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ABSTRACT
A microneedle array patch (MAP) has been developed as a new delivery system for vaccines. Preclinical and
clinical trials with a vaccineMAP showed improved stability, safety, and immunological efficacy compared to
conventional vaccine administration. Various vaccines can be delivered with a MAP. Currently, microneedle
manufacturers can mass-produce pharmaceutical MAP and cosmetic MAP and this mass-production system
can be adapted to produce a vaccineMAP. Clinical trials with a vaccineMAP have shown comparable efficacy
with conventional administration, and discussions about regulations for a vaccine MAP are underway.
However, there are concerns of reasonable cost, mass production, efficacy, and safety standards that meet
FDA approval, as well as the need for feedback regarding the best method of administration. Currently,
microneedles have been studied for the delivery of many kinds of vaccines, and preclinical and clinical
studies of vaccinemicroneedles are in progress. For the foreseeable future, some vaccineswill continue to be
administered with syringes and needles while the use of a vaccineMAP continues to be improved because of
the advantages of less pain, self-administration, improved stability, convenience, and safety.
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1. Introduction

The World Health Organization (WHO) estimates that immuni-
zation annually prevents 2–3 million deaths, and vaccination is
the most powerful tool to protect people from infectious diseases.
Despite the successes of the vaccine era, there were approximately
15 million deaths from such diseases globally in 2010.1 Thus,
vaccine development, vaccine coverage, and mass vaccination
continue to be WHO’s top priorities because many countries
still suffer from the enormous burden of disease owing to influ-
enza, HIV/AIDS, tuberculosis, hepatitis B, and especially the
emerging infectious diseases such as the Ebola virus, the Zika
virus, and other pathogens. Most conventional vaccinations have
been injected with needles and syringes. Syringes and needles have
provided successful delivery of predetermined doses of vaccines,
and many diseases have been brought under control or virtually
eliminated through syringe and needle-based vaccination.
However, syringes and needles have several disadvantages such
as pain, needle-stick injuries, needle reuse, and poor patient
compliance.2 In addition, the cold chain of manufacturing, deliv-
ery, and storage of vaccines increases the cost, the likelihood of
misuse, and risk during clinic practice.3 The cost of vaccination
programs in 94 low- and middle-income countries over the dec-
ade 2011–2020 has been about 62 USD billion. The delivery cost
was 34 USD billion and the supply chain cost was 4 USD billion,
corresponding to 54% and 6%, respectively, of total vaccine cost.4

The high cost of vaccines is one of themain barriers to vaccination
coverage in low- and middle-income countries, and according to
2015 survey data, only 60% of eligible children in these countries
had received full immunization.5

To overcome these limitations, vaccination with a microneedle
array patch (MAP) was introduced because a MAP has the
advantages of improved stability, delivery, and storage at room
temperature, low bioburden, painlessness, minimally invasive
nature, self-administration, and intradermal delivery of antigens
into the skin, as shown in Table 1.6 The length of microneedles in
a MAP ranges from 100 to 1000 µm, and the vaccine can be
delivered into the epidermal and dermal layers of human skin
where Langhans cells and dendritic cells are located.7–9 Three
types of MAP – solid MAP (S-MAP), coated MAP (C-MAP),
and dissolving MAP (D-MAP) – have been used to test the
immunization application. As shown in Figure 1, the S-MAP
delivers the vaccine into the deeper layer of the skin through the
holes generated by the MAP. A C-MAP delivers the vaccine
formulation directly into the skin layer and releases the vaccine
immediately after being inserted into the skin. A D-MAP is made
of safe, inert, water-soluble materials, and the vaccine is released
from the matrix of the D-MAP after it is inserted into the skin.

The first study of immunization by MAP was carried out in
2002,10 and the significant milestones of MAP for vaccination
are displayed in Figure 2. The use of a D-MAP for influenza
vaccination was well tolerated and generated robust antibody
responses in 2017, and the first clinical trials with vaccine
MAPs were conducted in 2015.

In this review, the studies of MAP for vaccination are
summarized and analyzed with sections addressing preclinical
studies, stability studies, and clinical trials. In addition, man-
ufacturing issues, regulation considerations, and future possi-
bilities are discussed to provide a total view of the application
of MAP as the alternative means of vaccination. In this
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review, hollow microneedles are not discussed. S-MAP,
C-MAP, and D-MAP for delivery of vaccine are discussed
because these three types of MAP have been developed for
the delivery of solidified vaccine formulations.

Table 2 summarizes the criteria when selecting S-MAP, C-
MAP and D-MAP. In regard to the manufacturing process, the
drug is not loaded or coated onto S-MAPs, so the manufacturing
cost is cheaper than for C-MAPs or D-MAPs. However, because
S-MAPs have to puncture the skin to deliver the drug, the amount

of drug delivered is small and inconsistent. In the case of C-MAPs
and D-MAPs, the wear time (i.e., time needed to keep the micro-
needles attached to the skin) is longer (from a few minutes to
30 min) because sufficient adhesion time is required to deliver all
of the drug in the coating formulation of the C-MAP or in the
D-MAPmatrix. Because theD-MAPmatrix is also dissolved in the
skin, the mechanical strength and biocompatibility of the micro-
needle material are critical concerns.11 Compared to S-MAPs or
precoated microneedles of C-MAPs made of water-insoluble

Table 1. Microneedle array patch (MAP) solution for vaccine needs.

Limitations of Syringes and Needles Strengths of Microneedles Limitations of Microneedles

● Risk of needle waste
● Low thermal stability
● Cold chain required for delivery and

storage
● Need of medical expertise to administer

● Low pain
● Increase of vaccine coverage
● Improved thermal stability during

delivery
● Long shelf life at room temperature
● Reduced risk of biohazardous product
● Self-administration

● Uncertain manufacturing cost
● Need for mass production
● Lack of feedback on proper administration
● Efficacy and safety criteria to meet FDA approval not yet

established

Figure 1. Illustration of vaccine microneedle array patch (MAP) types: (a) solid MAP (S-MAP), (b) coated MAP (C-MAP), (c) dissolving MAP (D-MAP). Arrows show the
direction of vaccine diffusion. Representative images of S-MAP (1), C-MAP (2), and D-MAP (3).

Figure 2. Timeline of studies with microneedle array patch (MAP) for vaccination.
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polymer, most D-MAPs are made of soluble polymers, which
potentially makes them more likely to break down as a result of
contact with moisture.12,13

2. preclinical and stability studies

2.1. Preclinical studies of vaccine MAP

Preclinical studies of various vaccine MAPs have been conducted
and are summarized in Table 3. Mice were used to test the efficacy
of most vaccine MAPs, and a monkey was used as an animal

Table 3. Vaccine and model animals regarding type of microneedle array patch (MAP).

MAP Vaccine Animal Reference(s)

S-MAP Influenza subunit (subunit) Mouse 54

Hepatitis B (DNA) Mouse 10,24,55-57

DT (inactivated) Mouse 18,21,54,58

Tetanus toxoid (inactivated) Mouse 19

Anthrax (DNA, inactivated) Mouse 22,59

Malaria (recombinant vector) Mouse 60-62

Plague (live bacteria) Mouse 63

Anthrax rPA (recombinant subunit) Rabbit 59

Encephalitis (live attenuated) Monkey 64

C-MAP Influenza (DNA, subunit) Mouse 28-30,32,37-44,65-71,73-80

Hepatitis C (DNA) Mouse 81

Hepatitis B (subunit) Mouse 82

DT (inactivated) Mouse 83

Rotavirus (live attenuated) Mouse 84

Fever (live attenuated) Mouse 85

Ebola (recombinant vector) Mouse 45

Human adenovirus (recombinant vector) Mouse 86

Chikungunya virus (inactivated) Mouse 46

West Nile virus (DNA-delivered attenuated) Mouse 46

Herpes (inactivated) Mouse 49,50

Zika (inactivated) Mouse 51

Dengue (recombinant subunit) Mouse 87

Francisella novicida (live attenuated) Mouse 88

Malaria (recombinant vector) Mouse 89

Leishmania spp. (recombinant vector) Mouse 90

Measles (live attenuated) Rat 91

IPV (inactivated) Mouse 92,93

Influenza (subunit) Guinea pig 94

HIV (recombinant vector) Rabbit 95

Hepatitis B (subunit) Pig 96

BCG (live attenuated) Mouse 97

HIV (recombinant vector) Monkey 98,99

Hepatitis B (subunit) Mouse 100

Influenza (subunit) Young mice 101

D-MAP Influenza (inactivated) Mouse 31,33,102-109

Hepatitis B (recombinant subunit) Mouse 20,110,111

HIV (recombinant vector) Mouse 47,48,112-114

Dengue virus (live attenuated) Mouse 115

Ebola (DNA) Mouse 23

Enterovirus (VLPs) Mouse 52

Rotavirus (inactivated) Mouse 116

Polio virus (inactivated) Mouse 117

Streptococcus (inactivated) Mouse 118

Staphylococcus (recombinant subunit) Mouse 119

Shigella (BLP) Mouse 107

Clostridium (toxoid) Mouse 107

BCG (live attenuated) Mouse 120

Neisseria gonorrhoeae (inactivated) Mouse 121

Pseudomonas aeruginosa (inactivated) Mouse 122

Orientia tsutsugamushi (recombinant subunit) Mouse 123

Malaria (recombinant subunit) Mouse 124

Influenza, DT, Tetanus toxoid (inactivated) Rat 124

BCG (live attenuated) Mouse 125

Influenza (inactivated) Guinea pig 126

Hepatitis B (recombinant subunit) Pig 127

Hepatitis C (VLPs) Mouse 128

Rabies (DNA) Dog 129

IPV (inactivated) Monkey 130

Measles (live attenuated) Mouse 131

Hepatitis B (recombinant subunit) Mouse 111

Tetanus toxoid (inactivated) Pregnant mouse 132

Measles, Rubella (live attenuated) Infant monkey 53

rPA: recombinant protective antigen; IPV: inactivated poliovirus vaccine; HA: hemagglutinin; VLPs: virus-like particles; BCG: Bacille Calmette–Guerin; DT: diphtheria
toxin; TIV: trivalent influenza vaccine; HIV: human immunodeficiency virus; DT: diphtheria and tetanus.

Table 2. Decision matrix for use of solid microneedle array patch (S-MAP),
coated microneedle array patch (C-MAP), and dissolving microneedle array
patch (D-MAP).

Criteria S-MAP C-MAP D-MAP

Manufacturing cost 5* 3 2
Mass production 5 4 3
Self-administration 5 5 5
Wear time 5 3 3
Biocompatibility of microneedle material 5 4 3
Delivery of right dose 1 4 3
Aseptic process 5 4 3
Stability against humidity 5 5 2
Waste 2 2 5

* 5 is the highest score and 1 is the lowest score for criteria.
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model. Among the adjuvants, an aluminum-type adjuvant has
been studied; however, it did not show high efficacy for a vaccine
MAP14 because it induced low T-cell mediated immune responses
and it was not suitable for intradermal (ID) use.15 The preclinical
studies of adjuvants for MAPs are summarized in Table 4.
Recently, nanoparticles (NPs) have been considered an effective
adjuvant because they can act as a depot and are more efficiently
taken up by dendritic cells.16,17 NPs prepared from chitosan
induced an equally strong immune response compared to sub-
cutaneous injection of diphtheria and tetanus (DT) vaccine18 and
generated a higher IgG2a titer than commercial tetanus toxin
vaccine.19 Liposome NPs are a candidate for vaccine MAP appli-
cation; the mucosal injection elicited robust systemic and wide-
spread immune response in hepatitis B MAP.20 However, a study
with the liposome formulation of DT did not induce a higher
antibody than free DT.21 NPs were fabricated from polymer as
poly(lactic-co-glycolic acid)-PLGAwith anthrax vaccine, and NPs
were encapsulated in a MAP. An anthrax vaccine NP MAP
induced a stronger immune response than a MAP without an
NP formulation.22 A similar enhancement was observed in Ebola
vaccine research.23 Another polymer NP formulation was pre-
pared from pluronic-modified polyethyleneimine, and hepatitis
B DNA vaccine was encapsulated in NPs. DNA NP MAPs gen-
erated higher humoral and cellular immunity than DNAMAPs.24

The immune response was improved by the sustained
release of vaccine and exposure of antigens to lymphoid
tissues by using an implantable MAP. The D-MAP for HIV
was fabricated with the silk matrix to control the release rate
of the antigen for 2 weeks, and the serum IgG titer was
increased 1,300-fold compared to conventional
administration.25 The release of influenza vaccine was
extended by using the chitosan MAP, which induced an
immune-enhancing effect.26 The extended release of vaccines
for daily vaccination provided an improved vaccination
effect.27

To demonstrate the successful protection of immunity by
MAP vaccination, a number of studies of pathogen challenges
were carried out, and the results were promising. In particu-
lar, studies of influenza vaccination that compared MAP
injection and a no-treatment group found that the MAP
application conferred greater protective immunity.28,29

Similar observations were documented when comparing
MAP injection with subcutaneous injection30,31 and intranasal
administration.32 Notably, the MAP application induced not
only comparable protective efficacy33-37 but also better pro-
tection event38-41 compared to intramuscular (IM)

administration. Of equal importance, such protective efficacy
continued for several months after vaccination (6 months,42

14 months43). Another study demonstrated cross-protection
when mice vaccinated with A/PR8 influenza hemagglutinin
DNA did not contract pandemic 2009 H1N1.44 Besides the
influenza vaccine, some vaccines targeting virus outbreak
pandemic pathogens, such as the Ebola virus,45 the
Chikungunya virus,46 HIV,47,48 and the herpes simplex
virus,49,50 were successfully delivered into the skin by MAP
and conferred suitable protection after viral challenge. The
Zika virus was especially challenged in the neonatal mouse
model.51 The enterovirus MAP vaccination induced full pro-
tection against lethal challenge with only 10% of the delivered
antigen dose compared to IM injection.52 Most of the chal-
lenge tests were studied in mice, but one study of a measles
vaccine was applied in infant rhesus macaques. The results
showed complete protection in the MAP administration
group compared to the group that received the vaccine by
a subcutaneous route.53

Vaccine development for bacteria-derived pathogens plays
a critical role in decreasing the burden on the health-care
system throughout the world. Several such severe antigens
were researched to be delivered by MAP, and mice were
challenged after vaccination to prove the strong induction of
protective immunity against Pseudomonas aeruginosa,122

Clostridium difficile,107 Streptococcus suis,118 and Francisella
novicida.88 The anthrax vaccine was tested, and the results
showed 100% protection from aerosol spore challenge in
rabbits.133 A tetanus vaccine was studied in another neonatal
mouse group, and the group administered with MAP vaccina-
tion was totally protected, while none of the mice adminis-
tered via the IM route survived.132 Finally, live adenovirus-
vectored malaria vaccine was researched and an equivalent
protective efficacy was reported when comparing intradermal
(ID) immunization by MAP with the administration via
hypodermic needles.61 A large number of preclinical research
studies have been carried out with MAP for vaccine applica-
tion; the target animals were wide ranging from mice to
monkeys. More importantly, it was demonstrated that MAP-
based vaccination generated strong desired immune response
to specific antigens and conferred protective efficacy not only
for a short time but also for a long time after vaccine admin-
istration. Different vaccines for infectious diseases were inves-
tigated, and the results indicate that it is feasible to use MAPs
to combat diverse pathogens. In addition, it was found that
the S-MAP gradually received less attention than the other
MAP types because of the S-MAP’s complex application steps
and the difficulty in measuring the right dose for delivery.
Therefore, the most promising MAP types for ID vaccination
are C-MAP or D-MAP applied as patches.

2.2. Stability studies of vaccine MAP

Keeping antigens stable during processing and storage has
been one of the challenges for MAP vaccination. The pos-
sible loss of antigenicity can occur in the drying and storing
stages. The thermostability of the MAP vaccine can be
improved by the addition of a stabilizer; the appropriate

Table 4. Preclinical studies of vaccine microneedle array patch (MAP) with
adjuvants.

Adjuvant Type Vaccine Ref.

Cholera toxin Diphtheria toxin, hepatitis
B

21,54,56,58

dmLT (double mutant heat-labile
toxin)

Clostridium, shigella 107

Fms-like tyrosine kinase 3 ligand Hepatitis B 55

CpG oligonucleotide Hepatitis B 110

Monophosphoryl lipid A HIV 113

Poly(I:C) Influenza 29,79

Saponin-based Ebola, hepatitis B, influenza 45,73,127

HIV: human immunodeficiency virus.
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stabilizer depends on the kind of vaccine being adminis-
tered, as shown in Table 5.

3. Clinical trials and human studies of vaccine map

3.1 Clinical trials of vaccine MAP reported at
ClinicalTrial.gov

The innovation of MAP in stability, bioavailability,
potency, and less adverse reactions is incorporated into
the vaccine to overcome the limitations and current dis-
advantages of hypodermic needle injection. Using “micro-
needle patch” as the keyword, we found three trials
registered at Clinical Trial.gov that have applied the vac-
cine MAP (Table 6). Three kinds of MAPs have been used
in the registered trials, and these studies have been con-
ducted to address some of the most dangerous infectious
diseases to determine the feasibility of MAP vaccination in
clinical practice.

3.2. Vaccine C-MAP for human studies

In several human studies, a vaccine C-MAP (NanopatchTM)
has shown promise as a system for effective drug delivery.
Both uncoated and excipient-coated NanopatchTM were
administered to 18 healthy adults for 2 min of insertion and
removal. On a pain scale from 0 to 10, 78% of the participants
scored 0, and the average score was less than 1. No unex-
pected adverse events directly related to NanopatchTM were
observed, and the expected erythema response faded between
3 and 7 d after vaccination.138 When NanopatchTM with 15 µg
of inactivated influenza virus (H1N1) was administered to

healthy volunteers, adverse events were mild or moderate,
and more than half (55%) of the volunteers preferred the
NanopatchTM to IM administration.139 In addition, the anti-
body response using a NanopatchTM was comparable to that
with conventional IM administration.139

3.3. Vaccine D-MAP for human studies

When a D-MAP patch was applied to the participants in one
study, there was no pain swelling, and only mild erythema
was localized to the site of patch administration. Moreover,
the large majority of subjects were somewhat or fully confi-
dent with self-administration.140 Consequently, influenza vac-
cine was encapsulated in the polymer matrix and D-MAPs
were applied to volunteers for a phase 1 trial. The antibody
response by self-administered D-MAP was comparable to that
by IM administration.141

Another D-MAP for treating influenza was prepared from
a hyaluronic acid MAP named MicroHyala TM. No severe
local or systemic adverse events were detected, and immuno-
logical efficacy was comparable to that of IM
administration.142

4. Concerns about vaccine MAP

4.1. Commercialized MAP

Several pharmaceutical companies have developed MAP
devices for drug delivery systems, as shown in Figure 3.
OnvaxTM (BD company) consists of an array of plastic micro-
projections with a height of approximately 200 µm. Rubbing
the skin surface with such devices led to disruption of the skin

Table 6. Clinical trials of vaccine MAP registered at ClinicalTrial.gov.

MAP Disease Phase Number of Participants Age Processing Number of Identifier

S-MAP Hepatitis B 2,3 120 >21 Recruiting NCT02621112
D-MAP Influenza 1 100 18–49 Completed NCT02438423

Safety vaccination 34 6 weeks to 24 months Completed NCT03207763

Table 5. Stability studies of vaccine MAP.

MAP Vaccine Stabilizer Temperature Period Ref.

S-MAP Hepatitis B (Recombinant subunit) Mannitol 4°C 3 weeks 57

C-MAP Influenza (Plasmid DNA) Trehalose 25°C After coating 44

Influenza (inactivated) Trehalose 4°C, 25°C, 37°C 1 month 134

Influenza (inactivated) Trehalose 23°C 6 months 76

Influenza (Subunit) Sucrose 4°C, 25°C 8 weeks 94

Freeze-thawing 3 cycles
Hepatitis B (recombinant subunit) Trehalose 4°C, 25°C, 37°C 28 d 82

Freeze-thawing 10 cycles
Malaria (live attenuated) Trehalose + sucrose 37°C 10 weeks 89

D-MAP Influenza (inactivated) Trehalose 4°C, 25°C, 37°C 3 months 135

Influenza (inactivated) Trehalose 40°C 6 months 102

Influenza (inactivated) Trehalose 35°C 12 months 108

Rabies (DNA) Sucrose 4°C 3 weeks 129

Hepatitis B (recombinant subunit) - 4°C 3 months 20

Hepatitis B (recombinant subunit) Sucrose 45°C 6 months 127

Influenza (Subunit) Arginine + heptagluconate 25°C 24 months 136

Freeze-thawing 5 cycles
BCG (live attenuated) - 25°C 2 months 120

Tetanus toxoid/Diphtheria toxoid (Divalent subunit) - 4°C 24 weeks 137

Scrub typhus (recombinant subunit) - 25°C 4 weeks 123

HbsAg: hepatitis B surface antigen; HA: hemagglutinin; BCG: Bacille Calmette–Guerin.
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and delivery of the vaccine into the epidermal layer.59,143

A NanopatchTM has been produced by Vaxxas and is a solid
high-density microprojection array coated with the influenza
vaccine formulation. A NanopatchTM needle length is 250 µm
and is administered with a spring-loaded applicator.62 The ZP
MAP system from Zosano Pharma consists of 1,300 micro-
needles in a 2 cm2 area. The drug is coated on a 190-µm-long
MAP, and the ZP MAP is applied with a hand-held reusable
applicator. This system administers the drug formulation into
the outer skin layers and provides the desired outcome.144

CosMED Pharmaceutical Ltd. has developed a D-MAP
(MicroHyalaTM) made of hyaluronic acid. The D-MAP is
approximately 800 µm in length and efficiently delivers var-
ious materials into the epidermis and dermis below the stra-
tum corneum.142,145 3M has developed a C-MAP based on
a Microstructured Transdermal System (MTS) of 500 µn; an
applicator is used to deliver the drug agent into the skin.
A one square-centimeter microneedle array is molded from
durable medical grade polymer, and the array is attached to
an adhesive patch.70,71 MicroCorTM was designed by the
Corium company. MicroCorTM is a D-MAP with an applica-
tor device integrated as a single piece into the MAP.126,147

4.2. Manufacturing issues

Concerns for vaccine MAP are dosage uniformity, reasonable
cost, mass production, and production according to Good
Manufacturing Practice (GMP). In regard to cost and scalability,
MAPs require large-scale manufacturing machines and pro-
cesses to be established.148 Substantial investment is necessary
for machining, casting, and forming ofMAPs at the initial stages
of mass production. However, after the successful establishment
of these initial stages, the cost of manufacture can be predicted to

be less than for injectables.149 The polymer-based MAP casting
technique might offer low cost because some polymers, such as
cellulose derivatives, engineering plastics, and sugars, are typi-
cally inexpensive. However, because of reliance onmaster molds
and inherently multi-step filling, handling processes can be
a challenge to scale up. Furthermore, temperature may increase
due to the drying process during the manufacture of vaccine
MAP. Thus, a low-temperature process can be required to pro-
duce thermo-sensitive antigens. Special packaging or desiccants
can be required to increase storage stability, but the addition of
material to protect frommoisture can increase the cost of packa-
ging. Moreover, sterilization also is essential for vaccine MAP.
Even though MAP has a low bioburden, the cost for the aseptic
process should be considered. Also, validation of vaccine MAP
products should be considered as a cost factor. Standardization
of MAPs is also crucial for quality control during manufacturing
and marketing. Manufacturers must develop an effective phar-
maceutical quality assurance system, which must be
a comprehensively designed and correctly implemented accord-
ing to a Pharmaceutical Quality System incorporating Good
Manufacturing Practice and Quality Risk Management.150

Finally, the successful manufacture of vaccine MAP depends
on current guidelines for conventional drugs as well as specific
standards for each type of MAP.151

Some previous studies have mentioned the vaccine MAP
preparation environment. HBsAg D-MAP was fabricated in
an aseptic Grade A isolator in a GMP pilot facility,127 and
influenza C-MAP developed from 3 M’s solid microstructured
transdermal system was produced by a GMP-scalable
process.94 3 M’s proprietary GMP manufacturing and aseptic
coating technology has a capacity of manufacturing up to
10,000 patches per day.152 Lohmann Therapie-Systeme (LTS)
AG and Corium Inc. have manufacturing licenses for MAP

Figure 3. Commercial microneedle array patch (MAP) devices: (a) Onvax by BD, (b) Microstructured Transdermal System (MTS) by 3 M, (c) ZP MAP by Zosano Pharma,
(d) scanning electron microscopic image of ZP MAP, (e) MicroHayla by CosMED Pharmaceutical Ltd., and (f) Nanopatch by Vaxxas.
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patches as drug delivery systems.153 However, companies
usually have not released detailed information about their
manufacturing technology and environment.

A reasonable and affordable price of commercial MAP is
important for successfully launching novel pharmaceutical
dosage forms to the market. However, issues related to mass
production, GMP, and costs during manufacturing are all
challenges currently hindering the development of such inno-
vative products for clinical use. Currently, seven microneedle
manufacturers are developing vaccine applications (see
Table 7).

4.3 Regulatory issues

The most recent document from the U.S. Food and Drug
Administration (FDA) describes a vaccine MAP as a product
that is a combination of a biological product and a mechanical
device. A product is composed of two or more regulatory pro-
ducts. The prefilled syringe, autoinjector, or MAP patch pre-
loaded with a biological product are examples of this type of
product (21 CFR 3.2e).158 A vaccine MAP has been focused on
because of the advantages of MAP. Vaccine and MAP were
combined as a single entity. The regulation of vaccine MAP
should consider the safety and effectiveness questions associated
with each constituent part and the product as the whole (21 CFR
Part 4 Subpart A: sec. 4.4 (b)). A vaccine MAP also should fulfill
the requirements for current GMP and for postmarketing safety
to transition from the laboratory to clinical use.

The National Regulatory Authorities (NRAs) of each coun-
try where the authorized vaccine MAP will be used to require
the extension of current marketing authorization or a new one
because vaccine MAP changes the route of drug administra-
tion. The studies comparing conventional and new vaccine
products could reduce the regulatory steps.159 In low-income
countries, the novel vaccine must be licensed by the NRA,
FDA, or European Medicines Agency, which are following the
essential regulatory functions of the WHO Vaccines Pre-
Qualification Program. Such organizations authorize the use
of suitable vaccines for the target population and the
program.160 Because another advantage of vaccine MAP is

self-administration, regulatory guidelines for the validity and
proper use of self-vaccination will be necessary.148

5. Conclusion

Preclinical studies of vaccine MAP have been conducted in
a wide range of animal models, from rodents to primates.
Various vaccines, including new outbreak pandemic vaccines,
have been tested using the MAP system, and comparable or
superior antibody response has been shown compared to IM
and other routes of vaccination. Clinical studies have also been
conducted to prove the stability, safety, and immunological
efficacy of vaccine MAP, and positive and comparable results
compared to IM administration have been demonstrated.
However, concerns remain about mass production, reasonable
cost, aseptic process, and reproducible quality. Vaccine micro-
needles are a vaccine product, and the standards for the vaccine
product will be applied to the preparation of vaccine micronee-
dles. Therefore, it will take time for the final clinical product of
vaccine microneedles to come out. Furthermore, the need for
a suitable applicator of vaccine MAP and additional packaging
for vaccine MAP are additional cost factors. But several micro-
needle manufacturers with mass-production capabilities have
already developed vaccine MAP in cooperation with vaccine
companies, and improved immunological results have been
reported. If the above-mentioned limitations are overcome, var-
ious vaccines will be incorporated into amicroneedle system and
administered by MAPs. In the near future, MAPs will be used as
a vaccine delivery system together with syringes and needles.
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Table 7. Microneedle manufacturers developing vaccine microneedle array patch (MAP).

Company Type of MAP Vaccine Target Location

Micron Biomedical D-MAP IRV-IPV
Measles

USA

Vaxxas C-MAP154 Influenza Australia

QuadMedicine C-MAP71,82 Influenza Hepatitis B Korea

Vaxess D-MAP155 Influenza USA

Raphas D-MAP156 Tumor Korea

3 M C-MAP94 Influenza USA

JUVIC D-MAP157 scrub typhus Korea

D-MAP: dissolving microneedles, C-MAP: coated microneedles.
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