parameters to Michaelis-Menten equation and the associated standard errors.
bValues for mouse NAGS-M and NAGS-C are from Table 2 in Caldovic et al. [74].
doi:10.1371/journal.pone.0085597.t001

Zebrafish NAGS
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suggest that substrate and cofactor concentrations likely do not

control the production of NAG in developing zebrafish, a situation

different from the regulatory role of NAG in mammals [38,79].

Oligomerization State of Zebrafish NAGS
The oligomerization state of zebrafish NAGS was investigated

because previous studies have shown that oligomerization of

partially purified NAGS from E. coli and rat changes in the

presence of L-arginine [37,38]. On the other hand, purified

recombinant NAGS from N. gonorrhoeae and P. aeruginosa, which are

similar to NAGS from E. coli, were stable hexamers in the presence

or absence of L-arginine [39,40,42]. We used analytical gel

chromatography to investigate oligomerization state of zebrafish

NAGS in solution. In the absence of L-arginine elution volume of

zfNAGS-M decreases by 0.2 ml as concentration of loaded protein

increased (Figure 5 and Table 2). In the range of tested

concentrations (0.5–1.3 mg/ml) elution volumes of zfNAGS-M

correspond to the molecular weight of 234612 kDa. Since the

molecular weight of zfNAGS-M, calculated based on its amino

acid sequence, is 55.5 kDa, the zfNAGS-M appears to be a

tetramer in solution. This is not surprising as crystal structures of

bifunctional NAGS-K from Maricaulis maris [41] and yeast N-

acetylglutamate kinase (NAGK) [80] revealed a tetrameric

structure of these two proteins, which are evolutionarily related

to zfNAGS [3]. In addition to a slight decrease of elution volume

with increasing concentration of zfNAGS-M, the elution profiles of

zfNAGS-M in the absence of L-arginine were not symmetrical.

These behaviors of zfNAGS-M are consistent with an ensemble of

oligomers that equilibrate rapidly compared to their retention time

or elution volume. Moreover, the tetrameric oligomerization state

appears to predominate at all tested concentrations of zfNAGS-M

in the absence of L-arginine. Alternatively, asymmetric elution

profiles of zfNAGS-M could indicate that it interacts with the

column stationary phase. In the presence of 1 mM L-arginine the

elution volume of zfNAGS-M markedly decreased and was

dependent on the concentration of the protein (Figure 5 and

Table 2). This and the asymmetric elution profiles of zfNAGS-M

in the presence of 1 mM L-arginine suggest a distribution of

oligomerization states upon binding of L-arginine.

The elution peaks of zfNAGS-C were asymmetric at all protein

concentrations and in the presence and absence of L-arginine

(Figure 6) suggesting that this protein is an ensemble of oligomers

that are rapidly equilibrating and cannot be resolved under

conditions used in this experiment. The elution volumes of

zfNAGS-C in the absence of L-arginine corresponded to a

molecular weight of 269616 kDa. Because the calculated

molecular weight of zfNAGS-C monomer is 52.7 kDa, the

experimental 269 kDa corresponds to pentameric oligomerization

state of zfNAGS-C in solution, which is unlikely because NAGS

and vertebrate-like NAGK with known three-dimensional struc-

tures are either hexamers or tetramers [41,42,80]. It is more likely

that the elution volume of zfNAGS-C reflects average hydrody-

namic properties of the ensemble of oligomers in rapid exchange.

The elution volume of zfNAGS-C decreased and was dependent

on its concentration in the presence of L-arginine (Figure 6 and

Table 2) suggesting a shift in the ensemble of oligomers towards

higher oligomerization states.

Thermal Unfolding of Zebrafish NAGS
Both zfNAGS-M and zfNAGS-C require acetone, imidazole

and TritonX-100 [3] to be soluble and even with these additives

both proteins aggregate at concentrations above 1.3 and 2.0 mg/

ml, respectively. This prevented the use of biophysical methods

such as circular dichroism [81,82], isothermal titration calorimetry

Figure 5. Analytical gel chromatography of zfNAGS-M with and
without L-arginine. The top panel shows a semi-logarithmic plot of
molecular mass vs. elution volume. Open circles correspond to elution
volumes of blue dextran (2000 kDa), ferritin (440 kDa), catalase
(232 kDa), aldolase (158 kDa), bovine serum albumin (66 kDa), ovalbu-
min (43 kDa), and myoglobin (16 kDa). Lower panels show absorption
at 280 nm as a function of elution volume. Concentration of zfNAGS-M
loaded on the column is indicated in each panel. Dark blue – elution
profiles of zfNAGS-M without arginine. Cyan – elution profiles of
zfNAGS-M in the presence of 1 mM L-arginine.
doi:10.1371/journal.pone.0085597.g005
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[83] and tryptophan fluorescence measurements [84] to determine

effects of either the variable segment or L-arginine on stability of

zebrafish NAGS. ThermofluorH is a method that relies on changes

in fluorescence of environment-sensitive dyes to track thermal

unfolding of proteins in the presence or absence of ligands [85].

We used SYPRO Orange to track the unfolding of zfNAGS-M

and zfNAGS-C with or without L- or D-arginine (Figure 7). Both

zfNAGS-M and zfNAGS-C had multi-state unfolding transition

curves (Figure 7), which was expected, as monomers of both

proteins have two structural domains and both proteins are

oligomers. The thermal denaturation behaviors of zfNAGS-M and

zfNAGS-C were different (Figures 7A and C) suggesting that

removal of the variable segment results in different ensembles of

molecules each with its own set of unfolding trajectories. The

transition from folded to unfolded state occurred over 20uC for

zfNAGS-M (Figure 7A) whereas unfolding of zfNAGS-C occurred

over 40uC (Figure 7C) suggesting that zfNAGS-C might be a more

diverse ensemble of molecules that, as a group, unfold over

broader temperature range than zfNAGS-M. Because both

unfolding and analytical gel chromatography experiments suggest

that zfNAGS-C may exist as a broader ensemble of molecules, we

speculate that the variable segment in zfNAGS-M functions to

stabilize zebrafish NAGS oligomerization state.

Addition of L-arginine to both zfNAGS-M and zfNAGS-C

resulted in changes of the shape of unfolding curves (Figures 7A

and C) suggesting that binding of L-arginine induces conforma-

tional changes that make hydrophobic regions of both proteins

accessible to SYPRO Orange and result in increased fluorescence.

Large changes in fluorescence intensity were absent when D-

arginine was added to zfNAGS-M and zfNAGS-C (Figures 7B and

D) indicating that fluorescence changes in Figures 7A and 5C were

not due to interaction between SYPRO Orange and arginine.

Addition of 1 and 10 mM L-arginine to zfNAGS-M resulted in its

stabilization by 1u and 3uC, respectively (Figure 7A). This indicates

that L-arginine can bind to zfNAGS-M when zebrafish NAGS

substrates are absent.

Summary
Zebrafish NAGS, the five urea cycle genes and two transporters

are expressed during the first four days of development, a time

when neurogenesis takes place [49] and before gills are fully

formed [58]. This expression pattern is consistent with excretion of

urea after the first day of development but cannot explain ureotely

of zebrafish embryos during first 24 hpf [25,67] because of the

absence of Arg1 mRNA. Fish NAGS sequences, like their

mammalian homologs, have three distinct regions of sequence

conservation including MTS, variable segment and conserved

domain, which harbors the catalytic domain and the binding site

for the allosteric regulator L-arginine [3,41]. Upon binding of L-

arginine both zfNAGS-M and zfNAGS-C exhibit pronounced

change in oligomerization and their enzymatic activity is reduced

by 30–50%. In the presence of L-arginine the apparent Vmax

values of both zfNAGS-M and zfNAGS-C decreases and the

Km
app for AcCoA increases while the Km

app for glutamate remains

unchanged. Compared to the estimated physiological concentra-

tions of AcCoA and glutamate [75,76], the values of Km
app in the

presence of L-arginine suggest that zebrafish NAGS catalyzes the

formation of NAG at a maximal rate and that the rate of

ureagenesis in zebrafish likely depends on the concentration of

urea cycle intermediates.

Methods

Ethics Statement
Experimental procedures involving developing zebrafish were

approved by the Institutional Animal Care and Use Committee of

the Rowan University. The protocol number was 2010-001.

Purification and real-time quantification of mRNA
Zebrafish embryos from the following nine developmental

stages were collected and flash frozen in liquid nitrogen: 32 cells,

30% epiboly (4.6 hpf), 90% epiboly (9 hpf), tailbud (10 hpf),

24 hpf, 48 hpf, 72 hpf, 96 hpf, 105 hpf. Two adult fish were

euthanized with tricaine [86] during daytime and flash frozen in

liquid nitrogen. Between 100 and 150 embryos and larvae were

used for RNA purification. Total RNA was purified using trizol

reagent (Invitrogen). One mg of purified RNA was reverse

transcribed into cDNA using random primers and SuperScriptIII

Reverse Transcriptase kit (Invitrogen) according to manufacturers

instructions. The cDNA was used as a template for quantitative

real-time PCR using iTaq SYBR Green Supermix with ROX

(Bio-Rad) with an ABI 7900HT Sequence Detection System

(Applied Biosystems) and primers listed in Table 3. Amplification

products were subjected to thermal melting curve analysis to

exclude non-specific products and primer-dimer formation. Unlike

mammals, zebrafish genome has only one copy of the ASL gene

and one citrin/Aralar gene.

Cloning and Plasmid Preparation
The N-terminus of zfNAGS-M protein is at the Met47 of

zebrafish preprotein, which was determined based on the

prediction of MTS by the MitoProt software package [73]. The

Table 2. Molecular weights and elution volumes of zfNAGS-M and zfNAGS-C in the presence and absence of L-arginine.

Protein Concentration Molecular Weight (kDa) Elution volume (ml)

no L-Arg 1 mM L-Arg no L-Arg 1 mM L-Arg

zfNAGS-M 0.5 mg/ml 222 292 12.89 12.41

1.0 mg/ml 233 398 12.79 11.89

1.3 mg/ml 247 492 12.69 11.53

zfNAGS-C 0.5 mg/ml 252 355 12.67 12.06

1.0 mg/ml 258 483 12.63 11.53

1.5 mg/ml 283 –a 12.47 10.81

2.0 mg/ml 282 –a 12.48 10.58

aElution volume was between elution volumes of the ferritin and blue dextran calibration standards.
doi:10.1371/journal.pone.0085597.t002
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N-terminus of zfNAGS-C is at the Gly73 of preprotein sequence,

which was determined based on the alignment of zebrafish and

mammalian NAGS. The coding sequence of zebrafish NAGS-M

and NAGS-C were amplified with primers 59-CGGCATATGA-

GCTCTTCCAGCACCGCTGG-39 and 59-GAGAGGATCCT-

TATTATT-ATGAGCCGTGGTGCTGCTGAAGAGG-39, and

59-ACTCGCATATGGGTGAGCGCAG-CGCCTGG-39 and 59-

GAGAGGATCCTTATTATTATGAGCCGTGGTGCTGCTG-

AAG-AGG-39, respectively using 10 ng of pET15bzfNAGS [3] as

template and the following conditions: 3 min. initial denaturation

at 95uC, followed by 25 cycles of 30 s denaturation at 95uC, 30 s

annealing at 55uC and 1.5 min extension at 72uC, and 5 min. final

extension at 72uC. Amplification products were subcloned into

pCR4Blunt-TOPO plasmid (Invitrogen) to generate pTOPOzf-

NAGS-M and pTOPOzfNAGS-C. These plasmids were cleaved

with NdeI and BamHI restriction endonucleases and zebrafish

NAGS-M and NAGS-C coding sequences were subcloned into

pET15b plasmid to yield pET15bzfNAGS-M and pET15bzf-

NAGS-C, respectively.

Protein Purification and Enzyme Assays
Recombinant zebrafish NAGS was overexpressed in E. coli and

purified as described previously [3]. Briefly, expression plasmids

were transformed into C41(DE3) E. coli cells and overexpression of

recombinant proteins was induced using an Overnight Expression

Autoinduction System 1 (Novagen). Cells were pelleted and

resuspended in buffer A (50 mM potassium phosphate buffer,

pH 7.5, 300 mM KCl, 10 mM b-mercaptoethanol (BME),

0.006% TritonX-100, 20% glycerol and 1% acetone) containing

10 mM imidazole. Resuspended cells were treated with lysozyme

and phenyl-methylsulfonyl fluoride, and lysed with 40 mM n-

octyl-b-D-glucopyranoside. Nucleic acids were removed with

DNase1 and RNaseA. Cleared cell lysates were loaded onto

HisTrapTM HP Ni-affinity column (Amersham Biosciences) that

was pre-equilibrated with buffer A. The column was sequentially

washed with buffer A containing 50, 125, 250 and 500 mM

imidazole. Recombinant zfNAGS proteins eluted between 125

and 500 mM imidazole. Elution fractions with 250 mM imidazole

were used for experiments. Purified zfNAGS-M and zfNAGS-C

could not be concentrated above approximately 1.3 mg/ml and

2.0 mg/ml, respectively, because they aggregated and precipitat-

ed.

Enzymatic activities of purified proteins were measured, as

described previously [87], with minor modifications. Substrate

concentrations in the assays for kinetic measurements were one of

the following: 4 mM AcCoA while varying L-glutamate between

0.5 and 10 mM, or 15 mM L-glutamate while varying AcCoA

between 0.125 and 2.5 mM. Each assay was performed in

triplicate with 8 mg/ml of enzyme. Where indicated, 0.2, 0.5

and 2 mM arginine was added. The data were fit to the

Michaelis–Menten equation to determine Km
app and kcat, and to

a hyperbolic function to determine Ki using GraphPad Prism 5.0

software and non-linear least squares regression.Figure 6. Analytical gel chromatography of zfNAGS-C with and
without L-arginine. The top panel shows a semi-logarithmic plot of
molecular mass vs. elution volume. Open circles correspond to elution

volumes of blue dextran (2000 kDa), ferritin (440 kDa), catalase
(232 kDa), aldolase (158 kDa), bovine serum albumin (66 kDa), ovalbu-
min (43 kDa), and myoglobin (16 kDa). Lower panels show absorption
at 280 nm as a function of elution volume. The concentration of
zfNAGS-C loaded on the column is indicated in each panel. Dark blue -
elution profiles of zfNAGS-C without L-arginine. Cyan – elution profiles
of zfNAGS-C in the presence of 1 mM L-arginine.
doi:10.1371/journal.pone.0085597.g006
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Analytical Gel Chromatography
Analytical gel chromatography experiments were performed at

room temperature. A Superdex 200 HR 10/30 column (Amer-

sham) was calibrated with a buffer that contained 50 mM

potassium phosphate pH 7.5, 300 mM KCl, 20% glycerol,

10 mM b-mercaptoethanol, and 0.006% Triton X-100 with and

without 1 mM L-arginine at a constant flow rate of 0.75 ml/min

using a Pharmacia Acta FPLC system. The column was calibrated

with ferritin, catalase, aldolase, bovine serum albumin, ovalbumin,

and myoglobin. Void and internal volume markers were blue

dextran and vitamin B12. Protein concentrations of recombinant

zebrafish NAGS were measured using Bradford assay (Biorad) and

bovine serum albumin as a standard. 100 ml of zfNAGS, at

concentrations indicated in the figures, was loaded onto the

column. To ensure that NAGS integrity was not affected by

chromatography, the enzymatic activity of the recombinant

NAGS was measured before loading onto the column and after

elution. Elution fractions containing NAGS were pooled and used

for determination of the total enzymatic activity, which was similar

to the total activity of loaded protein.

Thermal Stability and Ligand Binding
Thermal stability assays were performed in a 96 well plate

format using a 7900HT Real-Time PCR System (Applied

Biosystems). Protein unfolding was monitored by measuring the

change in fluorescence intensity of SYPRO Orange (Invitrogen)

while ramping temperature from 4uC to 99uC. Wells contained

Figure 7. ThermofluorH analysis of zebrafish NAGS in the presence and absence of L- and D-arginine. Unfolding of zfNAGS-M was
measured in the presence of increasing concentrations of either L-arginine (A) or D-arginine (B). Unfolding of zfNAGS-C was measured in the presence
of increasing concentrations of either L-arginine (C) or D-arginine (D). Dark blue – thermal unfolding in the absence of L- or D-arginine. Cyan - thermal
unfolding in the presence of 1 mM L- or D-arginine. Orange - thermal unfolding in the presence of 10 mM L- or D-arginine.
doi:10.1371/journal.pone.0085597.g007

Table 3. Primers that were used for quantitative RT-PCR of
urea cycle genes in the developing zebrafish.

Gene Primer Sequence

NAGS 59-AGCATCTCTGGAGGGCAGACTGCATTCT-39

59-GGAGTCAGGATGGGACTTGGCGAACTC-39

CPS3 59-TTGCCTGGCCGAGCGTTGAAACC-39

59-TTGGCGGTAGTGGAACAGGC-39

OTC 59-TTGCACATTTCAAAGGTTATGAGCCAGATG-39

59-ACCCATAATGGTCCACTTGCGGTTCTC-39

ASS 59-CTATGGACCGCGAGGTGCGCACG-39

59-CCTTGTAGACGGAGAGCTGGACTCG-39

ASL 59-GACACTCAAAGGCTTACCAAGCACGTACAAC-39

59-CCAGCATATCTGGACTGAGGGCTTCTTC-39

Arg1 59-AGTTTCGACATTGATGCGCTGGAC-39

59-CCAGTTTGGGGTTCACTTCCACC-39

OTNT 59-TTTGACCACAACCATTGCCCGTGAG-39

59-GTCCGAATCATAGTGGGAGTCAGACCAGAAT-39

Aralar 59-GCTCGTCTCCTCAGTTCGCTGTGAC-39

59-CGGTAACCACCGACATGCTCAGA-39

doi:10.1371/journal.pone.0085597.t003
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10 mg of enzyme in 50 mM potassium phosphate pH 7.5,

300 mM KCl, 20% glycerol, 250 mM imidazole, 10 mM BME,

0.006% Triton X-100, 1% acetone, and 20x SYPRO Orange.

Where indicated 10 mM L- and D-arginine were added to the

assay mixture. All measurements were carried out in triplicate.

Supporting Information

Figure S1 Dependence of the rate of reaction catalyzed
by zebrafish NAGS proteins on the concentrations of
AcCoA and glutamate. When AcCoA concentration was varied

glutamate concentration was fixed at 15 mM. When glutamate

concentration was varied AcCoA concentration was fixed at

4 mM. The assays were performed in the absence (dark blue),

0,2 mM (orange), 0,5 mM (green) or 1 mM (red) L-arginine. The

curves were fitted to Michaelis–Menten equation using GraphPad

Prism 5.0 software.
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