RESEARCH ARTICLE

Transcriptional Profiling of Staphylococcus aureus During Growth in

2 M NaC(l Leads to Clarification of Physiological Roles for Kdp and
Ktr K* Uptake Systems

Alexa Price-Whelan,® Chun Kit Poon,? Meredith A. Benson,” Tess T. Eidem,< Christelle M. Roux,< Jeffrey M. Boyd,9 Paul M. Dunman,©
Victor J. Torres,P Terry A. Krulwich?

Department of Pharmacology and Systems Therapeutics, lcahn School of Medicine at Mount Sinai, New York, New York, USA®; Department of Microbiology, New York
University School of Medicine, New York, New York, USA®; Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USAS;
Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA9

ABSTRACT Staphylococcus aureus exhibits an unusually high level of osmotolerance and Na™* tolerance, properties that support
survival in various host niches and in preserved foods. The genetic basis of these traits is not well understood. We compared the
transcriptional profiles of S. aureus grown in complex medium with and without 2 M NaCl. The stimulon for growth in high-
osmolality media and Na* included genes involved in uptake of K+, other compatible solutes, sialic acid, and sugars; capsule
biosynthesis; and amino acid and central metabolism. Quantitative PCR analysis revealed that the loci responded differently
from each other to high osmolality imposed by elevated NaCl versus sucrose. High-affinity K* uptake (kdp) genes and capsule
biosynthesis (cap5) genes required the two-component system KdpDE for full induction by osmotic stress, with kdpA induced
more by NaCl and cap5B induced more by sucrose. Focusing on K* importers, we identified three S. aureus genes belonging to
the lower-affinity Trk/Ktr family that encode two membrane proteins (KtrB and KtrD) and one accessory protein (KtrC). In the
absence of osmotic stress, the ktr gene transcripts were much more abundant than the kdpA transcript. Disruption of S. aureus
kdpA caused a growth defect under low-K* conditions, disruption of ktrC resulted in a significant defect in 2 M NaCl, and a
AktrC AkdpA double mutant exhibited both phenotypes. Protective effects of S. aureus Ktr transporters at elevated NaCl are
consistent with previous indications that both Na* and osmolality challenges are mitigated by the maintenance of a high cyto-
plasmic K* concentration.

IMPORTANCE There is general agreement that the osmotolerance and Na* tolerance of Staphylococcus aureus are unusually high
for a nonhalophile and support its capacity for human colonization, pathogenesis, and growth in food. Nonetheless, the molecu-
lar basis for these properties is not well defined. The genome-wide response of S. aureus to a high concentration, 2 M, of NaCl
revealed the upregulation of expected genes, such as those for transporters of compatible solutes that are widely implicated in
supporting osmotolerance. A high-affinity potassium uptake system, KdpFABC, was upregulated, although it generally plays a
physiological role under very low K* conditions. At higher K+ concentrations, a lower-affinity and more highly expressed type
of K* transporter system, Ktr transporters, was shown to play a significant role in high Na* tolerance. This study illustrates the
importance of the K+ status of the cell for tolerance of Na* by S. aureus and underscores the importance of monovalent cation
cycles in this pathogen.

Received 31 May 2013 Accepted 24 July 2013 Published 20 August 2013

Citation Price-Whelan A, Poon CK, Benson MA, Eidem TT, Roux CM, Boyd JM, Dunman PM, Torres VJ, Krulwich TA. 2013. Transcriptional profiling of Staphylococcus aureus
during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K* uptake systems. mBio 4(4):e00407-13. doi:10.1128/mBio.00407-13.

Editor Olaf Schneewind, The University of Chicago

Copyright © 2013 Price-Whelan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported
license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Address correspondence to Terry A. Krulwich, terry.krulwich@mssm.edu.

uman commensals and opportunistic pathogens belonging

to the genus Staphylococcus tolerate exceptionally low water
activities (1). Plating on 7.5% (1.3 M) NaCl has been a routine
method for selective enrichment of staphylococci for decades (2),
and it is often posited that the osmotolerance of Staphylococcus
aureus and S. epidermidis supports their growth and survival in
association with human skin and mucous membranes. This is
consistent with the association of S. aureus infection with the in-
herited disease cystic fibrosis, in which bacteria colonize and grow
in the viscous sputum that accumulates within the lung (3). S. au-
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reus also grows well at low osmolality and must thus have osmo-
regulation capacities over a very large range (4). Nonetheless,
staphylococci have not been major models for studies in which
genetic loci required for osmotolerance have been identified.
Rather, molecular mechanisms that support resistance to osmotic
stress have been characterized most extensively in prokaryotes
with relatively low tolerance, such as Escherichia coli and Bacillus
subtilis, and at the other extreme in halophiles, which grow opti-
mally at osmolalities and Na* concentrations that would inhibit
almost all other organisms.
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Diverse organisms cope with osmotic stress by accumulating
solutes that increase the osmolality of the cytoplasm, thereby help-
ing the cells retain water while minimally interfering with protein
function. K* is often accumulated upon an upshift in external
osmolality and is naturally the most abundant cation in most bac-
teria (5, 6). There is a correlation between medium osmolality and
intracellular K* concentration (6-9). Many small organic com-
pounds can also enhance osmotolerance. These compatible sol-
utes are often zwitterions such as glutamine, proline, and glycine
betaine, and cells can increase their intracellular concentration via
increased biosynthesis, decreased degradation, or increased up-
take (10). Measurements of intracellular K*, amino acids, and
other compatible solutes during growth in media with various
osmolalities have revealed properties that distinguish S. aureus
from other bacteria. Christian and Waltho found that the intra-
cellular K* concentration in S. aureus grown in a complex me-
dium was much higher than that of a Leuconostoc spp. (another
firmicute; 700 mM versus 140 mM). They found that this concen-
tration increased when S. aureus was incubated in medium con-
taining added sucrose, NaCl, and KCl but was maintained at con-
centrations approximately equal to or higher than internal Na™ in
all cases (6). Other studies have reported constitutively high levels
of intracellular K™ in S. aureus that presumably make further in-
creases unnecessary to mitigate the stress of high osmolality (4).
However, increased K uptake might be required to maintain
the high constitutive level of cytoplasmic K* under such stress.
S. aureus can tolerate concentrations of internal Na™ as high as
900 mM (11), an unusual tolerance that is consistent with findings
that the cytotoxicity of Na* is mitigated by increased K™ (12).
Similarly, key metabolic enzymes from S. aureus, with its espe-
cially high cytoplasmic K* concentration, are less sensitive to in-
hibition by Na™* than those of E. coli and B. subtilis (1).

With respect to specificities for organic compatible solutes,
there is variation among different species, with Gram-negative
bacteria generally showing large increases in intracellular gluta-
mate during osmotic stress while Gram-positive bacteria maintain
constitutively high levels of glutamate and increase proline con-
centrations at least modestly during osmotic stress (1,9). In S. au-
reus, glycine betaine, proline, choline, and taurine have all been
noted as compatible solutes that accumulate intracellularly and
enable the organism to grow in high-osmolality media (4, 13).
Several transport activities have been reported as potential con-
tributors to compatible-solute uptake, but the responsible genes
and proteins have not been identified in most cases (14, 15). Mu-
tants with transposon insertions in the S. aureus genes brnQ3 and
arsR have defects in growth in high-osmolality media, but the
mechanisms involved are not known (16-18).

To gain a broader understanding of the molecular basis of
S. aureus osmotolerance and Na* tolerance, we conducted a mi-
croarray experiment that compared the transcriptome during
growth in the presence and absence of 2 M NaCl. Among a diverse
group of genes that exhibited at least 10-fold induction, the most
upregulated gene during growth in high Na*™ was part of an
operon that encodes a Kdp complex, a high-affinity ATP-
dependent K* importer. This led to assessment of the conditions
under which physiological roles could be demonstrated for the
Kdp transporter, which was positively regulated by the two-
component system KdpDE, and for a lower-affinity Ktr-type K*
transporter, for which genes were identified.
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RESULTS AND DISCUSSION

The S. aureus transcriptional response to growth in 2 M NaCL
To identify genes whose upregulation is associated with growth at
elevated salt concentrations, we conducted a microarray experi-
ment comparing S. aureus USA300 LAC grown in LB0, a complex
medium, with and without the addition of 2 M NaCl. This con-
centration of NaCl was chosen because it is sufficiently high to
completely inhibit the growth of most cultivable bacteria but has
only a moderate effect on the growth of S. aureus (see Fig. S1 in the
supplemental material). The contaminating Na* content of LBO
was measured by flame photometry and was approximately
14 mM. Cultures were inoculated at a starting optical density at
600 nm (ODygy,) of 0.01 and grown in Erlenmeyer flasks to a den-
sity of 0.7, which corresponds to late exponential phase (see
Fig. S1). The culture grown without added NaCl showed a dou-
bling time of 25 min, while the culture grown with NaCl had a
longer doubling time of 45 min.

At the parallel time points shown in Fig. S1, culture samples
were transferred immediately to an ice-cold acetone-ethanol so-
lution and frozen at —80°C before subsequent RNA extraction.
c¢DNA samples were prepared and hybridized to commercially
available Affymetrix GeneChips containing probes representing
3,300 open reading frames (ORFs) and 4,800 intergenic regions
from four different S. aureus genomes. We found that 267 genes or
intergenic regions were induced (see Table S1 in the supplemental
material) while 194 genes or intergenic regions were repressed (see
Table S3) during growth in 2 M NaCl compared to growth in the
absence of stress. S. aureus COL numbers are shown for most of
these loci unless otherwise noted.

When the transcriptional profile of cells grown in 2 M NaCl
was compared to that of cells grown in the absence of this stress,
the most upregulated locus was the kdpFABC operon, with a range
of 35.1- to 102.4-fold increases among the kdp genes. This operon
is predicted to encode an ATP-driven, high-affinity K* transport
system called Kdp. Kdp systems have been implicated in osmotol-
erance in E. coli. Transcription of kdp operons is strongly induced
by osmotic stress and/or K™ limitation in many bacterial species
(19-21), and kdp operon expression is induced by the two-
component system KdpDE in E. coli and Leptospira interrogans
(22-24). We observed that the kdpDE operon was also signifi-
cantly induced in S. aureus cells grown in the presence of 2 M
NaCl, by 21.4- and 8.7-fold for kdpD and kdpE, respectively. This
suggested that KdpDE acts to activate kdpFABC expression in
S. aureus although there had been an earlier report to the contrary
(25).

Additional loci that encode proteins with diverse or unknown
functions were induced more than 10-fold by growth in 2 M NaClL.
The cap5 operon, which had been reported to be regulated by
KdpDE (25, 26), was among them. This locus encodes the biosyn-
thetic enzymes for production of the capsule (serotype 5), a viru-
lence factor that helps protect S. aureus from phagocytosis (27).
Other highly induced loci that are involved in central metabolism
could be contributing to reorientation of these major pathways
to support biosynthesis of the capsule, which could constitute
a major carbon sink. Such loci include those that encode tricar-
boxylic acid cycle proteins (e.g., the gltA, suc, and sdh genes),
phosphoenolpyruvate carboxykinase, lactate dehydrogenase,
glyceraldehyde-3-phosphate dehydrogenase, dihydroxyacetone
kinase, and fructose-1,6-bisphosphatase. One or more represen-
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tative genes from four different phosphotransferase system
(PTSs), which are involved in sugar uptake, were also induced at
least 2-fold and could contribute substrates for central metabolic
pathways.

Loci identified with products involved in central metabolism
were also related to amino acid transport, biosynthesis, and deg-
radation, which could contribute to compatible-solute uptake and
production and/or energy generation under a stressful condition.
One of the most upregulated genes during growth in a high NaCl
concentration was rocD, a component of an alternative pathway
for proline biosynthesis by arginine conversion (28), which exhib-
ited 14.4-fold induction by 2 M NaCl. The genes rocA and rocF
were also upregulated, suggesting that this alternative pathway,
which has been implicated in osmotolerance in B. subtilis (29),
facilitates proline accumulation in response to osmotic stress in
S. aureus. Additional loci that are candidates for support of accu-
mulation of amino acids or chemically related compatible solutes
and that were induced by growth in 2 M NaCl are indicated in
Table S1 in the supplemental material.

We also noted three other genes that were significantly upregu-
lated, one of which had been found earlier to be induced by NaCl.
This was the sceD gene, which encodes a putative lytic transglyco-
lase and was induced 21.4-fold by 2 M NaCl in this study. SceD is
required for nasal colonization in a cotton rat model, suggesting
that osmotic stress can act as a signal for genes that facilitate sur-
vival during association with the host (30). geh, a large gene that
encodes a lipase, is also very strongly upregulated during growth
in a high NaCl concentration. The physiological advantages of the
overproduction of these transcripts in response to NaCl stress are
not known, but their activities are suggestive of cell surface re-
modeling roles. The third gene, nanT, is a sodium-coupled trans-
porter of sialic acid (N-acetylneuraminic acid) that has recently
been described (31). The nanT gene is coexpressed with one of the
metabolic genes and could provide energy during stress. So far, the
use of a sodium solute symporter family protein for the NanT
function is restricted to firmicutes and the noted homology be-
tween this transporter and sodium/proline transporters (32)
raises the testable question of whether this type of NanT might
exhibit a secondary compatible-solute uptake activity, which
would directly enhance osmotolerance. The genes brnQ3 and
arsR, which had previously been implicated in Na™ resistance after
their identification by mutant screening (16-18), were not af-
fected under our study conditions.

Genes downregulated 10-fold or more in cells grown in 2 M
NaCl compared to cells grown in the absence of this stress in-
cluded those that encode several virulence factors (see Table S3 in
the supplemental material). The most downregulated gene, at
39.8-fold downregulation, was SACOL1164, which encodes a fi-
brinogen binding protein-like protein. Another gene that encodes
a fibrinogen binding-related protein, SACOL1169, was down-
regulated 12.7-fold and 12.1-fold, according to two different
probes. efb, which also encodes a fibrinogen-binding protein, was
downregulated 12-fold. SACOL0857, a gene that encodes a
staphylocoagulase precursor, was also represented by two differ-
ent probes, which reported 14.2-fold and 11.9-fold downregula-
tion. hlY, which encodes an alpha-hemolysin precursor, was
downregulated 17.1-fold. SACOL0478, which encodes exotoxin 3,
was represented by three different probes and was downregulated
17.1-fold, 16.2-fold, and 9.6-fold. Finally, SACOL0024, which en-
codes a 5'-nucleotidase, was also represented by two different
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Roles of S. aureus K+ Importers during Growth in High [NaCl]
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FIG 1 Fold changes in the expression of specific loci induced by growth in
2 M NaCl as assessed by qPCR. S. aureus LAC cultures were grown to late
exponential phase in LBO with or without 2 M NaCl or 2 M KCl. Data represent
the averages of biological triplicates. Error bars represent standard deviations.
fabD and tpiA were used as reference genes (54).

probes and was downregulated 11.2-fold and 9.7-fold. This gene
was also represented by a probe that reported 8.5-fold downregu-
lation. Collectively, these hits suggest that S. aureus downregulates
a virulence program associated with bacteremia and endocarditis
during growth in high-osmolality media. This behavior is consis-
tent with the asymptomatic colonization by S. aureus in the high-
osmolality environment of the anterior nares of more than 20% of
the human population (33).

Major loci induced by growth in 2 M NaCl respond differen-
tially to 2 M KCI. Although S. aureus is Na™ tolerant, it is still
sensitive to the toxicity of elevated Na* and thus less tolerant of
elevated Na™ concentrations than of comparable concentrations
of K* (34) (see Fig. S2 in the supplemental material). It was there-
fore of interest to test whether the response to these two ions was
also different at the transcriptional level. We focused on the kdpA,
cap5B, and nanT genes and used real-time quantitative PCR
(qPCR) to assess changes in the relative abundances of the corre-
sponding transcripts when cultures were grown with 2 M NaCl,
2 M KCl, or no addition. As shown in Fig. 1, induction of kdpA,
cap5B, and nanT in response to growth in 2 M NaCl was more
pronounced when detected by qPCR than when detected by mi-
croarray. Only nanT, and not kdpA or cap5B, was still induced to a
similar extent when S. aureus was grown in 2 M KCL

Evaluation of the response to isosmotic concentrations of
NaCl and sucrose. The difference in the responses of kdpA and
cap5B transcript levels to Na™ and K* raised the possibility that
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FIG 2 Fold changes in the expression of specific loci in response to growth in isosmotic concentrations (1 and 1.11 M, respectively) of NaCl and sucrose and
kdpDE dependence of induction. S. aureus LAC and mutant cultures were grown to late exponential phase in LBO with or without 1 M NaCl or 1.11 M sucrose.
Data represent the averages of biological triplicates. Error bars represent standard deviations. pyk, proC, and tpiA were used as reference genes (54).

these genes are induced specifically by Na* and not by other sol-
utes. To test this, we modified our protocol to allow the addition
of isosmotic concentrations of NaCl or sucrose to the culture me-
dium. This required the use of a lower concentration of NaCl (1 M
instead of 2 M) to allow the use of sucrose at a soluble concentra-
tion that would not make the medium noticeably viscous. Isos-
motic concentrations of NaCl and sucrose in LBO medium were
established by measuring standards of media containing these os-
molytes at known concentrations using a vapor pressure osmom-
eter and plotting the relationship between concentration and os-
molality (see Fig. S3 in the supplemental material). The values we
obtained for LBO containing NaCl and sucrose at concentrations
0f0.2 to 1.5 M were comparable to the values for similar standards
reported previously (4). We found that the levels of kdpA induc-
tion at isosmotic concentrations of NaCl and sucrose (1 M and
1.11 M, respectively) were comparable (Fig. 2), though they were
more than 10-fold lower than the levels seen with 2 M NaCl. The
fold induction of cap5B was significantly higher in sucrose than in
the isosmotic concentration of NaCl, suggesting that additional
regulatory mechanisms induce cap5 operon expression under this
condition. The low level of NaCl used for this experiment, how-
ever, was not sufficient to induce the expression of nanT. The
induction of kdpA and cap5B by sucrose suggests that induction of
the kdpFABC and cap5 loci may occur as part of a generic osmotic
stress response.

Full kdpA induction requires functional KdpDE. Using isos-
motic concentrations of NaCl and sucrose, we tested the depen-
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dence of kdpA and cap5B induction on the presence of a functional
KdpDE two-component system. A mutant lacking the kdpDE
operon (Table 1) was grown under the same high-NaCl or
-sucrose conditions as the parent strain. We did not observe a
growth defect in the AkdpDE mutant under these conditions. In
the kdpDE mutant background, the significant induction of kdpA
observed in a wild-type control during growth in both high-
osmolality media was abolished (Fig. 2). Induction of cap5B was
also abolished in NaCl but was only partially diminished during
growth in sucrose, further supporting the hypothesis that an ad-
ditional mechanism of induction acts on the cap5locus specifically
during growth in media containing this osmolyte. The effects of
kdpDE deletion on kdpA and cap5B expression in high NaCl and
sucrose concentrations, and the lack of kdpA and cap5B induction
during growth in high KCl, raise the possibility that activity of the
KdpDE system in controlling the kdpFABC and cap5 operons is
modulated by multiple environmental cues, e.g., osmotic strength
and K™ availability.

The S. aureus genome encodes both high- and low-affinity
K* importers. We observed the induction of a high-affinity K*
importer, KdpFABC, during the growth of S. aureus in LBO me-
dium, which was shown by flame photometry to contain approx-
imately 7.4 mM contaminating K*. This raised the possibility that
at its highly increased levels of expression, the KdpFABC trans-
porter might make a modest contribution to K™ homeostasis by
using the contaminating K* but would play a more prominent
role at an even lower K* concentration. It was further expected
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TABLE 1 Bacterial strains used in this study

Roles of S. aureus K+ Importers during Growth in High [NaCl]

Species and strain Genotype and/or description

Source or reference(s)

S. aureus
LAC Wild type, USA300 59
SH1000 S. aureus 8325-4 with repaired rsbU 60, 61
LAC AkdpDE This study
SH1000 AkdpA This study
SH1000 AktrC This study
JE2 40
JE2 kdpA::pNZ, 40
JE2 ktrB:pN> 40
JE2 ktrC::pNZ 40
E. coli
DH5a 62
DH5a/pJMB168 E. coli DH5a containing plasmid pJMB168, which is pJB38 plus an insert designed for This study
allelic recombination and deletion of kdpDE; Cm*
DH5a/pCKP47 E. coli DH5a containing plasmid pCKP47, which is pMAD plus an insert designed for This study
allelic recombination and deletion of kdpA; Amp~
DH5a/pCKP67 E. coli DH5a containing plasmid pCKP67, which is pMAD plus an insert designed for This study

allelic recombination and deletion of ktrC; Amp*

that a distinct low-affinity K* importer, still to be identified,
would be a major contributor to the ability of S. aureus to accu-
mulate K* at high levels (0.7 to 1.1 M) during growth in rich,
complex media, even in the absence of osmotic stress (4, 11). We
searched S. aureus genomes for homologues of low-affinity K*
uptake systems in other bacteria and found proteins with se-
quence similarity to subunits of Ktr systems, which have been
studied in B. subtilis. Ktr systems typically consist of two types of
subunits: a transmembrane protein, required for K* transport,
and a membrane-associated, nucleotide-binding (KTN/RCK
domain) regulatory protein (34-36). While B. subtilis genomes
contain genes for two transmembrane and two regulatory com-
ponents (37), S. aureus genomes contain genes for two transmem-
brane components, which we will call ktrB (SACOL2011) and
ktrD (SACOL1030) on the basis of sequence identity at the amino
acid level to the B. subtilis counterparts, and only one gene that
encodes a regulatory component, which we have designated ktrC
(SACOL1096), on the basis of the closer similarity of the encoded
protein to KtrC than to the second homologue, KtrA, found in
B. subtilis (see Table S2 in the supplemental material). Ktr systems
differ markedly from Kdp systems. kdp operons in diverse bacteria
are regulated at the transcriptional level, and Kdp systems are
powered by ATPase activity. In contrast, Ktr systems are typically
constitutively expressed, show a lower affinity for K*, have ATP-
activated channel-like properties, and are powered by electro-
chemical ion gradients across the membrane rather than by
ATPase activity (34, 38, 39).

Low-affinity K* importis critical for Na* toleranceina com-
plex medium. To evaluate the relative importance of the Kdp and
Ktr K* import systems in Na™ resistance in S. aureus, we gener-
ated strains with markerless deletions of kdpA and ktrC in S. au-
reus SH1000, a strain that is more genetically tractable than
USA300 LAC. The individual mutant phenotypes described in this
and the following sections were similar to those observed for
transposon insertion mutants in USA300 LAC acquired from the
Nebraska Transposon Mutant Library (data not shown) (40). De-
letion of kdpA and/or ktrChad no measurable effect on the growth
of SH1000 in LBO with no added salts (Fig. 3A). In LBO with 2 M
NaCl added, the kdpA mutant showed a decline in stationary
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phase in some experiments that was not reproducible enough for
its significance to be assessed. Both the Ak#rC and AkdpA AktrC
mutants showed significant growth defects in exponential phase,
with the AkdpA AktrC mutant exhibiting a slightly more severe
defect at the transition from the exponential to the stationary
phase of the growth curve (Fig. 3B). This small difference suggests
a minor, but perhaps meaningful, physiological role of S. aureus
Kdp during osmotic stress that is largely masked by the activity of
the Ktr system(s) in the wild type. After this report was drafted,
Corrigan et al. (41) reported the identification of the single KTN
(RCK) Ktr protein, for which they propose the name KtrA, as well
as KdpD of S. aureus as receptors for the secondary signaling mol-
ecule cyclic di-AMP (c-di-AMP). In our present work, sodium
stress, but not sucrose, caused a large elevation in KdpD-
dependent expression. Together, the results here and those of
Corrigan et al. (41) suggest sodium stress as a potential candidate
for mediation of c-di-AMP production in S. aureus.
High-affinity K* import is critical for growth in a defined
medium with limiting K*. To test the expectation that the S. au-
reus Kdp system plays its most significant role in K* import under
conditions under which K* is extremely limiting, we designed a
medium, Tris-CDM (T-CDM), that would allow us to control the
added concentrations of K* and Na* without contamination
from complex ingredients. When K* was added to this medium at
1,000 uM, both the single and double kdpA and ktrC mutants grew
similarly to the wild type (Fig. 3C). When K* was added to this
medium at a low concentration (10 uM), mutants with kdpA de-
leted did not grow, while the ktrC mutant showed a longer lag
phase than the wild type (Fig. 3D). Xue et al. recently examined the
growth of Kdp-defective S. aureus mutants and kdp gene expres-
sion. They did not find a growth defect in these mutants and
reported evidence that KdpDE acts to repress, rather than activate,
the expression of kdpFABC in S. aureus (25). The development of
a defined medium without significant contaminating Na™ or K+
allowed us to precisely control the amounts of these ions and
uncover a growth defect in the AkdpA mutant when K* was lim-
iting. Differences in the KdpDE dependence of kdpA induction as
detected by qPCR and relative quantification may have arisen
from our adoption of the recommendation that more than one
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FIG 3 Growth of S. aureus SH1000 kdpA and ktrC mutants in complex and defined media. Panels show growth in LBO (A), LBO with 2 M NaCl added (B),
T-CDM with 1,000 uM KCl added (C), and T-CDM with 10 uM KCl added. Data represent the averages of biological triplicates. Error bars represent standard
deviations and are given for every other time point to improve visibility. wt, wild type.

reference gene be used for normalization and that use of the 16S
rRNA gene be avoided (42, 43).

ktr genes are constitutively expressed at high levels, and ktr
gene disruptions do not affect the expression of remaining, in-
tact ktr genes. In B. subtilis, Ktr activity is induced by osmotic
stress but the expression levels of the ktr genes do not change
under this condition, suggesting that Ktr systems are constitu-
tively expressed and that Ktr activity is regulated posttranscrip-
tionally, e.g., by c-di-AMP (41). We evaluated the expression lev-
els of the S. aureus kdp and ktr genes by absolute quantification
qPCR and found that ktr gene transcripts were present at levels 1
to 2 orders of magnitude higher than kdpA gene transcripts when
cultures were grown in LBO without any additional osmolytes
added (Fig. 4A). In B. subtilis, it has been reported that disruptions
in ktr genes lead to compensatory induction of the remaining
intact ktr genes (37). We tested this model in S. aureus USA300
LAC by using qPCR and examined mutants with disruptions in
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ktrB, ktrC, ktrD, and kdpA (see Table S1 in the supplemental ma-
terial). No significant changes were observed in the expression of
remaining intact ktr or kdp genes in response to the disruption of
these genes (Fig. 4B).

Previous reports have emphasized the unique ability of S. au-
reus to maintain relatively high intracellular K* levels in both
high- and low-osmolality environments and postulated that this is
an adaptation that supports osmotolerance (4, 6, 11). The results
of this study indicate roles for diverse transporters in supporting
growth in the presence of 2 M NaCl but highlight contributions of
K™ importers, since high cytoplasmic K* levels would mitigate the
potential cytotoxicity of the high Na™ concentration, as well as its
challenge to osmoregulation. However, more specific strategies
are probably also in place to export Na* from the cytoplasm under
conditions under which the large induction of nanT, for example,
would result in Na* cotransport along with the sialic acid sub-
strate. The genomes of S. aureus and S. epidermidis both encode at
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kdpA ktrB  ktrC  ktrD  tpiA  fabD

0.001

copies of transcript per ng total RNA, before normalizing to
tpiA and averaging (detection limit =1.917)

transcript sample 1 sample 2 sample 3
kdpA 1.469 4.148 1.443
ktrB 10.30 68.13 21.91
ktrC 308.4 1152 617.4
ktrD 99.10 269.7 116.3
tpiA 418.3 1982 637.5
fabD 236.1 774.6 225.5
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B
average fold change in transcript level relative to
wild type level (reference gene: tpiA)
transcript wit kdpA mutant ktrB mutant ktrC mutant kérD mutant
kdpA 1.00 N/A 0.99 0.94 1.04
ktrB 1.00 0.79 N/A 0.73 0.66
ktrC 1.00 0.90 0.77 N/A 0.80
ktrD 1.00 0.76 0.82 0.69 N/A
fabD 1.00 0.96 1.10 0.95 0.98

FIG 4 Expression of K™ importer genes in LBO in the absence of osmotic stress. (A) Absolute quantification by qPCR of transcripts from K* importer genes.
S. aureus LAC cultures were grown to late exponential phase in LBO. tpiA and fabD were used as reference genes (54). The graph at the top shows data representing
the averages of biological triplicates after fabD normalization. Error bars represent standard deviations. The table at the bottom lists values for individual
replicates before tpiA normalization. (B) Relative quantification by qPCR of transcripts from K* importer genes in the S. aureus JE2 wild-type (wt) and K+

importer mutant backgrounds. #piA and fabD were used as reference genes (54).

least eight putative Na*/H™ antiporters that are expected to be
important contributors to this activity (12). The loci that encode
these proteins are apparently not induced by growth in the high-
osmolality medium employed here, raising the possibility that one
or more key Na*/H* antiporters is constitutively expressed in a
manner similar to that found here for the Ktr transporters.

MATERIALS AND METHODS

Bacterial strains and culture conditions. The bacterial strains and mu-
tants used in this work are listed in Table 1. Routine growth was carried
out with LBO medium (lysogeny broth [44] without added NaCl, i.e., 10 g
tryptone and 5 g yeast extract per liter). Experimental cultures were inoc-
ulated at a normalized starting OD, of 0.01, unless otherwise noted,
from 3-ml precultures grown in screw-cap tubes. For the microarray and
qPCR experiments, incubation was at 37°C at 225 rpm in a rotary shaker.

For experiments examining growth with defined concentrations of
Na* and K+, a medium (T-CDM) was developed that was based on that
of Pattee and Neveln (45). The Na* phosphate used as a buffer in the
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original medium was replaced with 50 mM Tris, and 1 mM phosphoric
acid was added as a phosphorus source. The pH was set to 7.5 with HCL.

For growth experiments examining mutant phenotypes, a Bio-Tek
Powerwave plate reader was used. Strains were inoculated at a normalized
starting ODg,, of 0.005 in a total of 200 ul in individual wells of 96-well
plates. Plates were incubated with continuous shaking on the low setting
at 37°C.

Sampling for GeneChip and qPCR experiments and RNA isolation.
RNA was isolated by a modified method that incorporates reagents from
the Qiagen RNeasy kit (catalog no. 74104). Culture volumes of 30 ml were
grown in 250-ml Erlenmeyer flasks to an ODy,, of 0.5 to 0.7. At sampling
time, 20 ml of culture was transferred to a prechilled tube containing
20 ml of a 50% ethanol-50% acetone solution and mixed by inversion.
Samples were then placed immediately at —80°C for atleast 16 h. Samples
were thawed on ice and then centrifuged at 3,600 X g for 10 min at 4°C.
Supernatants were poured off, and pellets were left to dry upside down on
a Kimwipe for 15 min. Pellets were resuspended in 500 ul RLT buffer
(Qiagen) and transferred to tubes containing a lysing matrix (Fisher cat-
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TABLE 2 Plasmids and primers used in this study

2035 up 5 EcoRI
2035 up3 Nhel
2035 down 5 Mlul
2035 down 3 Sall
kdpA AQ std. 1

Source or

Plasmid or primer Description or sequence reference
Plasmids

pJB38 55

pJMB168 pJB38 plus an insert designed for allelic recombination and deletion of kdpDE This study

PMAD 56

pCKP47 PMAD plus an insert designed for allelic recombination and deletion of kdpA This study

pCKP67 PMAD plus an insert designed for allelic recombination and deletion of ktrC This study
Primers

kdpA 1f CCTTCGCCACCAAATACAAC

kdpA1r TGGAGCAGGTTTGTCAGCAC

cap5B f GCGATATGCGTAAGCCAACA

cap5Br CAGATGGATTTGGAGGTACAGG

SACOLO0311 f (for nanT) GCAGCTGCCGCAGTATTTAG

SACOL0311 r (for nanT) CGGTTTCGGCACTGTCTTT

ktrB f AGGTGGTCTGGGTATCGTGA

ktrB r TAACACCACCAGGTTCGTCA

ktrC f TTGGAGCAGATACGGTTGTG

ktrC r AGAATGCTCGTCTGCCAACT

ktrD f AAGAAGTGCGGGTCTTCAAA

ktrD r GTACGAATACCGCCACCAAC

tpiA f GGTGAAACAGACGAAGAG 54

tpiAr TTACCAGTTCCGATTGCC 54

fabD f CCTTTAGCAGTATCTGGACC 54

fabD r GAAACTTAGCATCACGCC 54

pyk f GCATCTGTACTCTTACGTCC 54

pykr GGTGACTCCAAGTGAAGA 54

proC f GGCAGGTATTCCGATTGA

proCr CCAGTAACAGAGTGTCCAAC

GGGGAATTCCCCCATAAATCCATTAAATGCCAGAAAATGTTTGAC
ACGCGTGGTACCGCTAGCGCTAGCGCGATTCAGTGTTTGACATAACCTTCACCTCG
GCTAGCGGTACCACGCGTACGCGTGGCTATGTTAATAAGACTGAAATGCCTAGTTTAAG
CCCGTCGACCGGTAAACCAAGTGGTTCTCGTAACAGAAATAGT
TGTCGCAATGTTTTTCATTTTT

kdpA AQ std. 2 GCAGCAGCTGATGTCATTTC
ktrB AQ std. 1 TTACTGGCTTGTCCCCAGTT
ktrB AQ std. 2 TCACGACAAAATGTCCAATACC
ktrC AQ std. 1 TGATGAACTCTTTGCCTCGTT
ktrC AQ std. 2 TATCGCTACTCATGCGGTTG
ktrD AQ std. 1 CCATGCGTTCAAAGGTTTAAG
ktrD AQ std. 2 GGTTCTCGACGTCCTGCTAT
tpiA AQ std. 1 CGAAGATAATGGTGCGTTCA
tpiA AQ std. 2 TGATGCGCCACCTACTAATG
fabD AQ std. 1 ATTAATGGCGCAAGCATTTC
fabD AQ std. 2 CTTTTCCAGGACCAATTTCAA

kdpA 1-1b ATATAGAATTCTCACTCATCAAGTCGGCAAC

kdpA 1-2 ACGATTAGTGATACGCCAAAATACTCTTGACGATTGCACCAA
kdpA 2-1 TTGGTGCAATCGTCAAGAGTATTTTGGCGTATCACTAATCGT
kdpA 2-2 ATATAGGATCCGCGATTCGATTGCCATAAGT

ktrC 1-1 ATATAGAATTCCCCAGTTTGGGAAGTTACGA

ktrC 1-2 TTTGCCTCGTTTAATTGCAAATGCATTCAACTCACGAACG
ktrC 2-1 CGTTCGTGAGTTGAATGCATTTGCAATTAAACGAGGCAAA
ktrC 2-2 ATATAGTCGACGGCATGGTTCTCAAGGTGAT

alog no. NC9875968). Tubes were processed in a bead beater (Biospec) for
three rounds of 10 s each alternating with 1-min incubations on ice and
then centrifuged at 16,000 X g for 15 min at 4°C. A 250-ul volume of the
upper liquid phase was transferred to a fresh tube. After mixing with
500 ul RLT and 500 wl ethanol, the sample was applied to an RNeasy
column and the RNeasy protocol was followed, including on-column
DNase digestion (Qiagen RNase-free DNase set, catalog no. 79254). After
RNA elution with 40 ul water, an additional DNase digestion was per-
formed with 5 ul RQ1 buffer and 1 ul DNase (reagents from the Promega
RQ1 RNase-free DNase kit [catalog no. M6101]) per sample. After a final
round of the Qiagen RNeasy cleanup protocol, RNA was eluted into 30 ul
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of water. RNA quality was checked by agarose gel electrophoresis accord-
ing to the protocol described by Sambrook et al. (46). RNA concentrations
were measured with a Bio-Tek Powerwave XS2 plate reader equipped with
a Take3 plate adapter.

For qPCR, cDNA was generated with the Bio-Rad iScript kit (catalog
no. 170-8891) after normalizing the input RNA. One microgram of input
RNA was used in the reverse transcriptase reaction. Control reactions with
no reverse transcriptase added were run for representative samples and
checked for DNA contamination by gPCR. Any amplifications observed
in these control reactions occurred at a higher cycle number than those
obtained with cDNA samples.
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RNA labeling and GeneChip analysis. RNA samples were labeled,
hybridized to commercially available S. aureus Affymetrix GeneChips
(part number 900514), and processed in accordance with the manufac-
turer’s instructions for prokaryotic arrays (Affymetrix, Santa Clara, CA).
Briefly, 10 ug of each RNA sample was reverse transcribed with Super-
script II reverse transcriptase (Invitrogen, Carlsbad, CA). The resulting
cDNA was purified with QIAquick PCR purification kits (Qiagen, Ger-
mantown, MD), fragmented with DNase I (Ambion, Carlsbad, CA), and
3’ biotinylated with Enzo Bioarray terminal labeling kits (Enzo Life Sci-
ences, Farmingdale, NY). Two micrograms of a labeled cDNA sample was
hybridized to an S. aureus microarray for 16 h at 45°C, processed, and
scanned in an Affymetrix GeneChip 3000 7G scanner as previously de-
scribed (47, 48). Signal intensity values for all of the ORFs and intergenic
regions represented on the microarray were normalized to the average
signal of the microarray to reduce sample labeling and technical variabil-
ity, and the signals for the biological replicates (1 = =2) were averaged by
using GeneSpring 7.2 software (Agilent Technologies, Redwood City, CA)
(48-51). Differentially expressed transcripts were identified as those RNA
species that generated a 2-fold increase or decrease in 2 M NaCl-treated
cells in comparison to a no-NaCl sample (¢ test, P = 0.05). All related
GeneChip data files were deposited in the NCBI Gene Expression Omni-
bus repository in the MIAME-compliant format.

qPCR assays. qPCR experiments were conducted according to the
standard protocols developed by the Mount Sinai qPCR Shared Resource
Facility. These protocols rely on SYBR green-based fluorescence detection
of double-stranded DNA—specificity is conferred by the primers add-
ed—and are very similar to those described by Yuen et al. (52), with the
adjustment that the final reaction volume was 10 pl. Each reaction was
conducted in triplicate in 384-well plates with an Applied Biosystems ABI
PRISM 7900 HT sequence detection system. The PCR program consisted
of an initial stage of 2 min at 95°C; 40 repeats of 15 s at 95°C, 15 s at 55°C,
and 30 s at 72°C; 15 s at 95°C; 15 s at 60°C; and 15 s at 95°C. Results were
analyzed using Applied Biosystems SDS 2.2.1 software with a threshold
value of 3.0 and automatic baseline calculation.

For relative quantification, cycle threshold (C;) values were used to
calculate fold changes in expression using the 27 244¢T method (53). Two
or three reference genes were used for normalization in each experiment,
selected from the less-affected genes reported for S. aureus treated with
berberine (54) and were checked against each other to verify that the
relative differences in their expression were between 0.5 and 2 (represent-
ing a <2-fold change in expression) (42, 43). For absolute quantification,
standards of transcripts of interest were generated by dilution of conven-
tional PCR products to concentrations ranging from 10! to 108 copies/ul.
The sequences of the primers used to generate these products are listed in
Table 2. These standards were run alongside samples and used to generate
standard curves from which the concentrations of unknowns were calcu-
lated.

Construction of markerless deletions by allelic replacement. To
generate the kdpDE-deficient S. aureus USA300 LAC mutant, approxi-
mately 1,000-bp sequences upstream and downstream of the kdpDE gene
pair (SAUSA300_2035-2036) were amplified by PCR with S. aureus
USA300 LAC chromosomal DNA as the template and primers
2035up5EcoRI and 2035up3Nhel and primers 2035down5Mlul and
2035down3Sall. Amplicons were gel purified and joined by PCR with
primers 2035up5EcoRI and 2035down3Sall. The PCR product was gel
purified, digested with EcoRI and Sall, and ligated into similarly digested
pJB38 (55). The ligation was transformed into E. coli DH5« and selected
on ampicillin, and colonies were screened for the correct insert (final
plasmid, pJMB168). Plasmid pJMB168 was isolated and transformed into
RN4220 and selected on tryptic soy agar (TSA) containing chloramphen-
icol at 30°C. Plasmid pJMB202 was transduced into AH1263, and single
colonies were used to inoculate 5 ml tryptic soy broth (TSB) containing
chloramphenicol. Cultures were grown at 42°C overnight to select for
single recombinants. Single colonies were used to inoculate 5 ml of TSB
and grown overnight, and cultures were diluted 1:25,000 before plating
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on TSA-anhydrotetracycline to screen for loss of pJMBI168.
Chloramphenicol-sensitive colonies were screened for the double recom-
bination event by PCR.

Deletions of target genes in S. aureus SH1000 were generated with
PMAD (56) as previously described (57). Briefly, ~1-kb PCR products on
either side of the sequence to be deleted were generated and fused by gene
splicing by overlap extension (SOEing) (58). The primers used for these
PCRsare listed in Table 2. The 2-kb gene SOEing product was ligated into
PMAD and transformed into E. coli. After plasmid isolation and sequence
verification, the construct was moved into S. aureus RN4220 by electro-
poration. After isolation from RN4220, the construct was electroporated
into the target S. aureus SH1000 wild-type or mutant strain. The plasmid
was recombined into the genome by incubating a liquid culture for 2 h at
the permissive temperature (30°C), followed by 4 h at the restrictive tem-
perature (42°C), and plating dilutions on LBO agar containing erythromy-
cin. Merodiploid clones (containing the plasmid recombined into the
chromosome) were verified by PCR. To resolve the plasmid out of the
chromosome and generate candidate deletion mutants, liquid cultures of
merodiploids were incubated at 30°C without selection and transferred by
1:100 dilutions for 3 days before plating on LBO agar. Candidate mutants
were screened for loss of erythromycin resistance (confirming loss of plas-
mid), and PCR was used to confirm the exclusive presence of the deleted
allele.

Microarray data accession number. The microarray protocols and
metafiles determined in this study have been deposited in the NCBI Gene
Expression Omnibus under accession number GSE46383.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org
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Figure S2, EPS file, 0.9 MB.

Figure S3, EPS file, 1 MB.

Table S1, DOCX file, 0.1 MB.

Table S2, DOCX file, 0.1 MB.

Table S3, DOCX file, 0.2 MB.
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