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We investigated the quality of smoothness during human unipedal quiet stance. Smoothness is quantified by the time rate of
change of the accelerations, or jerks, associated with the motion of the foot and can be seen as an indicative of how controlled the
balance process is. To become more acquainted with this as a quantity, we wanted to establish whether or not it can be modeled as
a (stationary) stochastic process and, if so, explore its temporal scaling behavior. Specifically, our study focused on the jerk
concerning the center-of-pressure (COP) for each foot. Data were collected via a force plate for individuals attempting to maintain
upright posture using one leg (with eyes open). Positive tests for stochasticity allowed us to treat the time series as a stochastic
process and, given this, we took the jerk to be proportional to the increment of the force realizations. Detrended fluctuation
analysis was the primary tool used to explore the scaling behavior. Results suggest that both the medial-lateral and anterior-
posterior components of the jerk display persistent and antipersistent correlations which can be modeled by fractional Gaussian
noise over three different temporal scaling regions. Finally, we discussed certain possible implications of these features such as a
jerk-based control over the force on the foot’s COP.

1. Introduction

)e analysis of human postural control has become more
complex in the past several decades. Still, much of these
efforts study the simple motion of the center of pressure
(COP) which is the point of application of a person’s net
force on the surface supporting the body. Using a force plate
for this surface, one can record force information as a
function of time for a balance session and study, for example,
the COP’s trajectory, range of motion, and velocity [1]. )e
seminal work of Collins and De Luca [2] introduced an
approach to investigate bipedal quiet stance by studying
stabilograms (a two-dimensional plot of the COP’s trajec-
tory) in the context of fractional Brownian motion. )ey
suggested that neuromuscular control can be gleaned from
the temporal correlations in the COP trajectory; over short
time scales, the COP behaved as a positively correlated
randomwalk, and over long time scales, the COP behaved as
a negatively correlated random walk. )ese correspond to

open-loop control and closed-loop control, respectively.
Later, Delignieres et al. [3] clarified issues related to the use
of fractal-based techniques by Collins and DeLuca and
presented an argument as to why postural control is actually
velocity-based rather than position-based [4]. Other
methodological approaches have examined the Lyapunov
exponents of the trajectory of the (sitting) COP [5], eval-
uated the COP trajectory’s information production rate with
sample entropy [6, 7], and investigated the fractal character
of the temporal evolution of the COP [4, 8, 9]. Recently, an
enhanced version of detrended fluctuation analysis with
scaling examined for certain frequency components was
used to suggest that, at least two time scales, long (position
based) and short (velocity based), are involved with postural
control [10].

One-legged stance represents a greater challenge to
humans and thus allows researchers and clinicians to
evaluate the effects of aging health, injury, fatigue, and the
influence of visual information [9, 11–21]. In particular,
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Parreira et al. [11] found significant differences in the
changes in COP movement over certain time intervals be-
tween young adults and elderly subjects. More specifically,
the changes in the area of the COP (Δ A-COP) were cal-
culated and compared for the two age ranges. Δ A-COP
increased with increasing time intervals for both groups;
however, larger Δ A-COP values were reported for the el-
derly subjects. )e authors concluded that there is a time
dependence concerning age-related differences in Δ A-COP.
In another example, Jonsson et al. [22] assessed the temporal
characteristics of the ground reaction force as healthy young
and elderly adults transitioned to one-legged stance from
two-legged stance. Two temporal phases were identified in
their work: a “dynamic phase” during which the force
variability decreased quickly followed by a “static phase”
over which the variability remained at a certain level. )ese
authors found that, over the first five seconds of balance, the
variability decreased significantly more for the young adults
than the elderly. )is was seen to result in lower force
variability for the young subjects for the subsequent phase.

In this paper, we studied unipedal quiet stance as it should
offer structured frequency content beyond that of quiet (two-
leg) stance in that the balance control “mechanism,” as
mentioned above, is more challenged. Our purpose, unlike
many past studies, is to examine the characteristics of the jerk
(the time-rate-of-change of the acceleration) associated with
the motion of the COP.We would like to use it in gauging the
extent to which the balance process is controlled, or “smooth.”
)is is not so dissimilar from examining the force variability
as in [22]. However, we wanted a more detailed view of the
temporal changes in the force to, we feel, better address the
issue of “smoothness.”

As one can gather, characterizing the process of balance
in terms of relevant time scales is of interest as an under-
standing of the COP’s motion is sought. Knowing the
temporal scaling/correlations present and the dynamical
character of the motion may inform one as to what phys-
iological factors could be at play when a particular control
strategy is being employed. However, before looking at the
scaling properties, we wanted to characterize the data as to
its stationary and stochastic qualities to make a general
dynamical statement concerning the jerk. Moreover, our
preliminary work appeared to indicate that the force evolves
as a nonstationary (certain statistical characteristics change
with time [23, 24]) stochastic process. Yet, the increment of
the force (which is directly proportional to the jerk) did
appear to be a stationary process. If this was so, then we
could use the analytical tools available for the study of
stationary time series which are lacking for the nonsta-
tionary case [23, 25, 26]. In addition, we wanted to make
general statements about the stochastic quality of our data
for two main reasons. First, we wanted to be able to establish
whether the temporal evolution of the jerk (our measure of
postural control), while maintaining one-legged balance,
should be modeled by a stochastic process. Such a question
has been raised in the literature [27]. Second, we needed to
be able to interpret any scaling measures in the proper
context. For example, we wanted to be able to distinguish
between chaotic (deterministic) fractal noise behavior [26].

Next, the scaling behavior was addressed. A rather
“coarse-grained” approach was first used that took a root-
mean-square of force differences over a range of time scales.
)is allowed us to examine where scaling regions generally
appear as well as quantify the scaling features in a relatively
simple way. )en, we looked for (long-range) temporal
correlations by performing detrended fluctuation analyses
[28] on the time series for the force increments. With this
method, we could estimate the memory, if present, and
quantify its form via a scaling exponent [29].

Overall, the issue of smoothness is of interest to us as we
not only seek a better understanding of variability during the
process of human balance but also want to eventually in-
vestigate the response of various clinical populations. )is is
important for assessing sensorimotor issues and motor
learning [30]. Moreover, we would like to contribute to the
development of a more nuanced control system for robotic
applications as well [31].

2. The Character of the Data

Force data were collected using a multiaxis force plate
(model OR6-6-2000) built by Advanced Mechanical Tech-
nology, Inc. )is uses a 6-component transducer to measure
three force and three moment components. Measurements
were taken for five adult subjects who each maintained
balance with eyes open looking straight ahead, hands by
their sides, and barefoot, using each leg separately for 30
second sessions. )e ages of these subjects range from 20 to
60 years (mean being 34 years). Prior to any data collection,
all procedures were explained to each participant and
written consent was obtained in accordance with the local
institutional review board policy.

One foot was placed squarely on the force plate while the
other hovered at approximately 30 cm above the plate. )ese
data were sampled at 100Hz producing a time series for the
force generated by medial-lateral (M-L) as well as anterior-
posterior (A-P) sways. We found 100Hz to be an optimal
rate as with a collection time of no more than 30 seconds (we
were concerned about the effect of fatigue on the subjects),
and 3000 data points for each balance session were taken as
adequate [32]. Our estimates for certain statistics did not
change significantly for data sets with at least 1500 mea-
surements over a 30-second balance session. Moreover, with
single-leg balancing, we wanted to be careful to capture any
behavior that might need frequencies higher than those in
the case of bipedal stance. A Nyquist frequency of 50Hz may
seem high for this study; yet, we would like to be careful in
resolving any fractal characteristics which can appear on
short time scales [33, 34].

A typical COP trajectory for a one-leg balance session is
shown in Figure 1. One might note that, in general, it would
appear that the area covered by such a trajectory for the case
of bipedal quiet stance is less, with greater variance in A-P
movement, although there is a similar random character. As
with all the data we study, any linear trend in the M-L/A-P
movement has been removed. One can appreciate the
seemingly complex motion the figure reveals. Figures 2(a)
and 2(b) are plots of typical time series for the forces
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involved in this process. Figure 2(c) is a plot of A-P versus
M-L forces in which no significant correlation is visually
obvious. In fact, linear regression estimates resulting in
significant models using theM-L force data set as a predictor
for A-P force only account for a negligible amount of the
variance (less than 5% on average). For this work, we will
examine A-P and M-L movement data separately.

With the mass of the region of the body under study
being constant and our concern ultimately being with
variations in the jerk, we did not divide by the mass and took
the jerk as simply the time-rate-of-change of the force on the
COP. So, we must be careful to state that the reported jerk is

scaled by mass. Also, data concerning the force were de-
sirable for our study, not only because it was needed to
calculate the jerk, but also it is what our equipment mea-
sured directly. Indeed, the position of the foot’s center of
pressure is derived from force and moment measurements.
Figure 3 shows the jerk corresponding to the plots in
Figure 2. Considering the force data as a realization of a
stochastic process, the jerk was taken as the increment,
Δf � f(i + 1) − f(i), i � 1, . . . , N − 1, divided by the
sampling period (0.0100 s), where f(i) is the ith realization
of the force and N is the number of observations making up
the time series for the forces.

Spatial evolution of the center-of-pressure of the foot
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Figure 1: Typical trajectory of the COP for human one-leg stance.

Medial-lateral force versus time
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Anterior-posterior force versus time
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Anterior-posterior versus medial-lateral force
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Figure 2: (a, b) )ese plots portray an example of the temporal evolution of the force during one-leg stance for the M-L and A-P motions.
(c) )e A-P and M-L forces are plotted against each other. )ere is no apparent visual correlation between them. Typical time series for (a)
the M-L force and (b) the A-P force. (c) A scatter plot of the forces shown in (a) and (b).
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For all time series considered in this work, any transients
were allowed to decay sufficiently before taking estimates as
subjects were allowed 5 seconds to stand on the plate before
data collection began (checking that the power spectral
density did not change significantly). Unlike the work of
Jonsson et al. [22] discussed in Introduction, our analysis is
limited to “steady state” characteristics so as to be well-
defined, given the techniques we are using. Also, we did not
filter the frequency range of the data other than having a
Nyquist frequency of 50Hz and linearly detrending. An-
other important consideration related to temporal evolution
was alluded to the above.)e quality of stationarity concerns
variations in time of the statistics of the time series. We are
referring to wide-sense stationarity by which it is meant that
the mean and autocovariance of the time series do not
change with time [35, 36].

2.1. Stationarity Concerns. In an attempt to eliminate the
simplest time series features which are not of interest for this
study and could lead to nonstationarity, as mentioned above,
all times series under study were linearly detrended. )is
subtracts the best-fit line from the data and allows us to focus
on the fluctuations about this line which contains the in-
formation of interest for this work. Also, we are concerned
with the stationarity of our data in that, as previously
mentioned, we would like to use analytic tools (such as a
power spectral density/autocorrelation function) which
depend on stationarity for them to be well-defined in their
application [23]. Also, it should be noted that, to perform a
detrended fluctuation analysis (presented below), statio-
narity is not required [29, 37].

In Figure 4, one can see the general characteristics typical
of the jerk data, given the treatment described above. )e
power spectral density (estimated using the Welch method
[38]) and the autocorrelation function have been estimated
for the jerk data [39]. )e correlation profiles for jerk with
their rapid falloff do appear to be indicative of stationary
behavior [35]. For greater lag times, linear correlations, as
measured by the autocorrelation function, are subtle at best.

)is may be indicative of aperiodic oscillations (we will
consider this point later in the paper). )e time series for the
force is rather questionable when it comes to the property of
stationarity. Our detrended fluctuation analysis (see below)
provided strong evidence against the force having a sta-
tionary character [29]. If a process is nonstationary, it is
difficult to determine what the autocorrelation function
reveals as this function’s definition assumes process sta-
tionarity [23, 35]. Given this, we feel justified in focusing on
the jerk (the main concern of this work) in order to get the
most reliable information, given the tools we are using. We,
then, did some hypothesis testing in the hope of finding
stronger evidence of stationarity.

First, an Augmented Dickey–Fuller test for stationarity
was performed on jerk data. Here, again, by stationarity, we
mean in the wide- or weak-sense meaning that the mean and
autocovariance of the time series do not change with time.
)is test evaluates the null hypothesis of a unit root existing
in a time series sample using a specific autoregressive (AR)
model for the process [35, 40–42]. As the name implies, an
autoregressive (AR) process is one in which its current value
depends on some linear combination of earlier values plus a
term taking any new information, or “innovation,” (un-
correlated with the other terms) into account [35]. )is
common linear model for time series has well-known
conditions for stationarity [35, 40, 43]. In particular, if the
characteristic polynomial for the AR process has a unit root
(the coefficient of the earliest term in the linear combination
for the AR process being 1), the process is nonstationary
[43]. So, the null hypothesis for this test is that the char-
acteristic equation for the model AR process has a unit root.

)en, a least-squares regression is performed on the jerk
data. )e form of this regression is dictated by the AR model
for the data which requires a certain number of earlier
process values to be taken into account (we followed the
literature in this regard). )en, the coefficient for the earliest
term is tested for. Regarding our data, this test indicates that
there is evidence to suggest that these time series are sta-
tionary, at least, in the wide-sense. All test critical values
were surpassed for each time series with the probability

Medial-lateral jerk versus time
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Figure 3: (a, b) Typical examples of the jerk during one-leg stance showing both the M-L and A-P motions. One statistical characteristic of
note is that, on average, the standard deviations for the M-L and A-P jerks are 85 N/s and 65N/s, respectively. Typical time series for (a) the
M-L jerkand (b) the A-P jerk.
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value, p< 0.001. )is test’s statistics also indicated that the
data do not have any deterministic trends linear in time that
could be removed, i.e., trend stationarity [35] (see the ref-
erences for a complete description of this hypothesis test).

In addition to the Augmented Dickey–Fuller test, the
Phillips–Perron test for stationarity was also used [44]. )is
is also a unit root test using statistics similar to those used in
the Dickey–Fuller test. However, serially correlated errors in
the regression process are handled differently. We will let the
reader refer to the literature for more information. Overall,
all time series were tested and, again, there was significant
evidence to suggest that the jerk data are stationary without
any deterministic trends linear in time with p< 0.001.

Moreover, as suggested in [26], wide-sense stationarity
was also tested for by breaking each series into two non-
overlapping pieces and estimating the correlation dimension
for each in the limit of small threshold distance. In simple
terms, the correlation dimension is a measure of how system
values are distributed in phase space [45]. )is was done
using the usual procedures found in the literature
[26, 34, 46, 47]. We found that the dimension for each piece
did not vary significantly. ()is was true for each of four
embedding dimensions.) )en, in addition, we proceeded to
perform this test on smaller pieces of each series with the
same results. )is was not performed as a hypothesis test but
as an informal check.

2.2. Machine Noise. Machine noise was gauged by exam-
ining force data generated for a dormant mass of 20 kg. We
chose a moderate mass so as to put the force plate under
some load while attempting to still have some indication of
the effect of machine idle noise. )eM-L and A-P signals for
the mass both have standard deviations no higher than 0.2N
(several trials were run for the dormant mass), whereas the
average standard deviations for the M-L and A-P signals for
the subjects are 4N and 3N, respectively.

Given that the stationarity of the jerk signals has been
established above and gauging that the machine noise was
white for the force and, thus, stationary (along with its
increment), a well-defined power spectral density (again,
using the Welch method [38]) was generated to compare the
strengths of the signal and the noise. Figure 5 shows a typical
situation. )e signal strength of the jerk was well distin-
guished from that of the machine noise for frequencies
under 10Hz. So, we decided to limit the time scales of the
study to larger than 0.100 s (under 10Hz).

2.3. SurrogateDataTesting. As mentioned above, we wanted
to gain insight into the stochastic and dynamical characters
of the time series. For this, we used linear surrogate tech-
niques. For a given set of data, a surrogate data set may be
generated. Although different from the original data, the
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Figure 4: (a, b))e power spectral densities for a subject’s M-L and A-P jerk signals. (c, d) Corresponding autocorrelation functions plotted.
)e horizontal lines indicate 95% confidence bounds. In this case, the relatively rapid falloff of the autocorrelation functions to such small
values is indicative of stationary signals. )ese qualities are generally representative of the jerk data. Power Spectral density of (a) M-L jerk
and (b) A-P jerk. (c) Autocorrelation function for (c) M-L jerk and (d) A-P jerk
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surrogate sets are generated in a way that preserves key
properties of the original data. )is methodology is ap-
propriate for our stationary data in that periodicity and far
reaching trends did not appear to be present (quasiperi-
odicity could certainly play a role) [24]. We used what are
known as Algorithm 0 (testing surrogate time series gen-
erated by randomly shuffling the original time series) and
Algorithm 1 (testing surrogates constructed using Fourier
transforms of the original time series) [24]. We used these
two algorithms as for this study we wanted to test primarily
the stochastic character of the data to establish the context
for properly interpreting any scaling behavior. Any data for
which the null hypotheses of Algorithm 0 and 1 can be
rejected will be considered questionable at this point (we
have pursued testing through Algorithm 2 [24], however
with unclear results so far and studies will continue (possibly
as in [48])).

We must then choose and calculate a discriminating
statistic for the original and surrogate data and, using sta-
tistical techniques, see how well these results compare. )is
will allow us to determine whether or not a null hypothesis
can be rejected. Sample entropy, a measure of complexity of
the time series, was used for the discriminating statistic
[6, 49]. Sample entropy measures the complexity by con-
sidering the probability that if subseries, or template vectors,
of a certain length m, are within a certain distance, or
tolerance, then so are template vectors of length m + 1. We
compared template vectors of lengths 3 and 4 data points
(median sample entropy was seen to converge at these values
for force and jerk data). )e unitless tolerance value was
varied from 0.20 to 0.60 of the standard deviation of the data
set being tested (examining the median maximum relative
error, which aids in determining the optimal tolerance value,
indicated the comparable error for this tolerance range). For
the hypothesis testing, consistent results for this range of
tolerances were taken. For a careful discussion of this topic,
refer to [6, 7]. A rank-order criterion was used to determine
if the null hypothesis for a specific test was to be rejected or
not [24]. By this standard, the null hypothesis is to be
rejected if the discriminating statistic’s value for the original
data is higher or lower than any of the statistic’s values for

the surrogates. To maintain a confidence level of, at least,
95%, 20 surrogates were tested for each original time series.

Algorithm 0, as mentioned above, was affected by
randomly permuting the time series values, thus destroying
any linear correlations. )en, the null hypothesis is that
there is not a statistically significant difference between the
data and uncorrelated (independent and identically dis-
tributed (IID)) noise [24]. )e null hypothesis failed to be
rejected at the 95% level for data sets corresponding to A-P
movements for three subjects. )ese data are suggested to
have the character of uncorrelated noise. Figure 6 shows an
example of relevant information rather typical of this sit-
uation. )e tests for all other data sets showed significant
evidence to reject the null hypothesis under Algorithm 0.
)ese data were then tested under Algorithm 1.

Under Algorithm 1, the linear correlations of the original
data are preserved. )is is done through taking a Fourier
transform of the original time series and randomizing the
phases and leaving the amplitudes unaltered [24]. Surrogates
are generated by taking the inverse transform back to the
time domain. )ese surrogates are consistent with the null
hypothesis of data being linearly filtered IID noise. )is
algorithm does not preserve the underlying probability
distribution of the data, and there is a concern of falsely
rejecting the null hypothesis. In an effort to avoid this, the
precision of the data has not been limited (the data have not
been coarse-grained) as to attempt to keep the number of
unique time series values the same for the original and
surrogate data [24]. Figure 7 shows typical results for
original time series data tested using Algorithm 1 and in this
case, the null hypothesis was not rejected. )is was true for
three subjects in the case of M-L movements and for three in
the A-P case. Data for which tests found evidence to reject
the null hypothesis are considered questionable at this point,
and further examination is required. It is interesting that a
portion of the questionable data has non-Gaussian proba-
bility distributions (strong fat tails are observed). Overall,
the purpose for this hypothesis testing was to mainly check
whether the underlying behavior is indicative of a stochastic
signal so that our main goal of exploring temporal scaling
behavior has proper context.

As a final, and somewhat informal, check for stochas-
ticity, we estimated the correlation integral to see if it scales
with the embedding dimension for each data set. For this, the
correlation sum, C(r), was used as the estimator. Given N
data values in some embedding space of dimension, m, this
sum is given by

C(r) �
2

N(N − 1)
􏽘

N

j�1
􏽘

N

i�j+1
Θ r − rij􏼐 􏼑, (1)

where Θ is the Heaviside function and rij is the distance
between the ith and jth data points [26].)is distance is given
by some norm (we will use the Euclidean norm). With this,
C(r) gives the proportion of pairs of points that fall within
the distance, r, of one another [45]. As N⟶∞, it con-
verges to the correlation integral. For a stochastic system,
C(r) ∼ rm for large N [50]. As mentioned earlier, calculating
C(r) was done using the usual procedures found in the
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limit our study to frequencies under 10Hz.
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literature [26, 34, 46, 47]. Figure 8 gives a visual summary of
the scaling behavior, for example, M-L and A-P data sets.
Scaling indicative of stochastic behavior underlying the data
is seen. Regressions performed for the correlation sums of
eight other time series (primarily for A-P motion) produced
such convincing results. For the other data not being used
for this study, the stochastic behavior was not so strongly
indicated (more testing needs to be done).

From this point on in our study, we will only be con-
sidering the data sets which fall in one of two categories: ones
for which surrogate testing found the null hypotheses unable
to be rejected for Algorithm 0 or 1—either being consistent
in character to IID noise or linearly filtered IID noise. )ese
also have the additional positive check for stochasticity
discussed above. )is leaves the study with three data sets
(one M-L set and two A-P sets) under the criterion for
Algorithm 0 and six data sets (three M-L sets and three A-P
sets) under the criterion for Algorithm 1.

3. Scaling Behavior

3.1.ABrief Lookat theRMSJerk. In an effort to gain a general
appreciation for movement smoothness and any temporal
scaling behavior for our work, we first examined the

dimensionless root-mean-square (rms) jerk over a range of
time scales. Inspired by the discussion in [30], we defined the
RMS jerk for a realization of a discrete set ofN force values as

�J
c
(τ) �

〈Jc(τ)〉
max 〈Jc(τ)〉( )

, τ � nTs,

〈Jc
(n)〉 �

1
N − n

􏽘

N− n

i�1
J

c

i (n)
2⎡⎣ ⎤⎦

1/2

,

(2)

where

J
c
i (n) �

f
c
i+n − f

c
i

nTs
, (3)

τ is the time scale over which the average is taken, Ts is the
sampling period, n is an integer such that n<N, c indicates
M-L or A-P motion, and f is the force. Note that our version
of the rms jerk is normalized such that its maximum value is
1.00 (max(〈Jc(τ)〉) is taken over τ for a given realization of
a set of force values).

)e results of a visual investigation of the rms jerk are
summarized in Figure 9. For data with a bounded set of force
differences, the falloff seen in a linear-linear plot of the rms
jerk is to be expected as, on average, motion becomes
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Figure 6: Typical characteristics for data tested using Algorithm 0 with the null hypothesis failing to be rejected. (a) )e original A-P time
series tested and (b) its corresponding power spectral density. (c) )is is a quantile-quantile plot of the original data indicating that these
data follow a fairly normal distribution with some asymmetric tail deviation. (d) A rank-ordered criterion was applied for Algorithm 0
(using 21 surrogate data sets) and, as seen here, for this test, there was a failure to reject the null hypothesis. Sample entropy (with a tolerance
0.20 of the standard deviation of the data values) was used in this case. )is suggests that the original time series has the character consistent
with IID noise. )e power spectral density is relatively flat.
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smoother for longer time scales. Certainly, the rms jerk
provides a rather coarse view of force variations simply by its
construction. Again, we used this approach to provide
mainly an overall take on the jerk. In particular, Figure 9
shows two typical cases (linear-linear along with corre-
sponding log-log plots) in which a particular “interesting”
span of time common to all data sets is denoted. )e lower
bound, about 0.1 s, has been chosen as a temporal limit due
to machine noise discussed earlier. )e upper value of 1.0 s
has been taken through inspection to be a time scale at which

a transition takes place to a region in which the magnitudes
of the jerk and force change relatively slowly. )e exact
profile of this region does depend on the subject as scaling
properties vary; yet, the gross behavior is quite similar. )e
“interesting” region is so-named as it contains varying rates
of change for the magnitudes of the jerk and force. As for the
region of time scales beyond 1.0 s, the bulk, but not the fine,
structure is similar for all subjects. )is is not to say that this
region will not be useful to study. Indeed, informative
scaling information for this region is discussed below. It is
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Figure 7: Typical characteristics of data tested using Algorithm 1 with the null hypothesis failing to be rejected. (a) )is is an original A-P
time series that was tested and (b) its corresponding power spectral density. (c) Quantile-quantile plot of the original data: this indicates that
these data follow a fairly normal distribution with a tendency toward fat tails. (d) Again, as with Algorithm 0, a rank-ordered criterion is
applied and, here, a failure to reject the null hypothesis is indicated. Sample entropy (with a tolerance 0.20 of the standard deviation of the
data values) was used. )is corresponds to the original time series having a character consistent with linearly filtered IID noise. (e, f ) )e
power spectral density does show an interesting falloff. )e probability distributions for the original and, respectively, one of the surrogates
are displayed. )ey are different as they are expected to use Algorithm 1. However, the difference, at least visually, is not too drastic (as
mentioned in the text, this has to do with worries of falsely rejecting the null hypothesis under Algorithm 1, although, in this particular case,
it is not a concern [24]).
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simply that linear regression of each of the log-log plot’s
“interesting” regions indicates not only more than one scaling
exponent but also significantly different exponents for each
data set. Scaling behavior regarding temporal correlations
over these regions as well as those beyond the 1.0 s scale will be
explored in Section 3.2 using detrended fluctuation analysis.

3.2. Detrended Fluctuation Analysis. )e temporal correla-
tions we are interested in exploring can be seen to be related
to its scaling properties referred to above. In particular,
physiological signals can display scale invariance [51]. )is
happens when, for example, a time series structure occurring
over some time interval also occurs over intervals of other
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Figure 8: (a, b) Examples of scaling behavior for the correlation sums forM-L and A-P data using the log − log plots. Linear regressions were
performed at the 95% level of confidence showing that the correlation sum scale with the embedding dimensions very well in these cases.
)is is indicative of stochastic behavior underlying these data.
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Figure 9: Examples of rms jerk data are plotted as a function of time scale along with the corresponding log-log plot for better visual
suggestion of scaling behavior. In general, each depiction is fairly typical of all of the data in terms bulk features concerning shape. A
particular range of time is denoted “interesting” in which scaling behavior needs to be explored for each data set. Linear regression of these
profiles does not indicate common scaling parameters for such fine-grained features. (a) A-Pmovement data. (b) log-log plot of values in (a).
(c) M-L movement data. (d) log-log plot of values in c.
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sizes. So, for a time-dependent signal, f(t), f(λt) � λαf(t)

where α is considered a scaling parameter or exponent
[28, 52].Wewould like to examine such behavior for our data.

In short, detrended fluctuation analysis (DFA) is a
technique which is useful for exploring temporal correla-
tions [28, 29]. With this method, the time series with N
samples is integrated. )en, the resulting series, x(i){ }, is
broken up into a set of non-overlapping windows each
consisting of n points. A (least squares) linear fit is per-
formed over each window to reveal the local trend, xn(i), for
each window.)e root-mean-square average of the residuals
is calculated giving the rms fluctuation:

F(n) �

����������������

1
N

􏽘

N

i�1
x(i) − xn(i)( 􏼁

2

􏽶
􏽴

. (4)

)is calculation is done for all time scales, n [47]. How
these average fluctuations scale with n (F(n) ∼ nα) presents the
character of temporal correlations found in the original time
series. DFA can be applied to a variety of signals including
those with a stochastic fractal nature which may be stationary
or not. For example, the scaling may be indicative of fractional
Brownian motion (fBm) or fractional Gaussian noise (fGn)
[29, 33, 53]. Given our positive tests for stochasticity discussed
above, the results of the DFAwill be interpreted in this context.
For the scaling exponent, α (the slope of the log (F (n)) − log (n)
plot), the following holds [54, 55].

(i) α � 0.5 indicates a signal of white noise or an in-
tegrated signal which corresponds to a random
walk.)e autocorrelation relation is 0 for this signal.

(ii) 0.5< α< 1 corresponds to a positively correlated
(power law) or persistent (stationary) fGn signal.
)is means that increases (decreases) in the signal
will, on average, be followed by increases
(decreases).

(iii) 0< α< 0.5 corresponds to a negatively correlated
(power law) or antipersistent (stationary) fGn sig-
nal. So, increases (decreases) in the signal will, on
average, be followed by decreases (increases).

(iv) α � 1 is indicative of pink noise.
(v) α> 1 corresponds to fBm, a nonstationary signal

with correlations but not of power law form.
(vi) α � 1.5 indicates Brownian motion.

Figure 10 offers two typical examples of DFA for our
data. DFA profiles for M-L and A-P jerk and associated force
data are shown. )ree common temporal scaling regions
were revealed with 0.160 s being the limit of resolution for
the analysis (clearly above the limit imposed by issues with
machine noise). )e scaling boundary values, 0.20 s and
1.00 s, were found by visual inspection and are, therefore,
approximate, yet, certainly fall in or very close to regions of
the scaling transition observed in all of the data. )e power
spectral density (PSD) for jerk data (again, estimated using
Welch’s method [38]) is presented in Figure 11 to serve as
visual confirmation of the existence of the transitions, given

the obvious changes in the scaling behavior of the PSD with
frequency [23]. )e same transition structure can be noted
for the DFA concerning the force (Figures 10(b) and 10(d)).
Given its nonstationary character, we would like to reserve
anymore comment other than to say that a scaling transition
at the 1.00 s mark is robust among the force data and that the
DFA indicates behavior corresponding to fBm for time
scales under 1.00 s.

)e 1.00 s scale does mark a scaling transition as sug-
gested in our smoothness analysis. )e 0.20 s scale revealed
itself through DFA. We will label the region for which the
time scales are less than 0.20 s Region 1, Region 3 will
correspond to scales above 1.00 s, and Region 2 denotes the
interval in between the other two. As shown in Table 1, the
scaling exponents found for Region 1 for the jerk data are
primarily characteristics of persistent fGn for the sets
concerning M-L movement, thereby indicating correlated
changes in force over time (Table 2, presented in Appendix,
lists the F-statistics associated with the linear regressions
performed to find the exponents). With exponents also
corresponding to fGn, the exponents seen for Region 2
correspond to anticorrelated, (what could be argued to be)
uncorrelated, and correlated behaviors. So, one may or may
not measure a persistent-to-antipersistent or persistent-to-
uncorrelated crossover near the 0.20 s time scale. Also, it is,
obviously, difficult to generalize concerning the changes in
force on these time scales. Region 3 has relatively low value
exponents indicative of anticorrelated fGn. Perhaps, such
low exponent values of the third region suggest some pe-
riodic trend as studied in [56] in which a flat DFA profile was
seen to be indicative of a sinusoidal trend. However, this
would violate the time series’ stationary character which was
successfully tested for. Still, possibly quasiperiodic behavior
exists as a low exponent value is indicative of a slowly
varying accumulation of fluctuations which could be found
with a quasirecurrent signal structure. )is would, then,
correspond to a quasioscillatory force.

4. Discussion

Overall, for a sizable subset of our total data set, we have
found behavior strongly suggestive of fGn for the jerk as-
sociated with human one-leg stance. )at is, the jerk data
under study have been found to be stationary and stochastic
with persistent and antipersistent behavior. In the least,
these findings suggest, as Collins and De Luca concluded (for
bipedal quiet stance) that the system of postural control
could be modeled as a stochastic process [27, 57]. Also, the
quality of stationarity implies that (after transients) the jerk
is constant in variance. )is is interesting as the unipedal
balance study presented in [22] mentioned in our intro-
duction section recognized a long-term “static phase” for all
of their subjects during which force variability remained at a
certain level. Our results suggest that the force increments
display such behavior, whereas the force exhibits non-
stationarity (variance can be time-dependent). )is can be
seen to make sense for the generally steady balance sessions
we observed if steadiness is defined in terms of the jerk and
its variability.
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Moreover, three temporal scaling regions common to our
data have been identified (Table 1). For both A-P and M-L
movements, the fastest time scale corresponds to behavior with

persistent correlations while the slowest corresponds to anti-
persistent motion. Between these time scales, we find behavior
indicative of persistent, antipersistent, and (suggestions of)
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Figure 10: Typical fluctuation profiles generated by performing a detrended fluctuation analysis on our data. Temporal scaling regions
common to all data are shown. (a and c) Results for M-L and A-P jerk data, respectively, indicating these realizations are characteristics of
(stationary) fractional Gaussian noise.)e 95% confidence bounds included on the plot yet are barely visible. Moreover, for the analysis seen
in (a), one can argue that a crossover from persistent to antipersistent behavior is made at the time scale of 1.00 s. )is is true for other jerk
data (Table 1) for both the time scales, 0.20 s and 1.00 s. (b, c) )e results of the DFA for the force corresponding to the jerk. )ese plots
correspond to a character of (nonstationary) fractional Brownian motion for the shorter time scales. (a) Example of DFA for M-L jerk data.
(b) DFA for M-L force corresponding to the jerk analyzed in (a). (c) Example of DFA for A-P jerk data. (d) DFA for A-P force data
corresponding to the jerk analyzed in (c).
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Figure 11: Plots of the power spectral densities typical of our jerk data. A simple visual inspection confirms the existence of transitions
between regions of differing temporal correlations particularly for the time scales discussed above. )e power spectral density for (a) M-L
data and (b) A-P data
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uncorrelated behaviors with no obvious patterns concerning
A-P andM-Lmotions (no obvious tendency for onemotion to
favor one type of correlation). Given earlier studies of postural
stance, it is not surprising to find such scaling behavior. Duarte
and Zatsiorsky[58] found long-range correlations over various
time scales in the case of bipedal stance, however over time
scales much longer than those considered for our work. In our
case, given the small size of the fastest scale, onemay claim that
this is a region of autonomic activity, whereas for the longest
scales, voluntary muscle behavior is in play [59]. So, it may be
that fast persistent jerks, or changes in force, occur along with
relatively slow antipersistent jerks possibly indicative of a
quasiperiodic “to and fro” motion alluded to earlier in this
paper (we did attenuate certain frequencies and narrow fre-
quency bands in the time series and found no significant
resulting change in the DFA that would clearly indicate an
outstanding periodic oscillation was present; indeed, such an
oscillation should lead to a detectable violation of the statio-
narity condition [26]). Also, the temporal scale bridging the
fast and slow scale extremes is interesting.)is region’s scaling
character, with cases of persistence, antipersistence, and un-
correlated behaviors (Table 1), is not consistent among the data
and is certainly in need of better understanding. )is may
follow a better overall understanding of the underlying
mechanism which drives the data.

In addition, any crossover between persistent and
antipersistent behaviors arouses curiosity. In a study about

human quiet standing by Delignieres et al. [4] in which the
work of Collins and de Luca [2] is revisited, the crossover
behavior seen regarding the differenced time series of COP
data implied a velocity-based control strategy being used for
postural sway. In this spirit, our differenced time series of
force data (which, again, are directly proportional to the
jerk) may play a role similar to that of the differenced COP
data of the study just mentioned. A transition from per-
sistence on one set of time scales to antipersistence on longer
time intervals implies that the data are bounded [60]. So, for
our data for one-leg stance, one could see the jerk evolving
between upper and lower limits which correspond to a
control on the changes in force over time. On one set of time
scales, force increments are positively correlated, whereas on
longer time intervals, force increments become anti-
correlated. )is idea of a jerk-based control needs further
study and will be pursued in the near future.

It is also interesting to question whether the jerk is
related to trembling; movements away from a reference
position about which the body would attempt to maintain
equilibrium [61]. Zatsiorsky and Duarte found evidence
supporting the idea that trembling along with the motion of
the reference point corresponds to reasons why the body
sways during bipedal quiet stance. )ey also found trem-
bling to be a “high frequency process” in light of other
relevant time scales and correlates with the horizontal
ground reaction force. Trembling has been quantified as a

Table 1: )e results of the detrended fluctuation analysis.

Dataset Region 1 Region 2 Region 3
No. Movement Exponent R2 Exponent R2 Exponent R2

1 A-P 0.97 0.995 0.57 0.998 0.016 0.700
2 A-P 0.76 0.991 0.56 0.996 0.034 0.820
3 A-P 0.90 0.998 0.42 0.998 0.016 0.519
4 A-P 0.95 0.996 0.63 0.997 0.039 0.698
5 A-P 0.63 0.998 0.40 0.993 0.050 0.627
6 M-L 0.80 0.991 0.35 0.988 0.029 0.775
7 M-L 0.94 0.992 0.77 0.993 0.042 0.410
8 M-L 0.95 0.996 0.78 0.988 0.025 0.751
9 M-L 1.15 0.996 0.544 0.995 0.007 0.363
Scaling exponents are shown for each of the three scaling regions. )ese exponents were found using linear regression to 95% confidence limits. For each fit,
the p value < 0.05 (the F statistics are presented in Appendix). )e relevant fit statistics are listed. Also, notice that crossovers from persistence to
antipersistence can be found between various regions. Region 1: 0.10 s< t< 0.20 s; Region 2: 0.20 s< t< 1.00 s; Region 3: t> 1.00 s.

Table 2: )e F-statistics associated with the regressions used in the detrended fluctuation analysis.

Dataset Region 1 Region 2 Region 3
# Movement F-statistic F-statistic F-statistic
1 A-P F (2, 9)� 1290 F (2, 14)� 5540 F (2, 23)� 49.0
2 A-P F (2, 7)� 530 F (2, 12)� 2550 F (2, 14)� 54.7
3 A-P F (2, 6)� 2220 F (2, 13)� 5200 F (2, 14)� 13.0
4 A-P F (2, 6)� 1030 F (2, 13)� 3590 F (2, 14)� 27.7
5 A-P F (2, 7)� 423 F (2, 12)� 1500 F (2, 14)� 22.9
6 M-L F (2, 8)� 641 F (2, 12)� 837 F (2, 18)� 55.0
7 M-L F (2, 8)� 758 F (2, 9)� 956 F (2, 18)� 11.1
8 M-L F (2, 8)� 1590 F (2, 9)� 558 F (2, 15)� 48.3
9 M-L F (2, 9)� 1750 F (2, 10)� 1590 F (2, 26)� 13.7
Region 1: 0.10 s< t< 0.20 s; Region 2: 0.20 s< t< 1.00 s; Region 3: t> 1.00 s.
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deviation from an instantaneous equilibrium point deter-
mined during A-P sway [61]. Although the work of these
authors corresponds to bipedal quiet stance, we find that a
brief comparison with their results to be interesting. )eir
power spectral density for average trembling indicates ac-
tivity mainly between 0 and 2.0Hz (with a peak at ap-
proximately 0.40Hz).)is range overlaps Regions 2 and 3 of
our study for A-P motion encompassing the transition from
higher to lower DFA exponents with the larger exponents
close in scaling to that of white noise to negatively correlated
noise. In fact, the region corresponding to negatively cor-
related noise may correspond to a quasiperiodic oscillation
as mentioned above (the autocorrelation function, such as in
Figure 4(d), may suggest this behavior with marginal qua-
siperiodic long-range correlations—more investigation is
needed). Any wavering, or “pendulum-like” motion, asso-
ciated with trembling may be related to the jerk on these
time scales [61].

Overall, efforts such as more extensive surrogate data
testing are needed (in particular, for nonstationary data)
with the goal of being informed as to the specific nature of
this mechanism rather than only the general character
(stochasticity and stationarity) which satisfied the require-
ments of this study. Additionally, a simple (autoregressive)
model of the behavior we have observed needs to be de-
veloped to test ideas concerning that underlyingmechanism.
)ese efforts are currently in progress.

Data Availability

)e jerk and supporting force data (in ∗.xlsx format) used
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in the Computational and Mathematical Methods in
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this study can also be accessed by contacting the corre-
sponding author at matthew.semak@unco.edu.
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