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Abstract

Background

Molting is an essential biological process throughout the life history of crustaceans, which is

regulated by many neuropeptide hormones expressed in the eyestalk. To better understand

the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE)

to analyze single eyestalk samples during the molting cycle by high-throughput sequencing.

Results

We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt

(InM), pre-molt (PrM) and post-molt (PoM) cDNA libraries, respectively. A total of 1,394

molt-related differentially expressed genes (DEGs) were identified. GO and KEGG enrich-

ment analysis identified some important processes and pathways with key roles in molting

regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first

observed a pattern associated with the neuromodulator-related pathways during the molting

cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of

important molting-related transcripts were clustered and most of them had similar expres-

sion patterns, which suggests that there is a connection between these genes throughout

the molt cycle.

Conclusion

Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk

at the whole transcriptome level. Together, our results, including DEGs, identification of

molting-related biological processes and pathways, and observed expression patterns of

important genes, provide a novel insight into the function of the eyestalk in molting

regulation.
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Introduction

Molting is an essential biological process occurring multiple times throughout the life history

of crustaceans, and is essential for development, growth, and reproduction [1, 2]. Crustaceans

experience rhythmic molting cycles that contain three main stages, inter-molt (InM), pre-molt

(PrM), and post-molt (PoM), that are based on morphological and microstructure observa-

tions. The InM stage involves energy accumulation and muscle regeneration. During the PrM

stage, the old exoskeleton is reabsorbed and a new exoskeleton is formed. In the PoM stage,

water uptake leads to expansion, which is essential for growth.

A possible signaling pathway in molting regulation has been proposed, which includes trig-

gering and summation phases, and involves the decapod crustacean molting gland [3]. Many

regulatory neuropeptides and neuropeptide receptors and other crucial genes pertaining to

molting have been identified, including molt-inhibiting hormone (MIH), crustacean hypergly-

cemic hormone (CHH), retinoid X receptor and ecdysteroid receptor (EcR) [4–8], cuticle-

related enzymes (chitinases, chitin deacetylase, and chitin synthase) [9–11], and structural pro-

teins of the cuticle [12, 13]. Although many studies focusing on crustacean molting have been

carried out, our knowledge of the molecular mechanisms involved is still far from complete.

The eyestalk of crustaceans, in which the X-Organ/Sinus Gland complex (XO-SG) is

located, plays important roles in crustacean molting [14]. The XO-SG complex releases a num-

ber of peptide hormones into the hemolymph, and these hormones are involved in a range of

physiological activities such as molting, growth and postembryonic development in crusta-

ceans [15]. The MIH triggers molting upstream of a signaling pathway that links MIH to the

regulation of ecdysteroidogenesis in the decapod crustacean molting gland [16], which is

secreted by the XO-SG complex [3, 17]. The multifunctional neuroendocrine hormones and

CHH, which are also synthesized and stored in the XO-SG complex, were found to inhibit

crustacean molting [18]. The crustacean eyestalk is covered by the extracellular cuticle, an

important downstream target effector organ, which is thus an ideal organ to study transcrip-

tomic changes during molting cycles.

In recent years, in order to clarify the molecular mechanisms of molting regulation, some

molting-related genes in crustaceans have been identified via microarray technology [12, 13].

However, due to the limitations of the technology, hybridization probes can only be designed

for limited cDNA or expressed sequence tag data, leading to a huge number of unknown genes

or transcripts that cannot be detected [19]. RNA-seq via high-throughput sequencing is a

powerful technology for identifying genes and has several distinct advantages, such as high

throughput, higher sensitivity and the ability to detect new or unknown genes [13]. Due to the

importance of the eyestalk in crustaceans, significant progress has been made in understand-

ing the profile of transcript expression via RNA-seq over the last 2 years; however, these studies

have mainly focused on development and neuropeptide mining rather than clarifying the

mechanism of molting regulation [20–22].

Portunus trituberculatus (Crustacea: Decapoda: Brachyura), commonly known as the swim-

ming crab, is widely distributed in the coastal waters of China, Japan, Korea and other East

Asian countries [19]. The crab has become one of the most important economic species for its

high nutritional value and fast growth in marine aquaculture [23]. Molt stages of the crab are

divided into four basic periods depending on morphological feature observation [24]: post-

molt (stage A and stage B), inter-molt (stage C), pre-molt (substage D0, substage D1, substage

D2, substage D3, substage D4) and molt (stage E). Young juvenile crabs experience 8–10 molt-

ings before sexual maturity [25], and show saltatory growth after each molting cycle. Compre-

hensive understanding of the molecular mechanisms of molting regulation is essential for
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controlling its growth and development of P. trituberculatus, which would benefit the aquacul-

ture industry in China.

To investigate and gain a better understanding of the molting mechanism in P. tritubercula-
tus, we created a reference transcriptome and digital gene expression (DGE) profile for single

eyestalk samples in three major molting stages (InM, PrM, and PoM) using Illumina sequenc-

ing. To our knowledge, this is the first transcriptome-wide gene expression profiling of eye-

stalk in P. trituberculatus. This study will be a foundational resource for further studies in

molting regulation mechanisms.

Methods

Animals

Ninety healthy swimming crabs (P. trituberculatus) between 80 and 100 days of age were

obtained from Haifeng Company (Changyi, Weifang, China). The crabs used in the present

study were artificial breeding animals. This species is the most common edible crustacean in

China and is not an endangered or protected species. All the samples were acclimated in the

laboratory (33 ppt, 18˚C) for 1 week before beginning the experiment. Three molt stages were

identified based on morphological features [24] and the expression level of MIH mRNA [26],

which included intermolt (InM, stage C, all parts of the body were hard and the new carapace

had not yet started secretion), premolt (PrM, substage D3/D4, the old and new carapaces were

separated completely) and postmolt (PoM, stage A, parts of the body were flaccid). Nine male

crabs from each molt stage (InM, PrM, and PoM) were selected. Then the crabs were placed in

an ice bath until anesthetization (5–10 min), and eyestalk were dissected, cleaned of pigments

and exoskeleton, and then stored in RNAlater (−20˚C) until RNA extraction.

RNA extraction, library preparation, and sequencing

Total RNA was extracted individually using Trizol (Invitrogen, Carlsbad, CA, USA) and then

equivalent RNAs were pooled into each group. For library preparation, 3 μg RNA per group

was used as input material. Sequencing libraries were generated using a NEBNext Ultra RNA

Library Prep Kit for Illumina (NEB, USA) following the manufacturer’s recommendations

and index codes were added to attribute sequences to each sample. Library quality was assessed

on the Agilent Bioanalyzer 2100 system. The clustering of the index-coded samples was per-

formed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illu-

mina) according to the manufacturer’s instructions. Then, the library preparations were

sequenced on an Illumina Hiseq 2000 platform and 100 bp single-end reads were generated.

Assembly and annotation

The raw reads from our two previous works were used to assemble the reference transcriptome

[19, 27]. The clean reads were assembled by Trinity as described previously [28], followed by

TIGR Gene Indices clustering tools (TGICL) [29]. The longest assembled sequences were

referred to as contigs. The reads were then mapped back to contigs with paired-end reads to

detect contigs from the same transcript and the distances between these contigs. Finally,

sequences were obtained that lacked Ns and could not be extended on either end [30]. Such

sequences were defined as unigenes. The unigenes were annotated via public databases (Nr;

Nt; Swiss-Prot; COG; and Kyoto Encyclopedia of Genes and Genomes, KEGG) by BlastX via

an E-value cut-off of 1.0 x 10−5.
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DEG identification

The read counts were obtained by RSEM after being mapped back to the reference transcrip-

tome, which was normalized via RPKM [30]. Prior to differential gene expression analysis, for

each sequenced library, the read counts were adjusted by the edgeR program package through

one scaling normalized factor [31]. Differential expression analysis of two conditions was per-

formed using the DEGSeq R package (1.12.0) [32]. The P values were adjusted using the Benja-

mini & Hochberg method. Corrected p-value of 0.005 and log2 (fold change) of 1 were set as

the threshold for significantly differential expression. Selected differentially expressed genes

(DEGs) were clustered by the STEM Clustering Method [33].

GO and KEGG pathway enrichment analysis

Gene Ontology (GO) enrichment analysis of DEGs was implemented by the GOseq R package,

in which gene length bias was corrected. GO terms with a corrected P value of less than 0.05

were considered significantly enriched for DEGs. KEGG is a database resource for under-

standing high-level functions and utilities of the biological system, such as the cell, the organ-

ism, and the ecosystem, from molecular-level information, especially large-scale molecular

datasets generated by genome sequencing and other high-throughput experimental technolo-

gies (http://www.genome.jp/kegg/). We used KOBAS to test the statistical enrichment of dif-

ferential expression genes in KEGG pathways [34].

Real-time PCR

To test the reliability of RNA-seq, 18 unigenes were selected to confirm the accuracy of differ-

ent expression patterns. Their specific primers were designed with Primer Premier 5 software

(Premier Biosoft International) (S1 Table). First strand cDNA was synthesized with prepared

RNA of Illumina sequencing using a PrimeScript RT reagent kit (Takara, Dalian, China).

Quantitative real-time PCR was performed using a 7500 Fast Real-Time PCR System and

QuantiFast SYBR Green PCR Kit (Qiagen, USA). The PCR was carried out in a total volume of

10 μl and performed with the following thermal profile: 95˚C for 5 min, 40 cycles of 95˚C for

10 s and 60˚C–65˚C for 30 s. Fluorescence levels were measured after the 60˚C step. At the end

of the PCR cycles, a melt curve was generated to analyze product specificity.

Results

Reference transcriptome assembly and annotation

In order to achieve a comprehensive P. trituberculatus reference transcriptome, previous

RefSeq data obtained from a variety of tissues (including the eyestalk, gill, heart, hepatopan-

creas, and muscle) by Illumina deep sequencing was used to create the Trinity-assembled tran-

scriptome. The overall Illumina sequencing data were deposited in the Short Read Archive

database of the National Center for Biotechnology Information (NCBI) (SRR1013694,

SRR1013695, SRR1013696, SRR1168416, and SRR1168417), which contained 155,713,331

read pairs and 31.02G clean bases (Table 1). Finally, we identified 186,081 transcripts with an

average length of 1,028 bp (Fig 1), which contained 130,560 unigene sequences (submitted in

TSA database of NCBI: SUB2309547).

Overall, 33,723 (25.83%) unigene sequences were categorized into 58 subcategories accord-

ing to GO [35]. Six subcategories, ‘cellular process’, ‘binding’, ‘cell’, ‘cell part’, ‘metabolic pro-

cess’ and ‘catalytic activity’ were dominant clusters in the GO classification (Table 1; S1 Fig). A

total of 16,010 unigenes could be grouped into 26 functional classes via the EuKaryotic Ortho-

log Groups program (KOG) [36]. Among which, ‘general function prediction’ (2,926), ‘signal
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transduction’ (2,488), and ‘post-translational modification, protein turnover, chaperone’

(1,720) were the dominant groups and represented 18.28%, 15.54%, and 10.74%, respectively

(Table 1; S2 Fig); 8,087 unigenes were classified to 38 KEGG pathways using the KEGG data-

base [37]. ‘infectious diseases’ (1,619 members) and ‘translation’ (1,075 members) were the

two largest pathways (Table 1; S3 Fig).

DEG identification and analysis during different molting cycles

To identify DEGs for eyestalks in different molting cycles, we sequenced three eyestalk librar-

ies for each molting stage (InM, PrM, and PoM). Finally, the three libraries generated

14,387,942, 12,631,508 and 13,060,062 clean reads, which were mapped to the reference tran-

scriptome and represented 74.20%, 74.10%, and 77.49%, respectively (S2 Table). The overall

Illumina sequencing data were deposited in the Short Read Archive database of the NCBI

(SRR5166969, SRR5166967 and SRR5166965).

A total of 1,394 DEGs were identified by DESeq [38]. The number of genes that were up- or

down-regulated at the different molt stages is shown in Fig 2. There were 445 DEGs during the

Table 1. Summary of Illumina transcriptome sequencing, assembly and annotation for Portunus trituberculatus.

Raw results (after trimming) Assembly results Annotation results

Clean bases (G) 31.02 Transcripts 186,081 Nr annotations 17,639

Read pairs 155,713,331 Average length of transcripts (bp) 1,028 KOG hits 16,010

Read length (bp) 100 Smallest transcripts (bp) 201 GO mapped 33,723

Largest transcripts (bp) 36,343 KEGG hits 8,087

https://doi.org/10.1371/journal.pone.0175315.t001

Fig 1. Sequence length distribution of transcripts assembled from Illumina reads.

https://doi.org/10.1371/journal.pone.0175315.g001
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InM and PrM stages, among which, 284 were down-regulated and 161 were up-regulated in

PrM stages, and 1,181 DEGs (452 down-regulated and 666 up-regulated) were identified

between the PrM and PoM stages. A total of 728 DEGs (476 down-regulated and 252 up-regu-

lated) were identified between InM and PoM.

Eighteen unigenes were subjected to qPCR assays in order to verify the results of differential

gene expression analysis (Table 2). Within the 54 comparisons, 40 (74.1%) matched well with

the DEG data. Although qPCR data of 14 unigenes did not match the DEG data, they showed

similar trends with the Illumina sequencing in up- or down-regulation. The results validated

that the majority of the DEGs identified from the DEG analysis in different molting phases

were authentic.

GO and KEGG enrichment analysis

DEGs were further analyzed according to GO functional enrichment analysis (Fig 3). The

188 DEGs of PrM vs. InM were enriched in 10 processes, among which, most of the DEGs

(77.66%) were up-regulated in PrM. In the 10 processes, chitin metabolic process

(GO:0006030), ribosome (GO:0005840) and peptidase inhibitor activity (GO:0030414) have

Fig 2. Venn diagrams of the differentially expressed genes among three molting stages.

https://doi.org/10.1371/journal.pone.0175315.g002
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the maximum enrichment level in biological process (BP), cellular component (CC), and

molecular function (MF), respectively. The 393 DEGs of PoM vs. PrM were enriched in nine

processes, which included 157 down-regulated and 236 up-regulated DEGs in PoM, respec-

tively. From PrM to PoM, chitin metabolic process (GO:0006030, BP), extracellular region

(GO:0005576, CC) and structural constituent of cuticle (GO:0042302, MF) were processes

with the highest enrichment level. The 268 DEGs of InM vs. PoM were enriched in seven pro-

cesses, among which, most of the DEGs (79.10%) were down-regulated in InM. Chitin meta-

bolic process (GO:0006030, BP), extracellular region (GO:0005576, CC) and structural

constituent of cuticle (GO:0042302, MF) were processes with the highest enrichment level

between PrM and PoM.

DEGs were also analyzed according to KEGG enrichment analysis in a complete molting

cycle. Six groups of DEGs were enriched in 34 KEGG pathways (Fig 4), of which DEGs up-reg-

ulated in PrM vs. InM were enriched to the largest number of KEGG pathways (18). During

the PoM and PrM stages, the up- and down-regulated DEGs were enriched in six and 15

KEGG pathways, respectively. The pathway of ’amino sugar and nucleotide sugar metabolism’

(ko00520) was enriched at the highest level (p-value = 2.43×10−9). Eighteen KEGG pathways

were enriched during PoM and InM stages, among which, 13 KEGG pathways were up-regu-

lated and five KEGG pathways were down-regulated.

Expression pattern analysis of molting-related gene

Forty-seven molting-related genes were screened and clustered by the STEM Clustering

Method [33], which included 6 neuropeptide transcripts, 4 molting-related receptor tran-

scripts, 31 cuticle transcripts and 6 chitinase transcripts. (Fig 5 and Table 3). They were

Table 2. Validation of DEGs data for the selected eighteen transcripts using qPCR for relative gene expression.

Gene ID Gene Name Illumina sequence qPCR

InM vs.

PrM

PoM vs. PrM PoM vs. InM InM vs.

PrM

PoM vs. PrM PoM vs. InM

comp101914_c0 hemocyanin beta subunit 1 1.27 2.28 0.78 3.67* 2.14 0.64

comp99362_c0 cAMP-responsive element-binding protein-like

2-like

1.01 0.53 0.52 1.17 0.35 0.39

comp103008_c0 neurogenic locus Notch protein-like 0.61 0.47 0.76 0.25* 0.34 0.72

comp98266_c0 transferrin 0.64 0.52 0.80 0.54 0.58 0.59

comp96475_c1 Espin 0.82 13.37* 16.30* 0.43 9.94* 23.09*

comp102262_c0 calpain-c 0.70 8.73* 12.32* 0.86 9.2* 8.03*

comp99514_c0 transient-receptor-potential-like protein 0.48 0.01* 0.01* 0.41 0.01* 0.01*

comp102473_c0 Sodium/calcium exchanger 1 0.70 1.33 1.89 0.94 2.03 1.40

comp57954_c0 cuticle protein VER3-like 0.69 4.77* 6.84* 0.66 10.03* 5.90*

comp85008_c0 Chitin binding Peritrophin-A domain 0.84 6.40* 7.03* 0.50 11.09* 3.13*

comp90850_c0 cuticle protein CB2-like 0.31* 5981.73* 18839.83* 0.19* 8172.91* 13834.76*

comp88516_c0 cuticle protein CB1 0.36 6326.38* 17268.64* 0.49 1656.17* 12670.09*

comp61465_c0 cuticle protein 0.63 8665.93* 13646.97* 0.65 1802.63* 13425.21*

comp36475_c0 cuticle protein BD1 2.38 11898.15* 4996.53* 5.06* 2644.29* 4940.72*

comp90588_c0 HR4 nuclear receptor 0.65 3.20* 4.93* 0.37 1.48 4.02*

comp83668_c0 Probable nuclear hormone receptor HR38 1.59 3.88* 2.43 1.23 1.09 1.88

comp83095_c1 Nuclear hormone receptor FTZ-F1 1.35 6.70* 4.94* 1.65 1.94 2.99

comp93173_c0 Ecdysone-induced protein 74EF isoform B 0.73 0.48 0.65 0.39 0.13* 0.35

* represents a significant difference between the InM, PrM and PoM.

https://doi.org/10.1371/journal.pone.0175315.t002
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grouped into four main clusters (labeled 1–4) according to their expression patterns via K-

means clustering, among which, Profile 1 contained the highest number of transcripts (36,

76.6%), followed by Profile 2 (9), Profile 3 (1) and Profile 4 (1). Five neuropeptide transcripts

(83.3%) were clustered in Profile 2, which were up-regulated in PrM, and then down-regulated

Fig 3. GO enrichment analysis of the differentially expressed genes.

https://doi.org/10.1371/journal.pone.0175315.g003
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Fig 4. KEGG enrichment analysis of the differentially expressed genes. Group 1, DEGs up-regulated in

PrM vs. InM. Group 2, DEGs down-regulated in PrM vs. InM. Group 3, DEGs up-regulated in PoM vs. PrM.

Group 4, DEGs down-regulated in PoM vs. PrM. Group 5, DEGs up-regulated in InM vs. PoM. Group 6, DEGs

down-regulated in InM vs. PoM.

https://doi.org/10.1371/journal.pone.0175315.g004
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in PoM. Most of the cuticle transcripts (29, 93.5%) and chitinase transcripts (5, 83.3%) were

clustered in Profile 1, which were not significantly changed in PrM to InM and up-regulated

in PoM. Four molting-related receptor transcripts showed different expression patterns, which

were clustered in Profile 1 (2) and 2 (2).

Discussion

Molting is a vitally important metamorphosis process for P. trituberculatus and affects its phys-

ical growth, tissue regeneration, and gonad development. Apart from studies concentrating on

MIH, molt hormone, and methyl farnesoate, there has been little molecular research on the

molting process [4]. Our study is the first to use high-throughput filtration to investigate molt-

ing-related genes in the eyestalk of P. trituberculatus at the whole transcriptome level. Com-

pared with other technologies, RNA-seq technology has several advantages, such as high

throughput, higher sensitivity and the ability to detect new or unknown genes. This approach

will assist in the discovery and annotation of novel genes that play key roles in the molting

process.

The reference transcriptome used in this study was based on five groups of transcriptome

data from our two previous works [19, 27], in which equal quantities of RNA were extracted

and mixed from five tissues, including the eyestalk, and sequenced by Illumina. The transcript

library obtained covered all of the P. trituberculatus ESTs from NCBI [27]. The overall Illumina

Fig 5. Cluster analysis of the 47 molting related genes. Forty-seven genes were grouped into four main

clusters (labelled Profile 1–4) according to their expression patterns via K-means clustering. The three dots in

order represented InM, PrM and PoM respectively. Lines in different colours represented different genes.

https://doi.org/10.1371/journal.pone.0175315.g005
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Table 3. Information on the 47 clustered genes (DEGs).

Gene_id Gene categories Profile

comp103393_c0 cuticle Profile 1

comp104448_c0 cuticle Profile 1

comp57738_c0 cuticle Profile 1

comp94993_c0 cuticle Profile 1

comp79334_c1 cuticle Profile 1

comp89919_c0 cuticle Profile 1

comp62755_c0 cuticle Profile 1

comp99348_c0 cuticle Profile 1

comp95871_c1 chitinase Profile 1

comp36064_c0 cuticle Profile 1

comp95871_c0 chitinase Profile 1

comp89113_c1 cuticle Profile 1

comp108916_c0 chitinase Profile 1

comp83095_c1 molting related receptor Profile 1

comp53926_c0 cuticle Profile 1

comp36475_c0 cuticle Profile 1

comp35636_c0 cuticle Profile 1

comp101437_c0 cuticle Profile 1

comp138619_c0 cuticle Profile 1

comp302044_c0 cuticle Profile 1

comp81349_c1 cuticle Profile 1

comp81691_c0 cuticle Profile 1

comp70997_c0 cuticle Profile 1

comp91479_c0 cuticle Profile 1

comp91757_c0 cuticle Profile 1

comp86312_c0 cuticle Profile 1

comp61465_c0 cuticle Profile 1

comp58768_c0 cuticle Profile 1

comp88516_c0 cuticle Profile 1

comp78778_c0 chitinase Profile 1

comp96722_c0 cuticle Profile 1

comp99034_c0 chitinase Profile 1

comp63340_c0 cuticle Profile 1

comp90594_c0 cuticle Profile 1

comp90588_c0 molting related receptor Profile 1

comp104537_c0 cuticle Profile 1

comp100803_c0 neuropeptide Profile 2

comp103698_c3 neuropeptide Profile 2

comp92243_c0 neuropeptide Profile 2

comp96149_c0 neuropeptide Profile 2

comp97030_c0 neuropeptide Profile 2

comp86620_c0 cuticle Profile 2

comp103455_c0 chitinase Profile 2

comp86338_c0 molting related receptor Profile 2

comp97869_c0 molting related receptor Profile 2

comp90990_c0 neuropeptide Profile 3

comp37103_c0 cuticle Profile 4

https://doi.org/10.1371/journal.pone.0175315.t003
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read pairs and clean bases for all samples used in this study are 155,713,331 and 31.02G. We

finally identified 186,081 transcripts after assembly analysis, the number of transcripts was sig-

nificantly higher compared to the previous studies (120,137 and 141,339, respectively). There-

fore, the transcriptome assembled in this study could be used as a reference transcriptome

with a high coverage rate for subsequent analysis.

Identification of DEGs among the different molting phases is important to find the under-

lying candidate genes of molting regulation in P. trituberculatus. We detected a total of 1,394

DEGs when comparing the three important molting cycles (qvalue<0.005 & |log2 (fold

change)|>1). Some genes with important roles in the regulation of molting were found in the

DEGs, which included an ecdysteroid receptor (comp97869_c0) [39], chitinase

(comp99034_c0 and comp108916_c0) [9, 40], hemocyanin (comp101914_c0) and nuclear hor-

mone receptor (comp86338_c0 and comp86338_c0) [41]. Many of the DEGs have not yet

been reported to have functions in the molting cycle, in spite of their having important roles in

other physiological processes. For example, heat shock protein 70 (comp84939_c0), sodium/

hydrogen exchanger (comp101931_c0) and methyltransferase (comp83893_c0) play an impor-

tant role in immunity, osmoregulation, and epigenetic modification, respectively. This sug-

gests that these genes might have multiple functions and may also play important roles in the

regulation of molting. It also suggests that the process of molting is closely related to these

physiological processes. It should be noted that most of the DEGs (746/1394) could not be

aligned to any known protein by BlastX (E values less than 10−5). This indicates that the regula-

tion of molting was far more complicated than we originally thought, and that there is still a

long way to go in clarifying the molting mechanism in crustaceans.

GO and KEGG enrichment analysis were able to improve our understanding of the under-

lying biological processes related to various biological traits. A total of 15 GO processes were

enriched, of which five processes (chitin metabolic process, peptidase inhibitor activity, chitin

binding, carbohydrate derivative binding and structural constituent of cuticle) were found in

every comparison of the three groups, which suggests these processes play an important role in

molting. Thirty-four pathways were enriched via KEGG enrichment analysis. From PoM to

PrM, the enriched pathways were mainly up-regulated (85.7% and 72.2% in InM vs. PoM and

PrM vs. InM, respectively), which included ‘ribosome’, ‘amino sugar and nucleotide sugar

metabolism’, ‘retrograde endocannabinoid signaling’, ‘circadian entrainment’ and ‘phosphati-

dylinositol signaling system’. The pathway of ‘ribosome’, with the highest enrichment level

and the highest number of DEGs (p-value = 2.84461E-10, 24 DEGs), was enriched in PrM vs.

InM. The ribosome is a complex molecular machine, found within all living cells, that serves

as the site of biological protein synthesis (translation). Our results indicate that a large number

of protein synthesis processes were triggered to prepare for molting during PrM. From PrM to

PoM, 71.4% KEGG pathways were down-regulated, which suggested that the body was in a

calm state after molting. However, the pathway of ‘amino sugar and nucleotide sugar metabo-

lism’ with the highest enriched level (p-value = 4.14001E-08) was up-regulated in PoM vs.

PrM. An amino sugar is a sugar molecule in which a hydroxyl group has been replaced with an

amine group. More than 60 amino sugars are known, with one of the most abundant being N-

acetyl-d-glucosamine, which is the main component of chitin. This indicated that there could

be more active cuticle metabolism in the body after the early phase of PoM.

Previous studies on Eriocheir sinensis found a DEGs pattern associated with energy metabo-

lism during a molting cycle. To be specific, DEGs enriched in PoM were linked to energy con-

sumption, whereas genes enriched in InM were related to carbohydrates, lipids metabolic and

biosynthetic processes [42]. However, we did not find a similar pattern with energy metabo-

lism in our study. We believe this difference is mainly caused by the different tissues used in

the two studies. Unlike the hepatopancreas, which has a main role in energy metabolism and
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storage, the eyestalk is a major site for the production of neurohormones and controls a variety

of physiological functions such as molting and reproduction [20]. Therefore, it was not sur-

prising that there were little energy metabolism processes or pathways enriched in DEGs in

this study. But it is worth noting that a number of neuromodulator-related pathways were

enriched including the dopaminergic, serotonergic, cholinergic and glutamatergic pathways,

which were not found in previous research [12, 13, 42]. Hormones from the XO-SG complex

appear to be controlled by the neurotransmitters/neuromodulators dopamine, serotonin, and

enkephalin [43–47]. The release of some SG hormones is controlled presynaptically by dopa-

mine, metenkephalin, and leuenkephalin, which occurs via synaptic contacts in the medulla

terminalis near neuron cell bodies [48]. These neuromodulator-related pathways were up-reg-

ulated in PrM and down-regulated in PoM, which indicates molting-related neurohormone

release is triggered by neuromodulators in the early phase of PrM, then aroused a series of sub-

sequent molting processes. However, the relationship between neurotransmitters and molt-

ing-related hormones is far form clear, and further research is necessary to clarify the

underlying mechanisms regulating hormone release.

The process of molting is regulated by an elaborate interplay of neuropeptide hormones,

which include positive and negative regulation [13]. The signals that arise by neuropeptide

hormones trigger a series of physiological activities related to molting, including losing the

extracellular cuticle, escaping from the confines of the cuticle relatively rapidly, taking up

water, expanding the new flexible exoskeleton and then quickly hardening it for defense and

locomotion. In particular, meticulous control of regulatory proteins and genes is required to

form and harden a new exoskeleton as well as to dissolve, reabsorb and shed the old one [2,

49]. Forty-seven DEGs were screened and clustered, which included six neuropeptide tran-

scripts, four nuclear receptor (NR) transcripts, 31 cuticle transcripts and six chitinase tran-

scripts. Most genes had similar expression patterns (Profile 1 and 2) via clustering analysis.

This suggests that there is a connection between these genes throughout the molt cycle.

Crustacean neuropeptides and NRs play important roles in regulating many physiological

activities, including molting, growth, feeding and reproduction [50–52]. In arthropods, the

molting process is regulated by neuropeptide hormones acting via NR proteins [41]. Our

results show that the highest number of these two kinds of genes were clustered in profile 2,

including five neuropeptides (pigment-dispersing hormone [PDH], neuroparsins [NPs] 1 and

2, neuropeptide and neuroendocrine convertase) and 2 NRs (EcR and E75). Interestingly, the

five neuropeptide transcripts were significantly up-regulated in PrM, and their functions in

molting regulation have rarely been reported. For example, the PDH, which is released primar-

ily from the eyestalk, is important in regulating pigment dispersion in crustaceans [53]. NPs

were initially identified in insects with diverse roles including anti-juvenile, antidiuretic and

hyperlipidemic effects [54, 55]. Neuropeptide F (NPF) is a potent stimulator regulating feeding

behavior, circadian rhythm and reproduction [56–59]. The five neuropeptides were up-regu-

lated in PrM vs. InM and subsequently down-regulated in PoM vs. PrM indicating that they

play important roles in regulating molting in PrM.

EcR belongs to the NR superfamily and acts as an important transcription factor regulating

downstream genes involved in the molting process [60]. Consistenting with previous studies

in crustacean molting [61, 62], the expression of EcR in this research was significantly up-regu-

lated in PrM and then down-regulated in PoM. E75, which also belongs to the NR superfamily,

has been identified in numerous insects such as D. melanogaster, Aedes aegypti and Galleria
mellonella [63–65]. Although the complex role of E75 is not fully understood, it was proved to

be an responsive gene in ecdysteroids signaling pathway in crustacean [66, 67]. In this study,

the expression pattern of E75 was similar to that of EcR, and both of them were clustered in
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profile 2. Our results suggest that EcR and E75 play essential roles in molting of P. tritubercula-
tus, and point to a possible synergy between them, which deserves further verification.

Chitin, a 1, 4-β-linked polymer of N-acetyl-β-glucosamine, is found in crustacean shells

[68]. During the pre-molt period, the epidermis secretes chitinases that degrade the inner lay-

ers of the old exoskeleton while synthesizing a new exoskeleton [69]. In this study, one of the

six chitinase transcripts was clustered in Profile 1, which was up-regulated in PrM vs. InM and

down-regulated in PoM vs. PrM, suggesting a specific role in degrading the old exoskeleton in

the PrM stage. However, the chitinases have diverse functions in a wide range of organisms,

including morphogenesis [70], host defense against chitin-bearing pathogens, cell division and

sporulation [71], and regulators of development [72]. Interestingly, five of the six chitinase

transcripts were clustered in Profile 1, which were significantly up-regulated in PoM, indicat-

ing they may participate in other important physiological processes after the molting stage,

such as growth and development [73].

The crustacean cuticle provides initial reinforcement by cross-linking cuticular proteins

attached to the cuticle chitin-fiber matrix and the protein matrices generally have very com-

plex compositions. Thirty-one cuticle proteins were differentially expressed across the molt

cycle and mainly clustered in Profile 1. The majority of them have a common variation ten-

dency: they were not significantly changed in PrM vs. InM, but significantly up-regulated in

the PoM, which shows that the majority of cuticles in P. trituberculatus were highly active at

the PoM stage. The endocuticle and membranous layer form during the PoM, accompanied

by calcification and sclerotization [74]. Our data suggest that the process to generate a new

cuticle mainly occurs in the PoM, which is similar to other reports of crustacean cuticle protein

expression during the molting cycle [69, 75].

Conclusions

Our work is the first molt-related investigation of P. trituberculatus that is focused on the eye-

stalk at the whole transcriptome level. A total of 1,394 molt-related DEGs were identified.

Many important processes and pathways that play a key role in molting regulation were identi-

fied including chitin metabolism, peptidase inhibitor activity, ribosome and circadian entrain-

ment. In particular, we were the first to observe a pattern associated with neuromodulator-

related pathways and four kinds of important molting-related gene families during a molting

cycle. Together, our results, including screened DEGs, identified molting-related biology pro-

cesses and pathways, and the observed expression pattern of important genes, provide novel

insights into the functions of the eyestalk in molting regulation.
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