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Insertion variants missing in the human
reference genome are widespread among
human populations
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Abstract

Background: Structural variants comprise diverse genomic arrangements including deletions, insertions, inversions,
and translocations, which can generally be detected in humans through sequence comparison to the reference
genome. Among structural variants, insertions are the least frequently identified variants, mainly due to
ascertainment bias in the reference genome, lack of previous sequence knowledge, and low complexity of typical
insertion sequences. Though recent developments in long-read sequencing deliver promise in annotating
individual non-reference insertions, population-level catalogues on non-reference insertion variants have not been
identified and the possible functional roles of these hidden variants remain elusive.

Results: To detect non-reference insertion variants, we developed a pipeline, InserTag, which generates non-
reference contigs by local de novo assembly and then infers the full-sequence of insertion variants by tracing
contigs from non-human primates and other human genome assemblies. Application of the pipeline to data from
2535 individuals of the 1000 Genomes Project helped identify 1696 non-reference insertion variants and re-classify
the variants as retention of ancestral sequences or novel sequence insertions based on the ancestral state.
Genotyping of the variants showed that individuals had, on average, 0.92-Mbp sequences missing from the
reference genome, 92% of the variants were common (allele frequency > 5%) among human populations, and
more than half of the variants were major alleles. Among human populations, African populations were the most
divergent and had the most non-reference sequences, which was attributed to the greater prevalence of high-
frequency insertion variants. The subsets of insertion variants were in high linkage disequilibrium with phenotype-
associated SNPs and showed signals of recent continent-specific selection.

Conclusions: Non-reference insertion variants represent an important type of genetic variation in the human
population, and our developed pipeline, InserTag, provides the frameworks for the detection and genotyping of
non-reference sequences missing from human populations.
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Background
Structural variants (SVs) are defined as genomic rear-
rangements with event sizes greater than 50 bp, includ-
ing deletions, insertions, inversions, and translocations,
relative to the reference genome [1]. As the human ref-
erence genome comprises few individuals of European
ancestry and is represented as linear haploid sequences,
comprehensive detection of SVs based on comparison of
sequencing reads with the reference genome is limited
[2]. Among SVs, long insertions (> 50 bp) relative to the
reference genome are least well-identified owing to the
ascertainment bias in the detection of variants that exist
in the reference genome. Moreover, the complete se-
quences of the insertion variants are typically unknown
in priori; therefore, reads originating from the insertion
variants end up as unalignable. De novo assembly of
unalignable reads may lead to better insertion mapping;
however, the low complexity of typical sequences makes
this challenging. In addition, insertion SVs represent a
mixed set of novel insertions in the human genomes and
retention of ancestral sequences in the reference genome
[3]. Although the recent development of long-read se-
quencing has expanded the catalogue of long insertion
variants [4], its applicability remains limited to a small
number of individuals and not in population scale.
Non-reference insertion SVs have been classified as

missing human genome sequences [5], novel sequence
insertions [6], non-repeat non-reference (NRNR) se-
quences [7], or non-reference unique insertions [8], all
of which represent insertion variants relative to the ref-
erence genome. The number of identified variants with
breakpoint resolution ranges from 720 to 3791, which
totals to 1.2–2.1 Mbp of additional segments [5, 7, 8];
64–95% of non-reference insertion SVs are detected in
non-human primate genomes, which suggests that these
mostly represent deletions of ancestral sequences, in-
cluding deletions from the reference genome [7, 8]. In a
study that compared the human reference genome to
the reference sequences of non-human primates, 571
non-reference insertion variants (1.55 Mbp) were segre-
gated as biallelic among human populations [9]. Despite
their potential importance, no population-level catalogue
of non-reference insertion SVs has been compiled to
date; therefore, the distribution of these variants among
human populations and those that potentially affect ad-
aptations and phenotypes remain unreported.
To systematically identify non-reference insertion SVs

among human populations, we developed a pipeline,
InserTag, which generates non-reference sequence con-
tigs based on the local de novo assembly of unmapped
reads and then infers the complete sequences from mul-
tiple reference genomes. By applying the pipeline to
2535 individual genomes from 26 populations from the
1000 Genomes Project (1KGP), we identified a set of

1696 high-confidence non-reference insertion SVs, of
which 82.4% were traced to non-human primate ge-
nomes and the remaining were traced to other human
genome assemblies. We observed that non-reference in-
sertion SVs are common among human populations and
more than half of the variants are major alleles, which
indicates that the absence of the variants in the reference
genome represents minor alleles. Among human popula-
tions, African populations have the greatest number of
non-reference sequences owing to high retention of an-
cestral sequences compared to other continental groups.
Our data also showed that the subsets of variants were
in high linkage disequilibrium (LD) with phenotype-
associated single nucleotide polymorphisms (SNPs), in-
cluding those related to education attainment and age at
menarche. Furthermore, certain variants showed signs of
continent-specific selection in each continental group
and were related to the genes with immunologic and
metabolic functions, with the possible involvement of
local adaptation. Addition of these non-reference inser-
tion variants to the catalogue of human genetic varia-
tions could enhance our understanding of the variants
that affect the phenotypes and adaptations among hu-
man populations.

Results
Discovery, tracing, and genotyping of non-reference
insertion SVs
To identify the sites of non-reference insertion SVs and
the complete sequences of the inserted segments, we de-
veloped a pipeline, called InserTag, which is comprised
of three steps: discovery, tracing, and genotyping. In the
discovery step, a set of discordant paired-end reads
(PERs), in which one end is anchored to the reference
genome and the other end is unmapped or mapped dis-
cordantly, was selected. The PERs were clustered into a
local set, and de novo assembly of these local reads was
performed separately for each strand. The resultant con-
tigs, which we have referred to as insertion-tags, con-
sisted of local reference sequences, breakpoints, and
partial insertion sequences. Two insertion-tags from op-
posite strands were paired if they were within two stand-
ard deviations of the mean insert length, which is
suggestive of a putative insertion segment between the
two insertion-tags (Fig. 1 (a)).
Paired insertion-tags are typically of adequate length

to map uniquely to other genomes. In the tracing step,
complete sequences of the inserted segments within the
paired insertion-tags were inferred from non-human pri-
mate genomes or other human genome assemblies [3, 5]
(Fig. 1 (b)). For tracing, the syntenic regions were identi-
fied using flanking reference sequences. Next, partial se-
quences of the inserted segments were aligned in
conjunction with the flanking sequences. After the
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discovery and tracing steps, the insertion sites and full
inserted sequences were catalogued. In the genotyping
step, the genotypes of these catalogued insertion variants
were computed from other sample genomes. Sequencing
reads from sampled genomes were aligned to both the
reference allele (without insertions) and the non-

reference insertion allele. Based on the alignment score,
the best-supported allele for each read was decided upon,
and the genotype of the variant was calculated based on
the read-depth ratio of the supporting reads (Fig. 1 (c),
Additional file 1: Figure S1). As mutations around the
breakpoint of each genotyped individual could alter the

Fig. 1 Overview of InserTag. a In the discovery step, discordant paired-end reads of the sample genome are clustered according to the location
of anchored reads on the reference genome, and local de novo assembly is performed for each strand. The assembled contigs, called insertion-
tags, consist of flanking reference sequences (gray bars), breakpoints, and partial inserted sequences (red and blue bars). If two insertion-tags are
close and placed on opposite strands facing each other, then a putative insertion event is suggested to have occurred between the paired
insertion-tags. b In the tracing step, each segment of paired insertion-tags is aligned to the target genomes, including non-human primate
genomes, other human assemblies, and databases of human unmapped contigs, to trace the full insertion sequences. c Using the location of the
insertion in the reference genome and the traced inserted sequences, both reference and non-reference insertion alleles are generated. The raw
sequencing reads of the sample genome are aligned to these alleles, and the best-supported alleles are selected based on the alignment score.
Using the read-depth ratio of supporting reads of each allele, the biallelic genotypes of non-reference insertion SVs are determined
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alignment score, in the genotyping step, we only used vari-
ants with lengths greater than the read length.
We validated the InserTag pipeline using three ap-

proaches. First, we simulated genomes with insertions of
various lengths that were either unique or non-unique
(i.e., comprising transposable elements and other repeat
variations, see below) to the inserted genome. The sensi-
tivity of detecting simulated insertion variants by the
paired insertion-tags was 86.6% for unique insertions
and 84.6% for non-unique insertions. The false discovery
rate (FDR) was 0.5% for unique insertions and 1.2% for
non-unique insertions, which was similar or superior to
those of other similar local de novo assembly methods
such as ANISE [10], MindTheGap [11], and PopIns [12].
In particular, our method was typically more than twice
as sensitive to non-unique insertions (Additional file 1:
Figure S2a and Additional file 2: Table S1). In terms of
the accuracy of the identification of the breakpoints of
simulated variants by the paired insertion-tags, InserTag
had better performance than other methods, with ap-
proximately twice the number of precisely positioned
breakpoints (Additional file 1: Figure S2b). Next, we ap-
plied InserTag to real sequencing data from eight indi-
viduals with non-reference insertion SVs confirmed by
fosmid clone sequencing [5]. Among the 213 available
clones with non-reference insertion SVs, 107 were dis-
covered and traced by InserTag (sensitivity 50.2% = 107
clones out of 213). Manual confirmation by pairwise se-
quence alignment between the clones and the insertion
variants reported by InserTag showed that all positive
calls were matched with respect to the breakpoints and
insertion sequences (FDR = 0%; Additional file 2: Table
S2). Next, as the read-depth-based copy number states
of the fosmid clones embedded with 31 non-reference
insertion SVs from 26 individuals were available from
the same study [5], we compared our genotype calls to
the copy number states. Among 806 genotypes, 204 were
undetermined owing to the low coverage of the sequen-
cing data around the regions. Of the remaining 602 un-
equivocal genotype calls of 31 SVs, 557 calls matched
with genotypes (92.5% sensitivity), and the FDR of the
genotyping step was 7.5% (Additional file 1: Figure S3).
The discrepancy between our genotype calls and the
read-depth-based copy number states could be attrib-
uted to the genotyping of the heterozygote state, where
InserTag favored homozygosity calls based on the align-
ment ratio around the breakpoints.

Characteristics of non-reference insertion SVs in multiple
populations
To catalogue the long insertion variants detected among
the human populations studied, we applied InserTag to
the genomic data of 2535 individuals from 26 popula-
tions included in the 1KGP, which included those of

Africans (AFR), Americans (AMR), East Asians (ESA),
Europeans (EUR), and South Asians (SAS) as aligned to
hg19 in the 1KGP project [13]. In the discovery step of
InserTag, a non-redundant discovered set of 7900 paired
insertion-tags was generated. After the tracing step, we
selected a final traced set comprising 1696 non-
reference insertion SVs larger than 50 bp for further ana-
lyses (Additional file 1: Figure S4a). The compared ge-
nomes included non-human primate genomes (of
chimpanzee, bonobo, gorilla, and orangutan), other hu-
man genome assemblies (HuRef and CHM1), and hu-
man unmapped contig databases (NRNR and GoNL;
Additional file 2: Table S3). Both discovered and traced
paired insertion-tags showed the ubiquitous distribution
of variants over all chromosomes (Additional file 1: Fig-
ure S4b). Among 1696 insertion variants, 761 (44.9%)
and 103 (6.0%) variants overlapped with the insertion SV
and unresolved partial non-reference sequence set of the
gnomAD database, respectively [14]. The remaining 832
(49.1%) insertion SVs were novel variants (Add-
itional file 1: Figure S4c).
The total size of the traced insertion segments was

1.86 Mbp, and the size distribution of the insertion vari-
ants was skewed to less than 100 bp and showed a nega-
tive linear correlation in a log-log regression model (β =
− 0.93 s.d., p value < 2.0 × 10−16; Fig. 2a), which suggested
the existence of a possible power-law relationship for
the probability of an insertion of size k. In the genotyp-
ing step, we were able to genotype 1148 non-reference
insertion SVs greater than 100 bp in length; we found
that on average, individuals had 617 genotyped insertion
variants spanning 0.92 Mbp (Fig. 2b).
The majority of the insertion variants were enriched in

intergenic regions (61.3%) and introns (31.4%), while the
remaining variants overlapped with non-coding RNAs
(ncRNAs), untranslated regions (UTRs), and exons
(Table 1). Gene ontology (GO) classification of the genes
overlapping with or nearest to the insertion variants
showed enrichment in functions related to the nervous
system, including neurogenesis, neuron projection, and
glutamatergic synapse (Table 2). To assess whether the
non-reference insertion variants had unreported func-
tional annotation, we used RNAseq data for the same 462
individuals from the 1KGP [15]. We searched for evidence
of transcribed sequences by identifying the discordant
PERs of RNAseq in which one end was anchored to the
reference genome, and the mate-end, though previously
unmapped, could be aligned to the insertion variants iden-
tified in our analysis. Among the 1696 non-reference in-
sertion SVs, 195 variants (11.4%) were transcribed as
modified transcripts, novel exons, or intergenic novel
transcripts in the RNAseq datasets (Table 1).
We re-classified the non-reference insertion SVs by

tracing to other genomes, as described above [3, 16]. If
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the traced sequences were found in non-human primate
genomes, the discovered inserted sequences were deter-
mined to be retained ancestral sequences that were de-
leted from the genomes of the set of individuals
comprising the human reference genome. If the traced
sequences were detected only in other human genome
assemblies and not in non-human primates, we inferred
that the variants were generated by the insertion of
novel segments after the split of humans from other pri-
mates. Among the 1696 non-reference insertion SVs,
1398 (82.4%) were traced to non-human primate ge-
nomes; we referred to this group as the retention of an-
cestral sequences group. We traced the remaining 298
(17.6%) variants only to other human genomes or to

Fig. 2 Catalogues of non-reference insertion SVs from the 1000 Genomes Project. a Size distribution of non-reference insertion SVs greater than
50 bp. The distribution indicates a significant negative relationship in the log-log linear regression model (β = − 0.93 s.d., p value < 2.0 × 10−16).
The count and size of the variants are indicated on a log-10 scale, and variants larger than 10 kbp are omitted. b Total size of the genotyped
insertion variants from each individual (n = 1148). Each dot represents an individual genome from the 1000 Genomes Project, arranged in
decreasing size. c The number of variants in the retention of ancestral sequence and novel sequence insertions groups. d Proportion of inferred
mutational mechanism between two groups of non-reference insertion SVs

Table 1 Annotations of the non-reference insertion SVs and
novel functions revealed by RNAseq data

Annotation Number Novel function Number

Exonic 3 (0.2%) Modified transcript 3 (100%)

UTR 11 (0.7%) Modified transcript 7 (63.6%)

ncRNA 109 (6.4%) Modified transcript 22 (20.2%)

Intronic 533 (31.4%) Novel exon 40 (7.5%)

Intergenic 1040 (61.3%) Intergenic novel transcript 123 (11.8%)

UTR untranslated region, ncRNA non-coding RNA
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human unmapped contig databases; we referred to this
group as the novel sequence insertions group (Fig. 2c).
To understand the mechanisms underlying the gener-

ation of non-reference insertion SVs, we used the break-
point sequence features [3, 17] to classify the insertions
into four categories. The variants were first annotated as
variable number tandem repeats (VNTRs) and then de-
fined as non-allelic homologous recombination (NAHR)
based on the homologous features of the flanking se-
quences. The variants in which more than 80% of the se-
quences comprised retroelements, such as Alu, L1, or
SVA, were defined as transposable element (TE) inser-
tions. The remaining variants without recognizable fea-
tures were classified as non-homologous (NH) events.
Based on this classification, as expected within the novel
sequence insertion group, TEs were present in a high
proportion (Fig. 2d), and the most active subclasses of
TEs, such as AluYb8, AluYa4, and L1HS [18–20], were
observed frequently (Additional file 1: Figure S5a).

Prevalence of non-reference insertion SVs among human
populations
Next, we analyzed the allele frequencies (AFs) in the re-
tention of ancestral sequences group and the insertions of
novel sequences group. We observed that 92.2% (n =
1059) of the variants were observed in more than 5% of
human populations, which indicates that common inser-
tion variants were missing from the reference genome
(Fig. 3a). Moreover, 58.5% (n = 672) of the variants were
greater than 50% in AF, which indicates that the absent
status in the reference genome represents minor alleles
[21]. When AFs were stratified based on the mechanisms,
TEs in the novel sequence insertions group mostly had a
low frequency, which indicates that active retroelements
were abundant in TEs (Additional file 1: Figure S5b).
Of note, African populations had a significantly greater

number of the insertion SVs (Fig. 3b; p value < 2.2 ×
10−16). Among non-African populations, East Asian pop-
ulations had more variants than European and American
populations (Fig. 3b; p value = 2.5 × 10−4 and 2.1 × 10−4).
The AF spectrum of the variants suggests that the high-
frequency retention of ancestral sequences increased the
genetic load of insertion variants in African populations

(Fig. 3c). As African populations exhibited the most di-
vergent AF spectrum compared to other population
groups in the pairwise comparison of insertion variants
(Additional file 1: Figure S6), we investigated the genetic
differentiation based on a principal component analysis
(PCA). The African and East Asian populations formed
distinct clusters according to the first and second PCs,
which accounted for 5.8% and 2.2% of the total variance,
respectively (Fig. 3d). The European, American, and
South Asian populations formed less distinct clusters in
the PCA. A neighbor-joining tree based on population
differentiation (FST) showed clades consistent with the
major geographic groups (Additional file 1: Figure S7).
Therefore, we observed that the overall pattern of gen-
etic differentiation in the genotyped insertion variants
was similar to the pattern expected for the population
level of differentiation at the SNP variation level [8].

High LD between common non-reference insertion
variants and phenotype-associated SNPs
As the current reference genome limits the representa-
tion of common long insertion variants that are preva-
lent among human populations, new phenotype
associations could be detected by the inclusion of non-
reference insertion variants in genome-wide association
studies (GWAS). Using a window size of 250 kbp, we
observed a high LD (r2 > 0.6) between 72 non-reference
insertion SVs and 87 phenotype-associated SNPs re-
ported in GWAS Catalog [22] (Additional file 2: Table
S4). Compared to the variants reported in the 1KGP,
GWAS-associated non-reference insertion SVs (6.4%)
were similar to biallelic SNPs (5.2%), indels (6.1%), or
SVs except duplications (0.3%, p < 0.001) (Add-
itional file 2: Table S5). Among these, the I_2384 variant
located in the intronic region of SEMA6D had a high LD
with the SNPs associated with the education attainment
phenotype [23] (Fig. 4a). SEMA6D is expressed during
brain development and is related to neural circuits [24]
and axonal guidance [25]. The retention of ancestral se-
quences was related to a reduction in education attain-
ment years and associated with the downregulation of
the SEMA6D in brain tissue (see the “Methods” section;
β = − 0.70, SE = 0.11, p value = 6.2 × 10−9; Fig. 4b).

Table 2 GO enrichment analysis of non-reference insertion SVs

GO term Count Fold enrichment p value*

Cell adhesion (GO:0007155) 91 1.82 2.3 × 10−3

Neurogenesis (GO:0022008) 136 1.55 9.4 × 10−3

Glutamatergic synapse (GO:0098978) 49 2.46 9.0 × 10−5

Postsynaptic membrane (GO:0045211) 42 2.32 3.7 × 10−3

Cell junction (GO:0030054) 115 1.64 1.0 × 10−3

Neuron projection (GO:0043005) 113 1.57 8.8 × 10−3

*Bonferroni-corrected p values are denoted
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A second example of interest is the I_1685 variant 367 kbp
downstream of TMEM38B, which had a high LD with SNPs
associated with the age at menarche phenotype in European
populations [26] (Fig. 4c). As the closest gene, TMEM38B,
has multiple expression quantitative trait loci (eQTLs) in
brain tissue, as observed in the Genotype-Tissue Expression
(GTEx) project [27], we postulated that the I_1685 variant
may delay menarche by affecting the expression of
TMEM38B in a brain-specific manner. The retention of an-
cestral sequences was associated with the downregulation of
the expression of the corresponding gene in brain tissue (see
the “Methods” section; β=− 0.14, SE = 0.05, p value = 3.9 ×
10−3; Fig. 4d), whereas it was not associated with the same in
lymphoblastoid cells.
As shown in the examples, 27 neuropsychiatric pheno-

types (31%) exhibited a high LD with the non-reference

insertion variants. To further evaluate if the insertion
variants were related to variations in the transcrip-
tome of brain tissues, we first selected 543 pairs of
non-reference insertion SVs and eQTLs from the
GTEx project with high LD (r2 > 0.8) and clustered
the pairs based on the m value [28], which repre-
sents the posterior probability of eQTLs exerting
effects in multiple tissues. Among various tissues,
25.7% of the insertion variant-eQTL-gene pairs
were effective (m value > 0.9) in brain tissues [29]
and 3.4% were effective exclusively in 13 brain tis-
sues (Additional file 1: Figure S8). These results
suggested that a subset of non-reference insertion
SVs could exert putative functional effects on
neuropsychiatric phenotypes by affecting the tran-
scriptome of brain tissues.

Fig. 3 Prevalence of non-reference insertion SVs. a Allele frequency spectrum of the genotyped retention of the ancestral sequences (n = 944)
and novel sequence insertions (n = 204) with respect to the ancestral status. b Number of variants from each individual, categorized according to
the continental group. Significant p values of t test between the continental groups are indicated above the boxplot. c Allele frequency spectrum
of the genotyped non-reference insertion SVs of African and non-African populations presented in a single group. d Principal component analysis
using the biallelic genotypes of non-reference insertion SVs. Each dot represents an individual, and the colors indicate the continental groups.
The first two principal components are plotted and the eigenvalues of each axis are plotted inset
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Population stratification of the retention of ancestral
sequences
To identify the variants that underwent recent
continent-specific directional selection, we computed
pairwise population differentiation (FST [30]) for each
population as a part of the total diversity [31]. Genes
that overlapped or were closest to the variants with
top 10 Fst in each population (Fig. 5a) were related
to the functions which have undergone recent adapta-
tions in humans [32, 33] (Fig. 5a and Table 3).
One of the population-stratified variants of interest

was a 1170-bp ancestral sequence prevalent in African
populations (I_709; AF = 0.93) and mostly deleted in
non-African populations, which was located approxi-
mately 8 kbp upstream of GOLIM4 (Fig. 5b). Align-
ment of the 30-kbp sized flanking sequences without
the insertion sequences from 16 assembled human ge-
nomes verified that alleles with the insertion variant
are ancestral to the alleles without the variant
(Fig. 5c). To determine the functional impact of the
variants, we searched for evidences of the regulation
of the downstream gene GOLIM4 in lymphoblastoid

cells. The deletion of ancestral sequence variant was
significantly associated with the downregulation of
GOLIM4 expression (see the “Methods” section; β = − 0.21,
SE = 0.03, p value = 1.8 × 10−10; Fig. 5d). Furthermore, this
association was consistent among haplotypes with insertion
variants (Additional file 1: Figure S9). As the GOLIM4 pro-
vides the infectious protein Shiga toxin with a means of es-
caping the degradation system of the late endosome,
downregulation of the GOLIM4 may result in the accumu-
lation of Shiga toxin in the early endosome, which would
consequently help inhibit infection [34, 35]. Collectively,
the widespread distribution of ancestral sequence retention
in non-African populations may have resulted from adapta-
tions to environmental changes by increasing resistance to
infectious toxins.

Discussion
We developed InserTag, which is a pipeline for detecting
non-reference sequences using short-read sequencing
data. Compared to previous methods, InserTag imple-
mented strand-specific local de novo assembly, to gener-
ate non-reference contigs without pre-defined insertion

Fig. 4 Regional association plots of phenotype-associated insertion variants. a Regional association plot of 15q21.1 for education attainment years
in individuals with European ancestry. –log10(p) values of SNPs from previous studies are shown for the 250-kbp region on either side of the
I_2384 variant. Each dot represents a SNP; the r2 values between the SNPs and I_2384 were computed based on data from the 1000 Genomes
Project. b Expression of SEMA6D according to the genotypes of the I_2384 variant. c Regional association plot of 9q31.2 for the onset of
menarche in European populations. d Expression of TMEM38B according to the genotypes of the I_1685 variant
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contents. The contigs were then traced to multiple ge-
nomes, including those of humans and non-human pri-
mates, to detect non-reference sequences. Owing to the
possibility of errors and representation of minor alleles,
a single reference genome is considered inadequate and
biased for the detection of SVs, especially non-reference
sequences. Recent studies have suggested the existence

of multiple alternative sequences among human popula-
tions [8], and approximately 15% of the variants are con-
sidered to be shared across all samples or presented in
more than half of the samples [4], which indicates the
importance of generating pan-genomes [36, 37] or
population-specific consensus genomes [38]. In this
study, we used multiple reference genomes to identify

Fig. 5 Population-stratified retention of ancestral sequences. a Top 10 FST signals in each continental group. Each row represents the non-
reference insertion variants and the nearest genes within the 250-kbp range are listed with distances mentioned in parentheses. Each cell is
colored according to the FST value. b Global distribution of I_709. c An unrooted maximum-likelihood tree based on the alignment of 30-kbp
flanking sequences of I_709 from 16 human assemblies. Assemblies with ancestral sequences are indicated by blue boxes and those with
deletion alleles by red circles. d Expression of GOLIM4 according to the genotypes of the I_709 variant

Table 3 Genes related to the population-stratified retention of ancestral sequences

Functional category Genes overlapping/closest to the variants

Metabolic process ALG10, ATP6V1G3, CHST1, CSGALNACT2, PPP13RA, TPK1

Immunologic function ACTR3, CD47, CKAP4, CYP7B1, DOCK1, RORA, SERPINC1
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the complete insertion sequences that are not repre-
sented in the reference genome, which otherwise yielded
unresolved sequences or underestimated short contigs
when compared against a single reference.
By application of InserTag to the 1KGP dataset, we

could generate a comprehensive catalogue of insertion
SVs relative to the reference genome. Compared to
those in the gnomAD database, approximately half of
the variants were novel and 6% were completely resolved
by InserTag. Although the gnomAD database represents
433,371 SVs from 14,891 individual genomes, the dis-
covery pipeline of gnomAD is based on methods such as
Manta [39], DELLY [40], MELT [41], and cn. MOPS
[42], which are not designed to detect non-reference se-
quences. Therefore, InserTag could be applied to a
greater number of databases to further catalogue non-
reference insertion variants among human populations.
The majority of newly discovered variants from the

1KGP were common among human populations, and
more than half of the variants were major alleles, which
indicates that the current reference genome represents
minor alleles. Although catalogues of long insertion vari-
ants from African populations [36] and Icelandic popula-
tions [7] have been reported, we identified these non-
reference variants in one of the largest and most fre-
quently studied population-scale genome datasets. The
population-level analysis of insertion variants in this
study confirmed earlier findings. First, we revealed that
these variants are widespread among human populations
and that African populations had the largest number of
non-reference sequences. This is expected, as rare and
singleton insertion variants are abundant in African pop-
ulations [4, 36]. Second, the retention of ancestral se-
quences of high frequency was highly prevalent in
African populations. This result is consistent with that
of a previous study that suggested that African popula-
tions retain more ancestral sequences, which can lead to
the misinterpretation of the unbalanced SV loads be-
tween African and non-African populations [9]. Third,
the variants exert putative functional effects by introdu-
cing structural changes to genes or by modifying regula-
tory elements [43, 44].
We re-classified the variants based on the ancestral

states and found that 82.4% of the variants were catego-
rized under the retention of ancestral sequences group.
This group represents the deletion variants compared to
the ancestral states, with the deletion event occurring in
the reference genome. The remaining 17.6% of the vari-
ants were categorized under the novel sequence inser-
tions group as the variants were detected in humans,
whereas they were not detected in non-human primates.
TEs were abundant in this group, and most of them
were classified as active retroelements, such as AluY and
L1HS. Consistent with this, the AFs of the TEs in this

group are mostly in low. Conversely, the AFs of other
mechanisms, such as NAHR, VNTR, and NH, are mostly
fixed, which indicates that the errors or rare non-
insertion alleles are present in the reference genome.
As shown in our dataset, 72 common non-reference

insertion variants had a high LD with phenotype-
associated SNPs from previous GWAS. Compared to
variants reported by the 1KGP, the ratio of GWAS-
association of non-reference insertions was similar to
SNPs, indels, and SVs, whereas it was not similar for du-
plications. The depletion of linkage between duplications
and GWAS-associated SNPs is attributed to the gap be-
tween the duplicated sites and the genomic locations
where the duplications are inserted [45], which indicates
the importance of the detection of insertion sites in the
functional analysis of SVs [43]. By adding the insertion
variants into the current catalogue of SVs, we could en-
hance the potential for detection of novel phenotypic as-
sociations; additionally, certain variants were observed to
perform putative regulatory functions by affecting the
expression of the corresponding genes. Of note, 31% of
the associations were related to neuropsychiatric pheno-
types, and the total non-reference insertion variants were
enriched for the functional annotations of the nervous
system. As the insertion or deletion SVs are associated
with certain Mendelian neurologic and psychological
disorders [46], the non-reference insertion variants could
exert similar effects.
A subset of ancestral sequences showed continent-

specific stratification, which suggests the occurrence of
recent positive selection events. These insertion variants
overlapped with genes related to immunologic and
metabolic functions, which are known to be adaptive
among human populations and are affected by CNVs
[44]. One of the strongest signals of population stratifi-
cation was associated with immunologic function. A 1-
kbp sized intergenic insertion variant regulates GOLIM4
expression. As low expression levels of this gene are as-
sociated with the susceptibility to the infectious agents,
we hypothesized that the deletion of the insertion vari-
ant could lead to functional advantages against infec-
tious diseases.
Although we conducted a genome-wide assessment of

non-reference insertion SVs from multiple populations,
most of our paired insertion-tags remained unanalyzed.
The discovery set, in which the closest insertion-tags
within a certain range of distance are paired, reduced to
one-tenth after the variants from non-human primate
genomes or other human genome assemblies were
traced (Additional file 1: Figure S4b). As we selected this
strategy to identify the full inserted sequences without
determining presumed size or content of the insertion
variants, singleton variants were inherently deprived in
the resulting traced set. This ascertainment bias could
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be the reason for the enrichment of non-reference inser-
tion variants reported in this paper in the common al-
leles and their distinction from the long-read sequencing
data in which individuals have abundant singleton vari-
ants [4]. However, singleton or rare variants identified in
a small number of individuals can be identified as com-
mon alleles based on population-scale genome data,
such as the 1000 Genomes Project.

Conclusion
The non-reference insertion variants represent an im-
portant type of genetic variation in the human popula-
tion, and their extent and functional impact among
human populations remain to be explored. Although
catalogues of these missing sequences are expected to be
increased by the application of the long-read sequencing,
our approach could be applied to the abundant short-
read sequencing data with population scale, not only for
human data but also for other organisms.

Methods
Process followed by InserTag
Discovery step
BAM-formatted alignment files of paired-end sequen-
cing data were used as the input for InserTag. PERs in
which only one end is anchored to the reference genome
and the other end is unalignable or aligned in discordant
locations were selected. Next, these PERs were clustered
first by the strand of anchored reads and then by the lo-
cation between anchored reads at which the distance be-
tween the reads was within two standard deviations
from the mean insert length of the PER library. In each
cluster of PERs, contigs were generated using both an-
chored and overhang reads simultaneously to span the
breakpoints within the contigs. The Velvet algorithm
[47], based on the De Brujin graph, was used for local de
novo assembly. To reduce the number of falsely assem-
bled contigs, the location and strand of each read within
the contigs were tracked if all member reads suggested
identical events but an artificial assembly. A contig was
divided into the insertion and reference parts, and the
breakpoint was defined as the phase-changing point of
the two parts within the contig. For this purpose, the
mapping portion of the reads was masked using the
CIGAR string, which is the code for the alignment sta-
tus. Next, the contig was re-aligned to the local refer-
ence genome using Blat [48]. After the breakpoint
refinement step, the contigs were denoted as “insertion-
tags” and divided into flanking reference sequences and
inserted segment sequences. Because the assembly step
was performed in a strand-specific manner, the
insertion-tags were anchored to the reference genome
by the strand of anchored reads. If two insertion-tags
were derived from an identical insertion variant, the

upstream and downstream insertion-tags could be paired
relative to the specific breakpoint and were denoted as
“paired insertion-tags.” For pairing, each left-flanking
insertion-tag was scanned against the right-flanking
insertion-tags within two standard deviations from the
mean insert length of the PER library.

Tracing step
Although the paired insertion-tags could suggest puta-
tive insertion variants, the rate of false positives could be
high because the insertion-tags were paired even though
the two insertion-tags were not in the same allele. More-
over, the paired insertion-tags represented the two
boundary segments of insertion events; the complete in-
sertion segments remained unknown. To overcome
these limitations, the tracing concept was used to further
define the confident set of paired insertions and to fully
infer the insertion sequences. Each segment (e.g., flank-
ing reference and insertion segment) of paired insertion-
tags was aligned separately to the other target genomes
using BWA-MEM [49]. For proper tracing, alignment
was performed in a continuous manner. First, the flank-
ing reference sequences were aligned to locate the syn-
tenic regions, following which the insertion segments
were aligned to those regions. When insertion events
were traced to more than one target genome, multiple
sequence alignments were generated to determine
whether all the tracings matched. After the tracing step,
the putative insertion variants with insertion sites and
the complete inserted sequences were catalogued.

Genotyping step
To genotype a putative insertion variant from other
sample genomes, two sequences of the variant were gen-
erated: (i) an insertion variant allele, which was gener-
ated by concatenating reference sequences flanking the
breakpoint and inserted segments, and (ii) local refer-
ence sequences spanning the breakpoint. The local refer-
ence sequences extended for 50 bp from the insertion
breakpoints. Next, the raw sequencing reads of sample
genomes were aligned to the two target sequences.
Reads that unequivocally selected one target sequence
were selected and counted. The read-depth ratio of the
reads that supported the insertion variant allele and ref-
erence allele was then used to determine the genotype of
the variant.

Validation using a simulated dataset
Simulated insertion segments were generated by ran-
domly selecting segments of sizes ranging from 100 bp
to 100 kbp from chromosome 16 of the reference gen-
ome (hg19). The segments were randomly inserted into
chromosome 17 of hg19. PERs were generated with vari-
ous sequencing coverages and read lengths using wgsim
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[50]. To test the performance of InserTag in cases with
unique and non-unique insertions, the reads were first
mapped solely to chromosome 17 as a reference, and
then to both chromosomes 16 and 17 as the new refer-
ences, using BWA. The performance of InserTag was
compared to those of ANISE [10], MindTheGap [11],
and PopIns [12] using the default parameters. The re-
ported breakpoints and insertion sequences were ex-
tracted from the output files of each method. To ensure
precision of the tools used for breakpoint detection, the
gaps between the reported and simulated breakpoints
were considered. If the gaps spanned for less than 100
bp, the predicted insertion sequences were aligned to
the simulated insertion segments using Blat. Positive
calls were made when at least 50% of the predicted in-
sertion sequences were aligned to the simulated
sequences.

Validation using fosmid clones with non-reference
insertion SVs
The breakpoints and full sequences of insertions from
the genomic data of nine individuals with non-reference
insertion SVs confirmed by fosmid clones were available
from a previous study [5]. Among these, sequencing data
for eight individuals were available from the 1KGP.
InserTag was applied to the sequencing data, and the re-
sults were compared with the sequences of the fosmid
clones by pairwise sequence alignment. The read-depth-
based copy number states of 31 non-redundant se-
quenced clones from 26 individuals were also available
from the same study. The genotype calls of InserTag for
the same 26 individuals from the 1KGP were compared
with the reported copy number states.

Application of InserTag to 1KGP data
1KGP phase 3 sequencing data aligned with the refer-
ence genome (hg19) in BAM format were downloaded
from [51]. The files were first sorted by the name of the
reads, and each PER was marked as an anchored or
overhang read. The PERs with low mapping qualities of
anchored reads were excluded. For each individual gen-
ome, the mean length of sequencing reads and library
inserts was calculated. Three steps of InserTag were per-
formed using PERs from 2535 individuals from 26 popu-
lations. For the tracing step, multiple genomes, including
those of chimpanzee (panTro5), bonobo (panPan2),
gorilla (gorGor5), orangutan (ponAbe2), HuRef [52]
(GCA_000002125.2), and CHM1 [53] (GCA_
001297185.2), were used. For databases of unmapped
human contigs, including NRNR [7] and GoNL [54], the
data were retrieved from two studies. For the genotyping
step, non-reference insertion SVs larger than 100 bp
were selected. The abbreviations used for each popula-
tion and continental group were according to those

recommended in the International Genome Sample Re-
source: AFR, Africans; EAS, East Asians; SAS, South
Asians; AMR, Americans; EUR, Europeans; ACB, Afri-
can Caribbeans in Barbados; ASW, Americans of African
ancestry; BEB, Bengali from Bangladesh; CDX, Chinese
Dai in Xishuangbanna of China; CEU, Utah residents
with Northern and Western European ancestry; CHB,
Han Chinese in Beijing; CHS, Southern Han Chinese;
CLM, Colombians from Medellin; ESN, Esan in Nigeria;
FIN, Finnish in Finland; GBR, British in England and
Scotland; GIH, Gujarati Indian from Houston; GWD,
Gambian in western divisions in the Gambia; IBS, Iber-
ian population in Spain; ITU, Indian Telugu from the
UK; JPT, Japanese in Tokyo; KHV, Kinh in Vietnam;
LWK, Luhya in Kenya; MSL, Mende in Sierra Leone;
MXL, Mexican ancestry from Los Angeles; PEL, Peru-
vians from Lima; PJL, Punjabi from Pakistan; PUR,
Puerto Ricans; STU, Sri Lankan Tamil from the UK;
TSI, Toscani in Italia; and YRI, Yoruba in Ibadan of
Nigeria.

Functional annotation of non-reference insertion SVs
The non-reference insertion SVs were annotated based
on the breakpoint location of the refGene of hg19. For
the GO enrichment analysis, genes that were overlap-
ping, or closest to, the variants were used as inputs for
PANTHER [55].

RNAseq data analysis
Raw RNAseq data for 462 individuals from the 1KGP
were downloaded from EBI ArrayExpress under the
accession ID E-GEUV-1 [15]. The PERs in which only
one end was mapped were selected. The unmapped
end-reads were re-aligned to those non-reference in-
sertion SVs around the mapped end-reads. The up-
dated annotations were defined based on the
annotations of the mapped end-reads and non-
reference insertion SVs. For novel exons, the mapped
end-reads were located in the known exons and the
insertion sequences were located in introns. For un-
annotated transcripts, the mapped end-reads and in-
sertion sequences were located in the intergenic
regions or introns. For modified transcripts, the
mapped end-reads and insertion sequences were lo-
cated in the UTRs or exons.

Inferring the mutational mechanism using breakpoint
sequence features
Mutational processes, including NAHR, VNTR, TE, and
NH events, were inferred using both flanking and inser-
tion sequences, as suggested by BreakSeq [3, 17]. The
flanking reference sequences located 100 bp upstream
and downstream of the location of the non-reference in-
sertion SVs were extracted.
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Population genetic analysis
In each genotyped variant, pairwise FST value between
each continental group and all other continental groups
based on the methods described by Nei [30]. For func-
tional annotation, the top 10 FST hits from each contin-
ental group were selected. PCA was performed using the
biallelic genotypes of the variants. These analyses were
performed using the R package heirfstat.

GWAS-associated non-reference insertion SVs
To calculate LD between non-reference insertion SVs
and SNPs, 1KGP phase 3 genotypes data were down-
loaded from [51]. The LD between non-reference inser-
tion SVs and SNPs within 250 kbp was computed using
PLINK [56]. The list of phenotype-associated SNPs re-
ported by NHGRI-EBI [22] (v1.0.2 2020-03-08) was
downloaded from [57]. For comparison, the LD between
SNPs, indels, or SVs from the final report of the 1KGP
and phenotype-associated SNPs were calculated. Sum-
mary statistics from each GWAS were retrieved from
the Social Science Genetic Association Consortium and
The ReproGen Consortium.

Phylogenetic analysis
A haplotype structure was constructed using 18 SNPs
within the LD structure of the region encompassing the
insertion variant. Haplotype network analysis was per-
formed using PopART [58] by the median-joining
method. From the reference genome (hg19), sequences
of the 30-kbp flanking region of the insertion variant
were retrieved and used as a query to identify the corre-
sponding regions from 16 human assemblies available in
the NCBI Assembly database. Evolutionary history was
inferred using the maximum-likelihood method and the
Kimura 2-parameter model with the complete-deletion
option from MEGA X [59].

Microarray data analysis
Transcription profiling data from the microarray analyses
of lymphoblastoid cells from HapMap 3 were available
from EBI ArrayExpress under the accession identifier E-
MTAB-198 [60] and E-MTAB-264 [61], and 527 individ-
uals were also target samples of 1KGP. The population
structures for each individual were calculated using SNPs
and were used as covariates in linear regression. The ex-
pression and genotyping data of various brain tissues are
available from the UK Brain Expression Consortium. The
genotype data was phased using SHAPEIT [62] and im-
puted for the insertion variants using IMPUTE2 [63]. Lin-
ear regression of the genotypes of non-reference insertion
SVs and rank-normalized expression levels of the target
genes were computed using R.
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