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Abstract: We present here linear and nonlinear finite element analyses of a newly designed deployable
rapid assembly shelter (DRASH J) manufactured by DHS Systems. The structural analysis is carried
out in three stages. Firstly, single composite tubes (struts) under three-point bending are modeled
with five layers of orthotropic materials in three different orientations and the simulation results are
compared with the actual test data for validation. Secondly, a comprehensive structural model for
the entire shelter is constructed with the consideration of two types of strut scissor points, namely
natural and forced scissor (crossing) points, as well as partial-fixed hub joints, which allow rotations
along individual hub slots (grooves). Finally, a simplified structural model is created by introducing
fixed joints for the scissor points as well as rigid links for the hubs. With sufficient verifications
with experiments and different modeling methods, linear and nonlinear finite element analyses are
then carried out for both the comprehensive and simplified shelter models. Based on the simulation
results, we are able to identify a few critical issues pertaining to proper design and modifications of
such shelter systems, such as various end wall supports pertaining to the overall structural stability.

Keywords: finite element analysis; collapse; nonlinear analysis; buckling; deployable shelter

1. Introduction

The deployment of deployable rapid assembly shelters (DRASH) in a field emergency
can be accomplished minutes after arrival at the crisis areas for both military and civilian
missions. DHS Systems provides state-of-the-art technology in such portable sheltering.
Figure 1 depicts two typical DRASH Shelters which can be easily handled by six people
within 20 to 30 min using a low pressure air bladder. The J shelter features the same proven
DRASH technology as the smaller XB shelter and is currently one of the largest single unit
shelters manufactured by DHS Systems. The J model considered in this analysis measures
externally 33.66 L × 34.16 W × 17.97 H ft and provides more than 1100 ft2 of usable interior
floor space.

The key frame of the shelter comprises of composite tubing structures with pre-
attached interior and exterior covers. So far, limited study has been performed for the
entire structure stability of the J shelter with respect to snow load. The research presented
in this work is particularly important because it provides the first linear and nonlinear
structural analysis for the entire J shelter as well as necessary verification comparisons with
both experiments and different modeling methods.

The structural analysis is carried out with three levels of modeling. Firstly, single
composite tubes (struts) under three-point bending are modeled with five layers of or-
thotropic materials in three different orientations and the simulation results are compared
with the test data for validation. Secondly, a comprehensive structural model for the entire
shelter is created with two different types of scissor (crossing) points, namely natural
and forced scissor points, as well as a realistic hub model which allows one rotational
degree of freedom within the hub slot (groove). Finally, a simplified structure is introduced,
in which all scissor points are replaced with fixed joints, whereas hubs are substituted by
a set of translational rigid links. For the entire structure analysis, all struts are modeled

Materials 2021, 14, 7196. https://doi.org/10.3390/ma14237196 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3772-004X
https://doi.org/10.3390/ma14237196
https://doi.org/10.3390/ma14237196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14237196
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14237196?type=check_update&version=2


Materials 2021, 14, 7196 2 of 13

as isotropic and homogeneous three-dimensional beam elements of which the effective
Young’s modulus and the bending rigidity are derived in the first stage based on both
simulation and experimental data. In the following section, we illustrate the mathematical
model and the key physical assumptions corresponding to the initial assemblage process,
the mechanical behavior of the composite beams, and various strut connections within the
shelter structure. The key findings and assumptions will be reiterated in Section 3 as well
as the concluding section.

(a)

(b)

Figure 1. Typical DRASH shelters. (a) JS. (b) XBS.

2. Mathematical Models

In general, each strut consists of five layers of fiber-reinforced composite materials
wrapped around in three different orientations to produce high strength with minimum
weight. Since the J shelter is composed of over a hundred struts interconnected with pins
and hubs to form the main shelter arch, it could be an insurmountable task to model the
entire shelter structure with such composite shell models. Thus, for simplicity, the compos-
ite struts are modeled as three-dimensional isotropic and homogeneous beam elements in
the global models. The effective Young’s modulus is derived from the three-point bending
test and can be expressed as

E =
4Pl3

3δπ(d4
o − d4

i )
, (1)

where do and di stand for the outer and inner tube diameters, P and δ represent the
maximum load and deflection of the three-point bending test, and l is the span of the beam.

In Figure 2 we show a typical cross section of a composite strut. For orthotropic
materials, we normally have three pairs of independent Young’s and shear moduli in the
corresponding principal directions, which are often aligned with the matrix orientations.
In this study, we choose, according to references [1,2], Em = 6.30 Msi, Eh = 1.53 Msi,
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Ez = 1.91 Msi, Gmh = 0.0817 Msi, Ghz = 0.659 Msi, and Gzm = 0.648 Msi, where the sub-
scripts m, h, and z represent the meridional (axial), hoop (circumferential), and radial
directions of the composite tube, respectively. The orientation of an orthotropic layer refers
to the angle between the meridional direction and the major orthotropic material princi-
pal direction. Of course, Poisson’s ratios must satisfy the usual compatibility condition
Ea

νba
=

Eb
νab

for orthotropic materials [3]. In this work, we choose νmh = 0.075, νhz = 0.328,

and νzm = 0.278. The other associated orthotropic properties, according to Refs. [1,2], are
listed in Table 1.

Figure 2. A typical cross-section of a strut.

Table 1. Orthotropic strut cross-sectional properties of the J Shelter.

Layer Thickness (in) Fiber Orientation

1 0.0111 0◦

2 0.0048 88◦

3 0.0163 0◦

4 0.0045 −88◦

5 0.0139 0◦

For the structural analysis, we start with linear analyses of both comprehensive and
simplified models. Then, we employ the linearized buckling, collapse, and nonlinear
analyses, which take into account the geometrical nonlinearities, in order to calculate
the maximum snow load that the entire shelter structure can sustain prior to structural
instability. Furthermore, the reaction forces at the shelter supports are also calculated with
respect to the collapse load.

The basic concept of nonlinear structural analyses can be best illustrated in the follow-
ing iteration procedure

t+∆tK(i)∆U(i) =t+∆t R −t+∆t F(i), (2)
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where K, U, R, and F are the tangent stiffness matrix, the nodal displacement unknown vec-
tor, the external load vector, and the equivalent internal nodal force vector corresponding
to the element stresses, respectively, and the incremental iteration at the time step t + ∆t
starts from:

t+∆tU(0) = tU, t+∆tU(i+1) = t+∆tU(i) + ∆U(i), and t+∆tF(0) =t R.

It is obvious that in the linear analysis, the tangent stiffness matrix K is equivalent to
the constant structural stiffness matrix. Notice that, in this work, we consider the quasi-
static analysis, which means that the time step corresponds only to the loading sequence
and no mass matrix or inertia is involved. Naturally, collapse or buckling refers to the
load and displacement conditions per se, at which the tangent stiffness matrix is singular.
In the linearized buckling analysis, suppose we have two tangent stiffness matrices at t
and t − ∆t, to find a particular external load τR such that

det(τK) = 0, (3)

we can solve the following eigenvalue problem, using the two equations for a load scaling
factor λ, as listed below:

τK = t−∆tK + λ(tK −t−∆t K),
τR = t−∆tR + λ(tR −t−∆t R).

(4)

By substituting the first equation in Equation (4) into Equation (3), we obtain the
eigenvalue problem with respect to the linearized buckling analysis,

t−∆tKφ = λ(t−∆tK −t K)φ, (5)

in which the eigen vector, or the buckling mode shape φ, corresponds to the eigenvalue,
or the buckling scaling factor λ.

Consequently, implementing the second equation in Equation (4), we obtain the
corresponding buckling load τR.

In fact, Equation (5) can also be rewritten as

tKφ = ξt−∆tKφ,

with

ξ =
λ − 1

λ
.

To obtain the collapse point as well as the load-displacement curve beyond the initial
buckling point, i.e., to derive the post-buckling curve, we can use a displacement-controlled
(LC) or load-displacement-constraint method (LDC) loading sequence. The basic concept
of the LDC method is to derive the load scaling factor t+∆tλ, which corresponds to buckling
modes and satisfies

t+∆tλR − t+∆tF = 0, (6)

by employing the similar Newton–Raphson iteration as illustrated in Equation (2),

t+∆tK(i)∆U(i) = t+∆tλ(i)R − t+∆tF(i), (7)

with t+∆tλ(i) = t+∆tλ(i−1) + ∆λ(i).
Since we introduce an additional unknown, λ, we need to have an additional equation,

for example, a constraint, which governs the so-called spherical constant arc length ∆l,

(λ(i))2 +
U(i)T

U(i)

β
= (∆l)2, (8)
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with U(i) =t+∆t U(i) −t U, where β is a normalization factor. A detailed discussion of
collapse analysis is available in references [4–8].

3. Finite Element Modeling

The computer simulations presented in this study are performed with the ADINA
program, which consists of the program on heat transfer in solids ADINA-T, the program on
displacements and stresses ADINA, the program on fluid flows and heat transfer ADINA-F,
the pre-processor ADINA-IN, and the post-processor ADINA-PLOT. Both the geometry
and the corresponding mesh can be generated in ADINA-IN. A detailed description of the
recent development of the ADINA program is available in references [9–11].

In this section, we discuss some in-depth modeling procedures, namely, the three-
point bending of a single composite strut, the natural and forced scissor points of two
crossing struts, and the hubs.

3.1. Three-Point Bending

As shown in Figure 3, we simulate a single strut simply supported at its two ends
with a maximum center point load (P). The cross-sectional properties of the composite
tubes are listed in Table 1. The inner and outer diameters (di and do), the span of the
three-point bending (l), and the center point loading (P) are 0.874 and 1.0654 in, 28.5 in,
and 424.5 lbf, respectively.

Figure 3. The three-point bending of a composite tube with P = 424.5 lbf.

The three-point bending experiment of the J shelter has produced a deflection of 2.26 in,
which is very close to the ADINA simulation result, namely 2.31 in, with comparable
boundary conditions. It is clearly shown that this type of modeling with multi-layer
composite shell model is a valid approach. However, to be safe and rigorous and, more
importantly, to be able to handle many such multi-layer composites in a complex structure,
we need to employ the effective Young’s modulus from the simulation data based on
Equation (1).

3.2. Strut Scissor Points and Hubs

In the J shelter, there are numerous scissor points between struts which can be divided
into two basic groups. One of them is the so-called natural scissor point group which
does not introduce significant initial stress within the composite strut, and the other one
is called the forced scissor point group, which does introduce significant initial bending,
i.e., initial stress, during the structural assemblage. Notice, however, although the struts in
such scissor points are connected with a pin, if we model the composite tube as a beam,
the rotational degrees of freedom along the struts are continuous just as all the translational
degrees of freedom. To verify our assumptions, we introduce two sets of mathematical
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models as shown in Figure 4. The initial bending is accomplished by assigning a specially
chosen external force couple, as depicted in Figure 4, to connect the two struts together
at the intersection point and then release (or create) a new finite element (very stiff with
respect to the struts) to represent the fixed pin connection. With regard to the natural
scissor point, as shown in Figure 4, at the geometrical intersection point, we can assign
four different points occupying the same geometrical space and test the following five
separate scenarios:

Case 1 Four lines share a common node at the intersection point, which represents a
completely fixed joint.

Case 2 Four lines rigidly linked through four end points occupying the same geometrical
point, which represents the same physical model as Case 1, however, its finite
element procedure is different.

Case 3 Four lines share a common point, at which only the translational degrees of freedom
are constrained.

Case 4 Rigid links are separately employed along the two crossing struts, which means,
within the crossing struts, only the translation degrees of freedom are constrained.

Case 5 A truss element is introduced to physically connect two points at the vicinity of the
intersection point.

(a)

(b)

Figure 4. Different modeling of scissor points, namely with (a) an element birth and (b) with a
natural scissor point.

The center point deflection results are used as measures of the accuracy of various
constraints and boundary conditions. It is obvious from Table 2 that other than the fully
pinned connection (Case 3), for the natural scissor point, we can practically choose any
one of the other four constraints. In this study, instead of choosing Case 4, which is clearly
the closest to the physical connection within the shelter, for simplicity, we select Case 5.
Therefore, the element birth and death capabilities of ADINA allow us to introduce initial
bending into the forced scissor point group of the comprehensive model.

With respect to the hubs, as illustrated in Figure 5, for the comprehensive and sim-
plified structural models, we consider two possibilities of boundary conditions, namely
a fully-fixed hub and a partial-fixed hub, which reserves one rotation degree of freedom
to account for the rotation within the hub slot, just as the actual hub. Notice, however,
reflected from simulation results, both hub models actually produce similar solutions.
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Table 2. Five different finite element models for the strut scissor point.

Joint Model Deflection Results

Case 1 −0.0212207
Case 2 −0.0212207
Case 3 −0.0530516
Case 4 −0.0212207
Case 5 −0.0211484

Figure 5. Two different hub constraints, namely comprehensive and simplified models.

3.3. Global Models

The entire structure models, as shown in Figure 6, are based on the geometrical
locations of beam joints created in AutoCAD. Similar finite element analyses of these types
of complex structures have been reported in references. [12,13]. In this study, we focus on
both the linear elastic response and linearized buckling analysis of the entire structures
as well as the nonlinear analyses. In the finite element modeling, the implementation
of the comprehensive model is a very difficult task, considering the large number of
scissor points and hubs, and in particular, the groove skew systems with respect to the
individual rotational degrees of freedom. Therefore, it is necessary to simplify the entire
structural model. To be more specific, for the simplified model, we completely ignored the
initial stress effect, and all scissor points are simplified by fixed joints connecting crossing
beams. In addition, no relative rotations between beams and hubs are allowed. These
simplifications are validated by the comparisons of the linear and nonlinear responses
of both comprehensive and simplified models. Nevertheless, we must be aware that the
assumptions also make the simulation model more stable than the real structure which
provide an upper bound for the estimate of the collapse load.

According to Figure 7, the linear responses of the two sets of models are very different.
However, in both models, gravitational load (shelter self-weight) can be ignored. It is
interesting to note that for the comprehensive model, due to the assemblage stress, the initial
shelter displacement is in the opposite direction of the gravitational force, and just as for
the simplified model, the gravity will slightly increase the downward displacements. It
is also shown in Figure 6 that the comprehensive model is much more flexible than the
simplified model, which confirms the fact that the simplification of scissor points and hubs
will in fact make the model stronger than the actual structure.
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Figure 6. The entire structural model of the J shelter without risers.

Figure 7. The linear load-displacement curve for the J shelter with both comprehensive and simpli-
fied models.

To properly account for the snow load, we use the following conventional mass
lumping procedure in finite element methods to redistribute the equivalent snow load to
beam joints,

F =
∫

s
HTfsdl, (9)

where H, fs, and F stand for the interpolation matrix, the distributed snow load, and the
lumped nodal force vector, respectively.

The distributed snow loads are illustrated in Figure 8. At this point, we must mention
the unique design of the riser, i.e., the vertical pillar. Although the riser is free to move
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up and down, the supports at its ends can effectively increase the column buckling load
and make the riser structure more stable. Notice however, to avoid the complication of the
additional buckling problem of the risers when we lump the total snow load at the center,
we can gradually distribute snow load from the center of the J shelter at the top of the riser
to the bottom or interior hub.

Figure 8. Distributed snow loads on the J shelter hubs.

3.4. Design Variations

In finite element analyses, the collapse load of a structure can be obtained with
linearized buckling, collapse, and nonlinear analyses. In general, linearized buckling
analysis is not as accurate as the other two approaches and depends very much on the
starting point. However, to obtain an accurate estimation of the collapse load, in this
work, we employ all three procedures. As shown in Figures 9–11, both the comprehensive
and simplified models predict the snow load at collapse around 5 lbf/ft2, which strongly
suggests that the current design of the J shelter will withstand up to 5 lbf/ft2 snow load.
Notice that although these curves in Figure 9 from nonlinear analysis are merely slightly
nonlinear or curved, unlike those from Figures 10 and 11, the magnitudes are significantly
lower than those from the linear analysis. To explore the possible way of improvement,
we also introduce a few end wall supports as illustrated in Figure 12. It is suggested from
the results in Figure 13 that the second and third cases of the end wall support provide
the most significant improvement of the structure stability, and the resultant snow load at
collapse is increased to 7 lbf/ft2, a 40%. increment.

Since the entire shelter is supported by two rows of joints on each side, it is also
understood from the physically intuition that the interior and exterior rows of pin points
can be subjected to both compression and tension. Such distributions of reaction forces are
confirmed in Table 3. Moreover, the reaction forces in Table 3 also indicate that the shelter
collapses in an asymmetric mode.
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Figure 9. The linear and nonlinear load-displacement curves for the comprehensive model of the
J shelter.

Figure 10. The linear and nonlinear load-displacement curve for the simplified model of the J shelter
without end walls.

Figure 11. The nonlinear load-displacement curve for the J shelter with both comprehensive and
simplified models.
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(a)

(b)

(c)

Figure 12. The entire structural model of the J shelter with three end wall arrangements. Notice the
number of main frames represented by heavy lines and their spacing. (a) End Wall (1); (b) End Wall (2);
(c) End Wall (3).
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Figure 13. The nonlinear load-displacement curves for the simplified model of the J shelter with
three different end wall locations.

Table 3. Reaction force distributions with RI, RE, LI, and LE representing the interior and exterior sides of the right and left
supports, respectively.

#
RI (lbf) RE (lbf) LI (lbf) LE (lbf)

X Y Z X Y Z X Y Z X Y Z

1 −162 76 −743 437 645 1285 −64 −312 −472 −180 354 528
2 −156 143 −1550 662 38 2033 43 −197 −64 −462 −143 895
3 −115 24 −833 471 −617 1304 −64 244 −180 −390 −139 842
4 −121 −18 −899 464 611 1286 −63 −242 −187 −409 163 886
5 −152 −146 −1519 666 −34 2040 45 315 −105 −481 13 931
6 −167 −88 −751 441 −637 1289 −62 310 −461 −180 −361 533

4. Conclusions

The main contribution of this work is to establish a finite element analysis protocol for
a series of DRASH shelters. In particular, an in-depth study of the J shelter is carried out
using the ADINA finite element package. The key contributions of this study are two-fold:
firstly, from a composite shell modeling of a typical strut, we derive the equivalent Young’s
modulus and bending rigidity of the shelter strut; and secondly, we establish two structural
models, one with fairly realistic finite element models for the scissor points and hubs,
and the other with simplified boundary and constraint conditions. The final conclusion
based on both structural models is that the maximum snow load that the J shelter can
withstand is near 5 lbf/ft2. The possible reinforcement of the current shelter design may
be accomplished by introducing end walls or improving the rigidity of the center joint
of the shelter to avoid the asymmetrical buckling mode of the entire structure as well as
strengthening individual struts.

In summary, through the finite element analysis and some comparison with the
existing experimental data, we derive the following design information:

(1) The static load-displacement curve suggests that the structure is strong and the self-
weight of the shelter can be ignored. In addition, the shelter roof displacement is
relatively small under prescribed snow loads.

(2) The entire structure will collapse if subjected to 5 lb/ft2 snow load, which suggests
that preventive procedures or additional structural reinforcements, such as end walls,
must be introduced in the field before the snow accumulation reaches more than
5 lbf/ft2.
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(3) The designs of scissor points and hubs are detrimental to the entire structural stability.
In particular, hubs at certain locations are prone to rotation, and preventive measures,
such as to align the hub against the rotational direction or make the hub as symmetric
as possible, should be considered.

(4) The stability of risers and the rigidity of center joints are also important design
factors with respect to the entire structural safety. In particular, unsymmetric collapse
modes must be avoided by improving the resistance of rotations at the center joints.
In particular, by introducing end walls, the resultant collapse load is increased to
7 lbf/ft2, a 40%. increment.

The mathematical models and finite element solutions presented in this paper clearly
demonstrate the potential of using similar simulation procedures to achieve better and
more optimal designs of various portable shelters with composites.
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