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ABSTRACT Electron microscope preparations of lampbrush chromosomes from oocytes of
Pleurodeles walthi have revealed a new class of tandemly repeated genes. These genes are
highly active, as judged by the close spacing of nascent transcripts . They occur in clusters of
>100 copies and are transcribed in units containing roughly 940 base pairs of DNA that are
separated by nontranscribed spacers of an estimated DNA content of 2,410 base pairs. The size
and the pattern of arrangement of these transcription units can not be correlated with any of
the repetitious genes so far described.

Electron microscope analyses oftranscriptional arrays on lamp-
brush chromosomes of amphibian oocytes have shown that
most of the lateral loops contain one or a few transcription
units (TUs), usually of large sizes (2, 20, 31, 32, 36, 37), Such
studies have also shown that in the cases of multiple TUs
present on the same loop axis, the TUs are usually dissimilar,
as judged from their different contour lengths and opposing
transcriptional polarities (36, 37) . Although such studies have
presented examples showing that even closely linked TUs do
not represent repeats of a basic sequence, it is clear from
biochemical and electron microscope data that several gene
families of amphibians are tandemly repeated. Well-known
examples are the ribosomal RNA (rRNA) genes, the genes
coding for 5 S rRNA and tRNAs, and the histone genes (e .g .,
3-8, 39, 43 ; for review see reference 26) . Moreover, the resist-
ance of certain chromosome loops to digestion with restriction
endonuclease HaeIII has been taken as indication that their
DNA axes consist exclusively of simple tandem repeats (18) .
Finally, hybridization in situ to nascent RNA of lampbrush
loops has indicated that both middle-repetitive and highly
repetitive DNA sequences are transcribed from certain loops
(27, 42) .
This study describes a novel family of homogeneously sized,

tandemly arranged TUs, which are different, both by their
contour lengths and pattern of arrangement, from repetitious
genes so far known.

Nuclei were manually isolated from midsized oocytes (corresponding to stage IV
oocytes ofXenopus laevis; 10) of Pleurodeles walrui in 75 mM KCI, 25 mM NaCI,
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buffered with 10 mM Tris-HCI to pH 7.2. Nuclear contents were dispersed for
10-20 min in 0.1 mM borate buffer (pH 8.5-9.0) and processed for electron
microscopy essentially as previously described (31). Grids were rotary shadowed
with platinum/palladium (80:20). Micrographs were taken with a Zeiss EM-10
electron microscope operated at 60 kV .

RESULTS

In most spread preparations of chromatin from individual
oocyte nuclei of Pleurodeles, a special class of transcribed
chromatin was found that was clearly different from TUs of
rRNA genes and the very large non-rRNA TUs of lampbrush
chromosome loops . This novel type of transcriptionally active
chromatin consisted of short, tandemly repeated TUs which
were separated from each other by nontranscribed spacers .
TUs of this gene class were observed to occur either in dense
aggregates (Fig. 1 a) or as loosely arranged networks of chro-
matin (Figs. 1 b, and 2a) . Some ofthese chromatin aggregates
contained >100 such TUs, which were occasionally intermin-
gled with transcriptionally inactive chromatin and/or long
featherlike structures of unknown nature (Fig. 1 a). Along a
given chromatin strand, the TUs were always arranged with
identical polarity (Fig . 2a-c) . Transcribed regions could be
clearly distinguished from adjacent nontranscribed spacers by
the presence of closely spaced, densely stained granules pre-
sumed to contain RNA polymerase molecules . On the average
12 putative RNA polymerase molecules were attached to each
repeat. The dark-staining granules were often so densely
packed that individual particles could not be resolved but
rather formed a uniform thickening of the transcribed chro-
matin. Lateral fibrils attached to these putative RNA polym-
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FIGURE 1

	

Survey micrograph showing clusters of TUs of a defined size class . These TUs occur either in aggregates, often in
association with transcriptionally inactive chromatin of beaded morphology and featherlike structures of unknown nature (arrows
in a), or in the form of a more dispersed chromatin fibril network (b) . The alternating arrangement of TUs (some are denoted by
arrows in b) and spacer regions is evident . Note the size difference between nucleosomes (N) and RNA polymerase particles . Bars,
1 Wm . a, x 48,000; b, x48,500.



FIGURE 2

	

Along an individual chromatin strand, the numerous TUs are arranged with identical polarity (a -c) . At higher
magnification, the beaded appearance of the nontranscribed spacer regions (S) is seen (b and c) . Intragenic chromatin stretches
between two more distantly spaced RNA polymerase particles, however, are smooth and nonbeaded (arrow in b) . Some repeating
units (gene + spacer) are denoted by the brackets in c . Bars, 1 pm . a, X 29,000 ; b, x 50,000; c, x 56,000.
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erase granules were not detected in the regions proximal to the
site of transcription initiation . This observation supports pre-
vious conclusions from studies ofrRNA gene transcription that
a growing RNP fibril must reach a certain length before it is
detectable as a nascent fibril (15, 25). The lateral fibrils asso-
ciated with more distal regions of these TUs were of uniform
thickness (- 14 nm) and did not show the terminal knobs
typical of nascent ribosomal ribonucleoprotein fibrils .

Occasionally, putative RNA polymerase granules were
spaced more distantly. In such situations, the chromatin fiber
visible between them revealed a thin, nonbeaded configuration
(Fig . 26). By contrast, the nontranscribed spacer regions
showed the typical beaded conformation of nucleosomal chro-
matin (Figs . 1 b and 2 b-c) . The average frequency of nucleo-
somes in these spacer regions was 33/Am, a value similar to
that reported for inactive chromatin of a variety of species,
including Pleurodeles (28, 38).
The distributions of contour lengths of these TUs, nontran-

scribed spacers and the resulting repeating units are shown in
Fig. 3 . The histograms indicate that the TUs represent a
homogeneous size class (mean value 0.32 ± 0.05 tam) much
shorter than TUs of rRNA genes (cf. 2, 16). The TUs are
separated by spacer regions showing a slightly heterogeneous
length distribution (mean value 0.41 t 0.05 lam) . The mean
value of the entire repeating unit is 0.74 ± 0.07 lam. These
chromatin contour lengths were converted into DNA lengths
by assuming a fully extended B-conformation of the tran-
scribed DNA (13, 14, 34, 41) and a nucleosomal compaction of
the spacer DNA between these genes. Thus, the TUs were
estimated to contain an average of 940 base pairs of DNA.
This suggests that the molecular weight of the primary RNA
products of these genes is ~0.3 million or 11 S. The DNA
content of the spacer regions was estimated, assuming an
average DNAcompaction ratio of 178 base pairs/nucleosomal
unit (38; for Xenopus cf. reference 34), to be on the average
0.82 lam or 2,410 base pairs . This results in a mean value of
3,350 base pairs for the entire repeating unit .

DISCUSSION
The transcriptional arrays described here demonstrate the pres-
ence of clusters of certain nonribosomal, spacer-separated
genes that are intensely transcribed on lampbrush chromo-
somes. The nature of these genes, however, remains unknown.
Possible candidates to be discussed are the genes coding for 5
S rRNA, tRNAs, and histones . Genes coding for tRNAs and
5 S rRNAs are much shorter in all eukaryotes studied so far.
Precursor molecules, interpreted to represent primary tran-
scripts of individual tRNA genes, are -110 ribonucleotides
long (e.g., 17, 30) and the corresponding TUs (-0.04 pin
contour length) could accommodate only one or two RNA
polymerase particles. 5 S rRNA genes have similar dimensions
as tRNA genes, and it is generally assumed that, in amphibia,
the 5 S rRNA molecules (-120 residues) represent the primary
gene transcript (e.g ., 19, 24). Even ifone allows forthe possible
existence of slightly larger primary transcripts (135 residues
[9]), the 5 S rRNA genes of amphibian oocytes would have
space only for a maximum of two RNApolymerase particles .
Thus, it seems highly unlikely that the TUs described here
represent tRNA or 5 S rRNA genes.
Whereas the reiteration number of histone genes is only 20-

50 in Xenopus laevis (23), amphibia with higher contents of
genomic DNA seem to have much higher numbers of histone
genes. In Triturus cristatus, for example, a histone gene fre-
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FIGURE 3

	

Histogram of the size distribution of TUs, spacer regions,
and repeating units.

quencyof300-600 has beendetermined (39), and a comparably
high number ofhistone genes maybe present in the genome of
Pleurodeles. Furthermore, amphibian histone genes seem to be
clustered at a few loci, as shown by in situ hybridization (33) .
Recently, the histone repeat unit containing five ofthe histone
genes of the newt species Notophthalmus viridescens has been
cloned and analyzed (J . Gall, personal communication). The
size of this repeat unit (9,000 base pairs) seems to exclude the
possibility that the TUs described here represent the synthesis
ofa common precursor to four or five different histone mRNAs
as reported for HeLa cells and sea urchin (29, 40) as well as
Triturus (39). It also indicates that the TUs discussed here do
not code for precursors of histone mRNAs separately initiated
on the individual histone genes (21) .
The genes described here could code for so-called "low

molecular weight nuclear RNAs" ("small nuclear RNAs" or
snRNAs [35,44]). It has been estimated that mammals contain
between 100 and 2,000 copies for the different snRNA genes
(12, 22), and recently it has been shown that at least certain
subclasses of snRNA genes occur in clusters (1) . Although the
size of the snRNA species usually ranges between 100 and 300
nucleotides, it is conceivable that their primary transcripts are
considerably larger (11) and of sizes compatible to that of the
TUs described here.

In summary, the repetitive TUs described cannot, at the
moment, be correlated with genes ofdefined content. However,
because they are easily detectable in electron microscope prep-
arations, it should be feasible to identify their nature by in situ
hybridization techniques at the electron microscope level and
to study the regulation of their transcription in different devel-
opmental stages.
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Cell and Tumor Biology, German Cancer Research Center) for stim-
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This work was supported by the Deutsche Forschungsgemeinschaft
(grant Sche 157/4) .



Receivedfor publication 19 August 1980, and in revisedform 10 Novem-
ber 1980.

REFERENCES

1 . Alonso, A ., L . Krieg, H . Winter, and C . E . Sekeris. 1980 . The synthesis of a cDNA copy
complementary to two snRNAs and the localization of their genes in the rat genome.
Biochem. Biophys. Res. Commun. 95 :148-155 .

2. Angeber, N ., and J . C . Lacroix. 1975. Complexes de transcription d'origines nucl6olaire et
chromosomique d'ovocytes de Pleurodeles waldii et P. poireti (amphibiens, urodèles) .
Chromosoma (Bert.). 51 :323-335 .

3. Bimstiel, M., J . Speirs, 1 . Purdom, and K. Jones. 1968. Properties and composition of the
isolated ribosomal DNA satellite of Xenopus laevis. Nature (Land.) . 219:454-463.

4. Brown, D . D ., and C . S. Weber. 1968. Gene linkage by RNA-DNA hybridization . II .
Arrangement of the redundant gene sequences for 28 S and 18 S ribosomal RNA . J. Mol.
BioL 34:681-697.

5 . Brown, D. D ., and K . Sugimoto. 1973 . 5 S DNAs of Xenopus laevis and Xenopus mulleri :
evolution of a gene family. J. Mol. Biol. 78 :397-415 .

6 . Brown, D. D ., P. C . Wensink, and E. Jordan . 1971 . Purification and some characteristics
of 5 S DNA from Xenopus laevis. Proc. NaIL Arad. Scé. U. S. A. 68 :3175-3179.

7 . Clarkson, S . G ., M. L . Bimstiel, and I. F. Purdom . 1973 . Clustering of transfer RNA
genes of Xenopus laevis. J. Mol. Biol. 79 :411-429 .

8 . Dawid, 1 . B ., D . D . Brown, and R. H . Reeder . 1970 . Compositio n and structure of
chromosomal and amplified ribosomal DNA's of Xenopus laevis. J. Mol. Biol. 51 :341-360.

9 . Denis, H., and M . Wegnez. 1973 . Recherches biochimiques sur l'oogenese . Biochimie
(Paris). 55 :1137-1151 .

10 . Dumont, J . 1972. Oogenesis in Xenopus laevis (Daudin). I . Stages of oocyte development
in laboratory maintained animals . Z MorphoL 136 :153-179.

11 . Eliceiri, G . L. 1979 . Sensitivity of low molecular weight RNA synthesis to UV radiation .
Nature (Land.) . 279:80-81 .

12 . Engberg, J ., P . Hellung-Larsen, and S. Frederiksen. 1974 . Isolation and DNA-RNA
hybridization properties of small-molecular-weight nuclear RNAcomponents from baby-
hamster kidney cells. Eur. J. Biochem . 41 :321-328.

13 . Foe, V . E . 1978 . Modulation of ribosomal RNA synthesis in Oncopeltus fasciatus : an
electron microscopic study of the relationship between changes in chromatin structure
and transcriptional activity. Cold Spring Harbor Symp . Quant. Biol. 42:723-740 .

14 . Franke, W. W ., U. Scheer, M . F. Trendelenburg, H . Spring, and H. Zentgraf. 1976 .
Absence of nucleosomes in transcriptionally active chromatin. Cytobiologie. 13 :401-434.

15 . Franke, W. W., U . Scheer, H . Spring, M. F . Trendelenburg, and G . Krohne . 1976.
Morphology of transcriptional units ofrDNA. Exp. Cell Res. 100:233-244.

16 . Franke, W. W ., U. Scheer, H. Spring, M. F . Trendelenburg, and H . Zentgraf. 1979.
Organization of nucleolar chromatin . In The Cell Nucleus. H . Busch, editor, Academic
Press, Inc ., New York. 7:49-95 .

17 . Garber, R. L ., M. A . Q . Siddiqui, and S . Altman . 1978. Identification of precursor
molecules to individual tRNA species from Bombyx morL Proc. Nail. Acad. Sci. U. S. A .
75 :635-639.

18. Gould, D . C., H . G . Callan, and C. A. Thomas . 1976. The actions of restriction
endonueleases on lampbrush chromosomes. J. Cell Sci. 21 :303-313 .

19 . Guidon, J . B., and D. D . Brown. 1978. The transcription of 5 S DNA injected into
Xenopus oocytes . Dev. Biol. 67:346-356 .

20. Hill, R. S. 1979 . A quantitative electron-microscope analysis of chromatin from Xenopus
laevis lampbrush chromosomes. J. Cell Sci. 40 :145-169.

21 . Hackett, P . B ., P . Traub, and D. Gallwitz . 1978. The histone genes in HeLa cells are on
individual transcriptional units. J Mal. Biol. 126 :619-635 .

22 . Huang, R . C . C . 1977 . Low molecular weight nuclear RNA : size, structure and possible
function. In Chromatin and Chromosome Structure . H . J . Li and R . A. Eckhardt, editors.
Academic Press, Inc., New York. 299-313.

23 . Jacob, E ., G . Malacinski, and M . L . Bimstiel . 1976. Reiteratio n frequency of the histone
genes in the genome of the amphibian, Xenopus laevis. Eur. J. Biochem. 69 :45-54,

24. Jacq, C ., J . R. Miller, and G . G. Brownlee . 1977 . A pseudogene structure in 5 S DNA of
Xenopus laevis. Cell. 12:109-120 .

25. Laird, C . D ., L . E. Wilkinson, V. E . Foe, and W, Y . Choii. 1976 . Analysis of chromatin-
associated fiber arrays. Chromosoma (Berl.), 58:169-192 .

26. Long, E . O ., and I . B. Dawid. 1980. Repeated genes in eukaryotes . Annu. Rev. Biochem.
49:727-764,

27 . Macgregor, H. C., and C . Andrews . 1977 . The arrangement and transcription of "middle
repetitive" DNA sequences on lampbrush chromosomes of Trilurus. Chromosoma
(Berl.). 63 :109-126 .

28. McKnight, S . L ., K. A . Martin, A. L. Beyer, and O . L . Miller . 1979 . Visualization of
functionally active chromatin. In The Cell Nucleus. H . Busch, editor . Academic Press,
Inc ., New York. 7 :97-122 .

29. Meilii, M ., G . Spinelli, H . Wyssfng, and E. Arnold . 1977. Presence of histone mRNA
sequences in high molecular weight RNA ofHeLa cells . Cell. 11 :651-661 .

30. Melton, D, A ., E . M . deRobertis, and R . Cortese . 1980. Order and intracellular location
of the events involved in the maturation of a spliced tRNA . Nature (Land.). 284:143-148.

31 . Miller, O . L., and A. H. Bakken. 1972 . Morphological studies of transcription . Acta
Endocrinol. Suppl. 168:155-177.

32. Miller, O . L ., B. R. Beatty, and B. A. Hamkalo . 1972. Nuclea r structure and function
during amphibian oogenesis. In Oogenesis. J . D. Biggers and A . W . Schuetz, editors.
University Park Press, Baltimore . 119-128 .

33 . Old, R . W ., H. G. Callan, and K . W . Gross . 1977 . Localizatio n of histone gene transcripts
in newt lampbrush chromosomes by in situ hybridization. J. Cell Sci. 27 :57-79.

34. Reeder, R. H., S . L . McKnight, and O. L . Miller . 1978 . Contraction ratio of the
nontranscribed spacer of Xenopus rDNA chromatin. Cold Spring Harbor Symp . Quant.
BioL 42:1174-1177 .

35 . Ro-Choi, T. S., and H . Busch . 1974. Low-molecular-weight nuclear RNA's . In The Cell
Nucleus . H . Busch, editor . Academic Press, Inc ., New York. 3:151-208 .

36 . Scheer, U ., W . W . Franke, M . F. Trendelenburg, and H . Spring. 1976 . Classification of
loops of lampbrush chromosomes according to the arrangement of transcriptional com-
plexes . J. Cell Sci. 22 :503-519.

37 . Scheer, U ., H. Spring, and M . F . Trendelenburg. 1979 . Organization of transcriptionally
active chromatin in lampbrush chromosome loops . In The Cell Nucleus. H. Busch, editor .
Academic Press, Inc,, New York. 7 :3-47 .

38 . Scheer, U., J . Sommerville, and U . Miiller . 1980 . DNA is assembled into globular
supranucleosomal chromatin structures by nuclear contents of amphibian oocytes . Exp .
Cell Res . 129:115-126.

39 . Sommerville, l . 1979 . Gene expression in lampbrush chromosomes. FEBS (Fed. Eur.
Biochem. Soc.) Proc. Meet 51 :265-276 .

40 . Spinelli, G., M . Meili, E. Arnold, C . Casano, F . Gianguzza, and M . Ciaccio . 1980 . High
molecular weight RNA containing histone messenger in the sea urchin Paracentrotus
lividus. J. Mot Biol. 139 :111-112.

41 . Trendelenburg, M . F ., D. Mathis, and P. Oudet. 1980. Transcription units of chicken
ovalbumin genes observed after injection of cloned complete genes into Xenopus oocyte
nuclei. Proc. Nail. Acad. Sci. U. S. A . 77 :5984-5988 .

42 . Varley, J. M., H. C, Macgregor, and H . P. Erba. 1980 . Satellite DNA is transcribed on
lampbrush chromosomes. Nature (Loud.). 283 :686-688 .

43 . Wensink, P. C., and D . D. Brown. 1971 . Denaturation map of the ribosomal DNA of
Xenopus laevis. J. Mot. BioL 60:235-247 .

44 . Zieve, G ., and S. Penman . 1976. Small RNA species of the HeLa cell: metabolism and
subcellular localization. Cell. 8 :19-31 .

ULRICH SCHEER

	

Transcribed Tandemly Repeated Genes

	

603


