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Simple Summary: With the development of artificial intelligence, researchers can roughly predict
the crystal structure of a protein by computer without the need for biological experiments, which
provides new ideas and solutions to problems, such as protein-protein interaction and drug-target
predictions. In this study, we proposed strategies to combine predicted protein structures with
deep learning networks and evaluated them on different protein binding site prediction tasks. Our
computational experiment results showed that all proposed strategies could effectively encode
structural information for deep learning models.

Abstract: Though AlphaFold2 has attained considerably high precision on protein structure predic-
tion, it is reported that directly inputting coordinates into deep learning networks cannot achieve
desirable results on downstream tasks. Thus, how to process and encode the predicted results into
effective forms that deep learning models can understand to improve the performance of downstream
tasks is worth exploring. In this study, we tested the effects of five processing strategies of coordinates
on two single-sequence protein binding site prediction tasks. These five strategies are spatial filtering,
the singular value decomposition of a distance map, calculating the secondary structure feature,
and the relative accessible surface area feature of proteins. The computational experiment results
showed that all strategies were suitable and effective methods to encode structural information for
deep learning models. In addition, by performing a case study of a mutated protein, we showed
that the spatial filtering strategy could introduce structural changes into HHblits profiles and deep
learning networks when protein mutation happens. In sum, this work provides new insight into the
downstream tasks of protein-molecule interaction prediction, such as predicting the binding residues
of proteins and estimating the effects of mutations.

Keywords: AlphaFold2; deep learning; single-sequence protein binding site prediction;
feature engineering; spatial filtering

1. Introduction

Despite recent progress in deep learning-based protein structure prediction, there re-
mains a gap between structure and function [1]. The interactions between proteins and their
interacting partners, including proteins, nucleic acids, and small molecules, mediate most
biological processes [2]. Predicting the binding residues of protein-protein interactions will
contribute to designing new antibacterial drugs [3], and RNA-protein binding site predic-
tion can give new insights into the mechanisms behind diseases [4]. Conventional biological
experimental methods, such as affinity systems, two-hybrid assay, and affinity purification
coupled to mass spectrometry, are labor-intensive and time-consuming [5–8]. Consequently,
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many artificial intelligence (AI)-based studies have emerged predicting the binding residues
of proteins from sequences with the help of machine learning [3,4,9–11]. However, due
to the limited number of accurately measured protein crystal structures [12,13], most
sequence-based predictors can only be trained using evolutionary conservatism profiles
and predicted secondary structure.

AlphaFold2 (AF2) [14] is a DeepMind-released deep learning-based framework that
can predict the 3D structure of some proteins with remarkable accuracy from primary
sequences. DeepMind also released another deep learning framework, named AlphaFold-
Multimer [15], to predict the structure of the complex of proteins. However, when facing
single chains, the model does not perform well [15]. Therefore, when dealing with a single-
sequence prediction task, a direct consideration is predicting the binding site based on the
structure generated by AlphaFold2 (Figure 1A,B).

Figure 1. (A) The prediction task of single-sequence PPI site prediction. (B) The figure showed the
protein 3D structure predicted from primary protein sequences using AlphaFold2. (C) In the spatial
filtering strategy, “neighborhood” is defined as the entirety of all residues in a space with a certain
distance centered on the Cα atom of the current residue.

Some studies have indicated that directly feeding the coordinates (the position of
residues in space) of the proteins into the model is not an ideal choice [16–18]. One possible
reason is that deep learning networks may not be able to directly match the coordinates
of atoms to the fold pattern of proteins. Thus, it is crucial to translate coordinates into
a form that the deep learning model can understand. There are two types of successful
attempts, one of which is combining coevolutionary information with coordinates [19], and
the other is calculating “distance maps” representing the distance between each pair of
residues [16]. One strategy to combine structural information with sequence conservation
information is spatial filtering [19] (similar to spatial convolution on all the Cα atoms of
a protein). Though HHBlits profiles gradually become a dominant feature of sequence
conservation [20], its status as the coevolutionary information in spatial filtering has not
been evaluated.

In this study, we curated a protein-protein interaction site dataset containing
1742 human proteins reported in DELPHI [9] and generated the 3D structure (PDB files) of
these proteins by AlphaFold2. Then, we built a deep learning framework and evaluated the
spatial filtering strategy based on the HHblits profiles with various filtering scales, defining
the new conservation value of each residue as the mean original conservation value of all
residues in its neighborhood. Besides, we implemented the singular value decomposition
(SVD) of the distance map and calculated the second structure and relative accessible sur-
face area (rASA) directly from the PDB files generated by AlphFold2 and evaluated these
features. Furthermore, we evaluated the effectiveness of these derived features on a mem-
brane protein-metal binding site dataset reported in MPLs-Pred [21] using the precision
metric. Computational experimental results showed that all these features were helpful in
protein binding site prediction when using deep learning. Finally, we randomly selected
the protein P17081 and mutated the 97th residue of its protein sequence from Q to R as
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an example of a case study. We found that AlphaFold2 might predict shifted 3D structures
of some mutated proteins from the corresponding wild-type proteins, and gave a visualized
example that the spatial filtering strategy might introduce these structural changes to deep
learning models when mutations happen. The datasets and support materials are both
available at https://github.com/Liuzhe30/space-hhblits (created on 26 February 2022).

2. Materials and Methods
2.1. Datasets

We selected 1742 human proteins from the dataset reported in DELPHI [9] to evaluate
different coding strategies of structural information on single-sequence PPI site prediction.
The sequences were clustered by PSI-CD-HIT [22] with a threshold value of 25%. Next,
we extracted the PDB files of these chains from the AlphaFold Protein Structure Database
(a set of AlphaFold2 protein structure predictions from DeepMind and EMBL-EBI, version:
2022-02) [23]. These PDB files contained the coordinates of all the atoms of each protein. In
this work, the coordinates of alpha carbon atoms (Cα) were taken as the spatial position of
residues. Details of the dataset division and binding residues are given in Table 1.

Table 1. The datasets for training, validation, and testing are shown in the table.

Dataset Proteins
Residues % Binding

out of TotalTotal Binding Non-Binding

Training 1682 970,997 66,143 904,854 6.8119
Validation 30 16,893 1607 15,286 9.5128

Test 30 20,051 1460 18,591 7.2814
Total 1741 1,007,941 69,210 938,731 6.8665

2.2. Spatial Filtering with HHBlits

Since the evolutionary information of adjacent residues may improve the prediction
accuracy, we defined the neighborhood of each residue as the entirety of all residues with
a certain distance centered on the Cα atom itself (Figure 1C). The original evolutionary
information was obtained from HHblits, with each protein a 30-dimension matrix [20]. We
defined the distance between residues as the Euclidean distance between the coordinates
of Cα atoms predicted by AlphaFold2. Then, the conservation value of each residue is
replaced by the mean original conservation value of all residues in its neighborhood as a
comprehensive spatial regional feature.

2.3. Feature Engineering

In this work, we prepared five encoding features to represent the protein sequences:
OneHot [24], HHblits profiles [20], SVD [25] of the distance map, secondary structure
(SS) [26], and rASA [27]. A sliding window of 31 residues is used for a given protein to
predict whether the central residue is a protein binding site.

2.3.1. OneHot and HHblits Profiles

The OneHot and HHblits profiles, which represent the sequential information and
sequence conservatism, respectively, are two classic features in sequence-based protein-
related prediction tasks [28–30]. The HHblits profiles were generated by HHblits [20], and
the obtained matrix consisted of 30 dimensions. Note that our main purpose is to evaluate
encoding strategies of 3D structure information of proteins. There is no need to test the
effectiveness of OneHot and HHblits profiles. Here, we took OneHot and HHblits profiles
as the basic feature to ensure the fitting direction of the model.

2.3.2. SVD of the Distance Map

As for encoding protein 3D structures, distance maps of proteins representing the
pairwise distance between residues have proved useful in previous research. However, the

https://github.com/Liuzhe30/space-hhblits
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truncation of over-long proteins is required to adapt the input size of the neural network. It
would result in poor scalability of deep learning methods. Singular value decomposition
(SVD) could reduce dimension while retaining important components of the original feature
as much as possible [25]. Here, we performed SVD on the distance map of the proteins
according to the formula:

A = UΣVT (1)

where A is the matrix to be decomposed, U and V are the left and right singular matrices,
respectively, and Σ is the singular value matrix. The distance map was represented by the
first k vectors of the VT matrix,

A′m×k = Am×nVn×k (2)

where m is the dimension of the protein sequence, and n is equal to m since the distance
map is symmetric.

2.3.3. The Secondary Structure

Site-specific mutation studies are designed using the secondary structure (SS) of
proteins, which also aids in identifying functional domains [26]. In this study, we assigned
each residue’s secondary structure into three categories: helix (H), strand (E), and coil (C).
Through PDB files generated by AlphaFold2, we were able to extract the secondary structure
labels by the DSSP [31] (merge ‘H’, ‘G’, ‘I’ as ‘H’; merge ‘B’, ‘E’ as ‘E’; merge ‘T’ and
others as ‘C’).

2.3.4. The Relative Accessible Surface Area

The relative accessible surface area (rASA) measures the solvent exposure of protein
residues [27]. rASA is also reported as a powerful property relevant to the characterization
of PPI-binding sites [11]. It can be calculated by the formula:

rASA =
ASA

maxASA
(3)

where ASA is the surface area that is accessible to solvents, and MaxASA is the residue’s
largest conceivable solvent-accessible surface area. Here, the protein sequences were used
to predict PDB files using AlphaFold2, and DSSP [31] was used to determine each residue’s
ASA value. The rASA feature was then estimated using the MaxASA values that had been
reported (Supplementary Table S1) [32].

2.4. Deep Learning Network and Training Strategy
2.4.1. The Architecture of the Deep Artificial Neural Network

To assess the contributions of each feature, we designed an MLP model with many
inputs. The input was fed parallelly into two hidden layers, a dropout layer, a batch
normalization layer, and a dense layer. The model outputs the classification results from
the final dense layer with a softmax activation after concatenating all branches of various
features (Figure 2). It should be noted that only the most basic MLP model was created
and utilized for comparison because our goal was to evaluate the validity of features rather
than to provide a high-performance prediction tool.

The model was implemented using Keras [33] and TensorFlow [34], and we trained
the network on Nvidia GeForce RTX 3090 GPUs. Here, 1024 was chosen as the batch size.
Weighted binary cross-entropy was used as the loss function. We set the class weights of
binding sites and non-binding sites to 10 and 1, respectively.
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Figure 2. The structure of the MLP model.

2.4.2. Performance Evaluation

Precision was chosen as the assessment parameter in this downstream task because
predicting binding sites and non-binding sites are regarded as a classification challenge,
and we were more interested in the model’s capacity to identify actual protein binding
sites. The formula for calculation of Precision is as follows:

Precision =
TP

TP + FP
(4)

where true positive (TP) stands for the number of binding sites (residues) that were pre-
dicted properly, and false positive (FP) stands for those that were predicted wrongly. It
is important to note that, in order to make comparisons easier, we employed just one
assessment metric. This was done since we only wanted to compare the advantages of
various features within the same model, not the predictor’s overall performance.

3. Results
3.1. Comparison between Various Spatial Filter Radiuses with HHblits

Previous work has proposed spatial neighbor–based PSSM to predict RNA-binding
sites using structure-known proteins and proved this new encoding strategy outperformed
the standard and smoothed PSSM [19]. However, serving as a conservative profile like
PSSM, the HHblits profile has not been evaluated. To explore whether the spatial filter
strategy is effective in information fusion when AlphaFold2 serves as the 3D structure
predictor, we evaluated the effect of its combination with HHBlits under different filter
radiuses (see Table 2). In this experiment, the baseline of the control was defined as the
model’s prediction performance trained on the simple splicing of OneHot and the standard
HHblits profiles (“0 Å”).

It can be observed that by taking the average performance of the five replicates as
the criterion, with the increase in filtering radius, the predicted performance increased
first and then decreased compared with the baseline (average precision = 0.276 ± 0.035),
reaching a peak at about 7 Å (average precision = 0.630 ± 0.075), probably due to the large
size of filters causing information confusion and introducing noise into the model. The
experimental results show that the spatial filtering strategy based on HHblits is an effective
and acceptable way to encode structural information for deep learning models.
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Table 2. Comparison of different spatial filter radiuses. Five independent replicates were performed
for each radius to eliminate random errors.

E1 E2 E3 E4 E5 Average STD

0 Å (no filtering) 0.344 0.264 0.250 0.246 0.276 0.276 0.035
3 Å 0.244 0.245 0.447 0.314 0.234 0.297 0.080
5 Å 0.282 0.275 0.231 0.196 0.427 0.282 0.079
6 Å 0.299 0.503 0.399 0.515 0.406 0.424 0.088
7 Å 0.623 0.743 0.508 0.656 0.618 0.630 0.075
8 Å 0.545 0.472 0.646 0.603 0.544 0.562 0.066
9 Å 0.575 0.482 0.369 0.450 0.378 0.451 0.075

11 Å 0.368 0.445 0.421 0.616 0.451 0.460 0.083

Bold fonts are the best computational experimental results. E1–E5 represents the precision metric of five indepen-
dent replicates on the test set.

3.2. Ablation Study of AlphaFold2-Derived Features on Single-Sequence PPI Site Prediction

We also evaluated the contribution of other features based on the protein structure
predicted by AlphaFold2 besides HHblits. This work evaluated the singular value decom-
position (SVD) of the distance map, the secondary structure, and the relative accessible
surface area (rASA) of each residue. Previous work usually fetched the secondary structure
and rASA using sequenced-based prediction tools when the real structures of proteins were
unknown [35,36]. Now with AlphaFold2, we have the opportunity to directly calculate
these features from the predicted accurate 3D structures as new predicted features different
from those predicted by traditional sequence-based tools. For the convenience of calcula-
tion and scalability, we adopted eight dimensions and 16 dimensions of features extracted
from singular value decomposition of the distance matrix (SVD8 and SVD16).

As shown in Table 3, compared with the baseline (average precision = 0.276 ± 0.035),
the introduction of SVD8, SVD16, SS, and rASA all positively affect the prediction of binding
sites and non-binding sites. It was observed that the performance with the introduction of
rASA is marginal with the precision of 0.594 ± 0.078, which means that the rASA based
on the predicted protein structure strongly improves the performance of prediction of PPI
sites. This result is consistent with the experimental report that solvent accessibility plays
a critical role in PPI site prediction [37]. We noticed that the performance of SVD16 was
slightly decreased compared with SVD8, which may be due to the redundant information
introduced by the high-dimensional matrix. Since the rotation invariance of deep learning
networks hurts their performance when handling numerous uninformative features, the
redundant information of the higher-dimensional SVD matrix might cause a decrease in
the prediction performance [38].

Table 3. Ablation study of AlphaFold2-derived features on single-sequence PPI site prediction.

E1 E2 E3 E4 E5 Average STD

Onehot + HHblits (Baseline) 0.344 0.264 0.250 0.246 0.276 0.276 0.035
Onehot + HHblits + SVD8 0.540 0.359 0.453 0.587 0.551 0.498 0.092

Onehot + HHblits + SVD16 0.459 0.505 0.460 0.371 0.396 0.438 0.054
Onehot + HHblits + SS 0.510 0.348 0.471 0.594 0.585 0.502 0.100

Onehot + HHblits + rASA 0.479 0.603 0.673 0.536 0.681 0.594 0.078

Bold fonts are the best computational experimental results. E1–E5 represents the precision metric of five indepen-
dent replicates on the test set.

3.3. Evaluation of AlphaFold2-Derived Features on Membrane Protein-Metal Binding
Site Prediction

Membrane proteins (MPs) are an important type of protein involved in various crucial
biological functions [39]. Locating ligand binding sites and finding the functionally impor-
tant residues from protein sequences is helpful in understanding their function [40]. Here,
we collected 1584 membrane protein chains reported in MPLs-Pred [21] to evaluate the
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AlphaFold2-derived features on protein-metal binding sites. The sequences were clustered
using CD-HIT with a threshold value of 30% [22]. The predicted 3D structure of these
proteins was obtained from the AlphaFold Protein Structure Database [23]. In this section,
five features were generated for evaluation, namely Space-HHblits (with a radius of 7 Å),
SVD8, SVD16, SS, and rASA. The ratio of class weights was set to 3:1 for positive and
negative samples, respectively.

As shown in Table 4, compared with the baseline (average precision = 0.470 ± 0.039),
the introduction of Space-HHblits (with the radius of 7 Å), SVD8, SVD16, SS, and rASA
all improved the prediction of binding sites and non-binding sites. In this task, SVD8
performed best with the precision of 0.627 ± 0.019, while rASA brought a relatively small
boost (average precision = 0.591 ± 0.020). Different from the prediction of the PPI binding
site, membrane proteins have a special external environment, and the binding site of
metal ions may not completely depend on the exposure of residues. As in PPI binding
site prediction, the performance of SVD16 was slightly decreased compared with SVD8,
indicating that it is the efficiency of features, not dimensionality, that is more useful
for prediction.

Table 4. Evaluation of features on membrane protein-metal binding site prediction.

E1 E2 E3 E4 E5 Average STD

Onehot + HHblits (Baseline) 0.528 0.428 0.505 0.442 0.446 0.470 0.039
Onehot + Space-HHblits (7 Å) 0.645 0.601 0.602 0.620 0.588 0.611 0.020

Onehot + HHblits + SVD8 0.601 0.630 0.640 0.653 0.610 0.627 0.019
Onehot + HHblits + SVD16 0.600 0.629 0.639 0.606 0.574 0.610 0.023

Onehot + HHblits + SS 0.643 0.620 0.612 0.597 0.635 0.621 0.016
Onehot + HHblits + rASA 0.556 0.602 0.615 0.598 0.586 0.591 0.020

Bold fonts represent the best computational experimental results. E1–E5 represents the precision metric of five
independent replicates on the test set.

3.4. An Example of a Protein Carrying Variant

Variations in proteins may result in disrupting existing protein interactions or forming
new interactions [41]. Prediction tasks, such as estimating the mutations’ effects on PPI,
would encounter the challenge of how to teach the model to realize the changes in proteins
were caused by mutations [42]. The common solution is to compute the protein sequence
conservation before and after the mutation happens. AlphaFold2 used a multiple sequence
alignment (MSA) during training [43], which could identify the difference between se-
quences with changes [44], such as mutational changes; thus, we assume that AlphaFold2
might produce a different protein structure for input sequence with changes based on
alignment results from MSA (Supplementary Figures S1–S3).

In this section, we used a protein chain (UniProt ID: P17081) as an example case to
assess whether spatial filtering could efficiently encode the structural effects of mutations.
We artificially mutated the 97th residue from Q to R (P17081_Q97R), as shown in Figure 3.

We then produced standard HHblits profiles for P17081 and P17081_Q97R and per-
formed spatial filtering based on their corresponding structures. In spatial filtering, the
average value is calculated each time when a neighbor is added to amplify the benefit
of smoothing brought by filtering. Next, for standard HHblits and spatially filtered HH-
blits profiles, we calculated the change rates, RHHblits−classical and RHHblits−spatial using the
following formula:

RHHblits =
∆HHblits

Original HHblits
=

Mutated HHblits−Original HHblits
Original HHblits

. (5)
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Figure 3. The 3D visualization of UniProt ID: P17081 (colored in yellow) and P17081_Q97R (colored
in blue) using PYMOL. The mutated residue is colored red. The folded structure of mutant protein
predicted by AlphaFold2 is roughly identical to the pre-mutant protein, except for some minor shifts.
The RMSD between the structure of P17081 and P17081_Q97R is 0.046 Å calculated by PYMOL.

As shown in Figure 4, before spatial filtering, the pattern of the change rate of standard
HHblits profile was seemingly random, while the feature graph became smooth after
filtering. Remarkably, in Figure 4B, the change rate of the 29th residue (Y), instead of
the central residue, was shown as a highlighted line. Next, we calculated the Euclidean
distance of each residue to the mutated site before and after the mutation happened. We
found that the value of the change rate of distance at the 29th residue (Y) was also at its
maximum (Figure 4C). This indicated that by taking the mutation position as the reference
point, the 29th residue (Y) was the one with the largest spatial position change upon the
mutational impact.

Figure 4. The visualization of the change rate of HHblits and Euclidean distance to the mutated
residue before and after mutation. Taking the mutant residue as the center, we simulated the operation
of the sliding window and clipped the sequence into a fragment with a length of 31 residues. The 16th
position represents the mutant residue. (A) Heatmap of the change rate of classical HHblits profiles.
(B) Heatmap of the change rate of HHblits with spatial filtering (radius = 7 Å). The highlighted
area represents the 29th residue (Y) of the current window. (C) Heatmap of the change rate of the
Euclidean distance to the mutation residue.
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The computational experimental results show that AlphaFold2 might have the ability
to predict a shifted 3D structure of the mutant protein from the corresponding wild-type
protein, and the spatial filtering strategy might have the potential to embed the structural
variation information into deep learning models when a mutation happens. This approach
provides a new feature of the mutant protein carrying information different from the
original protein, which might be helpful in some sequence-based deep learning tasks, such
as predicting the effect of mutations on PPIs. Although AlphaFold2 currently is unable to
predict all the structural effects of missense mutations correctly, it is conceivable that the
incorporation of structure-disrupting mutations experimental data will enable this feature
in future versions of protein structure prediction programs [45].

4. Discussion

The appearance of AlphaFold2 sheds new light on some tasks that are limited by the
need for known protein structures. In this study, we evaluated the effects of spatial filtering,
SVD of the distance map, calculating the secondary structure of proteins, and the rASA
feature with the help of AlphaFold2 on single-sequence protein binding site prediction.
The computational experiment results showed that all these strategies were effective and
suitable to encode structural information for deep learning models. These coding strategies
with AF2-predicted structures give new predicted features that might be useful for some
deep learning-based prediction tasks.

Some limitations can still be found in our work. Firstly, in the computational ex-
perimental design, some variables, such as sliding window size, batch size, and model
architecture, were not tested. Since we only want to measure the benefit of different features
calculated from the PDB files predicted by AlphaFold2, rather than evaluate the overall per-
formance of different deep learning networks, only a simple MLP model was implemented,
and the parameters of the model were fixed after simple adjustments based on experience.
Moreover, limited by computing cost, we did not evaluate the distance map but reduced
its dimension with the help of SVD. Using a sliding window will undoubtedly further
reduce the information carried by the distance map, which may lead to the deviation of the
original effect of this feature.

It is believed that the emergence of AlphaFold2 brings both opportunities and challenges.
In the future, we will continue to explore different coding approaches to AlphaFold2’s outputs
and validate them on more downstream tasks (including mutation-containing tasks) with
more complicated deep learning networks. Since there are many well-established models
for protein and protein complexes structure prediction other than AlphaFold, we will also
evaluate various coding strategies of the 3D structure predicted from different predictors
in our next version.

5. Conclusions

In this study, we evaluated the effects of five processing strategies of coordinates
generated by AlphaFold2, namely spatial filtering, the singular value decomposition (SVD)
of distance map (8D and 16D), and calculating the secondary structure feature and relative
accessible surface area (rASA) feature of proteins. The computational experiment results
showed that all these strategies were effective and suitable to encode structural information
for deep learning models. These strategies generate new predicted features that might be
useful in some deep learning-based tasks, such as predicting the binding site of proteins
from primary sequences.
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