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Abstract

The carambola fruit fly, Bactrocera carambolae, is a tephritid native to Asia that has invaded

South America through small-scale trade of fruits from Indonesia. The economic losses asso-

ciated with biological invasions of other fruit flies around the world and the polyphagous behav-

iour of B. carambolae have prompted much concern among government agencies and

farmers with the potential spread of this pest. Here, ecological niche models were employed

to identify suitable environments available to B. carambolae in a global scale and assess the

extent of the fruit acreage that may be at risk of attack in Brazil. Overall, 30 MaxEnt models

built with different combinations of environmental predictors and settings were evaluated for

predicting the potential distribution of the carambola fruit fly. The best model was selected

based on threshold-independent and threshold-dependent metrics. Climatically suitable areas

were identified in tropical and subtropical regions of Central and South America, Sub-Saharan

Africa, west and east coast of India and northern Australia. The suitability map of B. carambola

was intersected against maps of fruit acreage in Brazil. The acreage under potential risk of

attack varied widely among fruit species, which is expected because the production areas are

concentrated in different regions of the country. The production of cashew is the one that is at

higher risk, with almost 90% of its acreage within the suitable range of B. carambolae, followed

by papaya (78%), tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%)

and avocado (20%). This study provides an important contribution to the knowledge of the

ecology of B. carambolae, and the information generated here can be used by government

agencies as a decision-making tool to prevent the carambola fruit fly spread across the world.

Introduction

In recent years, there has been a growing concern about the threats to biodiversity, food secu-

rity and human health associated with biological invasions [1]. This is particularly problematic

in the case of agricultural and forest pests because their dispersal is facilitated through trade of

products [2]. Biological invasions of agricultural and forest pests result in economic losses of

billions of dollars worldwide [3]. Dipterans of the family Tephritidae, commonly known as

fruit flies, are a representative example of distribution expansion in recent years and how
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biological invasions may have negative consequences for agriculture and natural environments

[4]. The family Tephritidae includes approximately 4000 species from 500 genera [5], of which

1500 fruit fly species feed on fruits and more than 250 species cause significant losses in eco-

nomic important crops [6]. Fruit flies are found in practically all areas of the world where fruits

are cultivated, and the abundance and intensity of attacks in some regions have led to nearly

total crop failure [6]. In addition to the direct losses associated with damage to fruits and the

costs of pest control or eradication, fruit flies also cause indirect losses resulting from quaran-

tine restrictions imposed by importing countries to prevent the entry and establishment of

unwanted species in their territory [4].

The economic losses associated with biological invasions of fruit flies around the world

have prompted a major concern among government agencies and farmers with the introduc-

tion of the carambola fruit fly, Bactrocera carambolae Drew and Hancock, in South America

[7]. This species was identified in the continent for the first time in the county of Paramaribo,

Suriname, probably introduced through small-scale trade of fruits from Indonesia [8]. In the

subsequent years, the pest spread to French Guyana (1989) and more recently to Brazil (1996),

where it is considered A2 quarantine pest [7].This indicates that B. carambolae has potential to

spread to other regions of the world where habitat is favourable.

The carambola fruit fly is a polyphagous species that feeds on more than 100 host plants,

including several species of economic importance, such as avocado, guava, lemon, mango, orange

and papaya among others [7]. Given the availability of host plants, the risks of B. carambolae
spreading throughout the world should be seriously considered, particularly in areas where fruit

crops are cultivated in large scale. The carambola fruit fly invasion in these regions may result in

serious economic losses. For instance, estimates indicate that the spread of B. carambolae through-

out Brazil may result in an economic loss of US$ 30.7 million in the first year, and approximately

US$ 92.4 million after the third year of infestation [7]. In addition to economic losses, there is a

growing concern over the negative impacts that the increasing use of chemicals for pest control

may cause on the environment [7]. In this context, mapping the areas at risk of invasion by B. car-
ambolae is an important tool for decision-making aimed at preventing the spread of this pest.

Ecological niche models (ENMs) have been widely used as a decision-making tool in pest

risk analysis based on their ability to forecast suitable areas for pest occurrence, allowing the

adoption of preventive control measures [9]. Correlative models are the most commonly used

approach for this purpose. This method associates species occurrence data with environmental

geographic data to generate a suitability gradient that is projected onto a geographic space

[10]. In this study, ENM approaches integrated with spatial analysis were used to answer a

series of questions involving the potential risks of B. carambolae spreading across the world.

First, environmental geographic data of each known occurrence for the carambola fruit fly was

used to compare the climate space occupied by native and invasive populations. Then, correla-

tive ENMs were used to predict the suitable environments available to B. carambolae. Finally,

by integrating ENM and spatial analysis, the extent of the fruit acreage in Brazil that may be at

risk of attack by B. carambolae was assessed. Together, these information may be used by pol-

icy makers as a decision tool to prevent the spreading of the carambola fruit fly to the suitable

areas, including the major fruit producing areas of Brazil.

Material and Methods

Species occurrence data

Records of confirmed presences of B. carambolae were obtained from the literature, as well as

from online databases such as the Global Biodiversity Information Facility (GBIF, http://www.

gbif.org/) and SpeciesLink (http://splink.cria.org.br/). When geo-referenced localities were not
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available (only locality names), geographic coordinates were obtained with the software Goo-

gle Earth. Overall, 51 unique occurrence points were assembled, of which 36 points were from

the native range and 15 points were from invaded areas in South America (Suriname, French

Guyana and Brazil–S1 Table). The precise location of all surveyed occurrence were checked

using the software Google Earth and only localities within the known distribution range of the

species were used for analysis [11]. In order to reduce spatial autocorrelation, these records

were submitted to a spatial filtering, delimiting a minimum distance of 10km between each

locality data [12,13]. This is greater than the maximum dispersal distance offfi 5km reported

for Bactrocera species, with the majority of individuals recaptured within 1 km from the release

point [14, 15]. This procedure was performed using SDMtoolbox [16], resulting in a total of 44

unique occurrence records.

Environmental data

Current climate data were obtained from the Worldclim database at the resolution of 2.5 arc-

min (available at http://www.worldclim.org) [17]. The Worldclim dataset is derived from mea-

surements of monthly temperature and precipitation values collected from weather stations

across the world between 1950 and 2000 [17]. The predictor variables employed to assess cur-

rent climate conditions were selected among nineteen bioclimatic variables that are widely

used in studies of ecological niche modelling because they capture annual climatic ranges and

limiting factors that are known to influence species geographic distribution [18].

Climate space occupied by native and introduced populations

Projection of models onto another region relies on the assumption that invasive species con-

serve their climatic niche in the invaded regions [19]. However, recent studies have demon-

strated that species can change their realized climatic niche during invasion [19–21]. A

principal component analysis (PCA) was run using all environmental variables to compare the

climate space occupied by native and invasive populations of B. carambolae. A thousand ran-

dom points from the native and invasive background were added to the PCA analysis (see

background selection below), and the first two components were plotted as a biplot, clustering

the native and invasive populations with convex hulls to investigate niche overlap within the

environmental space [22].

Ecological niche modelling procedures

ENMs were developed using a maximum entropy algorithm implemented in the software

MaxEnt version 3.3.3k [23]. MaxEnt is a general-purpose machine learning software that uses

presence-only data [23]. It has been widely used to predict species distribution, including

tephritid species [4,22] and in addition to its robust statistical properties, MaxEnt shows a high

performance across several niche modelling methods for presence-only data [24].

Building models with an appropriate amount of complexity is critical to avoid over- and

under-fitting [25], and produce robust inference [26], particularly when they are transferred to

other geographic regions. Model complexity was addressed with the following steps: (i) spatial

filtering of occurrence data (as previously described), (ii) using the geographically structured

modeling approach [27], (iii) reducing the number of environmental predictors through an a
priori selection of uncorrelated variables, (iv) delimiting the study area, and (v) tuning experi-

ments through different combinations of feature classes and regulation multiplier values.

A modified k-fold cross-validation (commonly called masked geographically structured

cross-validation) was employed in the modelling process [27]. Following this approach, occur-

rence data was partitioned in four groups based on spatial clustering of occurrence points [16],
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rather than split the data randomly in groups of equal sample size, as the k-fold cross-valida-

tion implemented in MaxEnt. Models were built using k– 1 groups for calibration, and then

evaluated with the withheld group. This method provides spatially independent evaluation

data, and has been suggested for studies involving the transference of models across space

[27,28]. This procedure was performed using SDMtoolbox [16].

Several studies have demonstrated that less complex and robust models can be produced by

excluding highly correlated variables, because they do not add new information to the model

[29,30], and/or through a priori selection of variables based on their biological significance

[29]. Here, these two procedures were adopted for variable selection. First, two sets of variables

were selected and then the Pearson’s correlation test performed with the software ENMtools v

1.3 [31] was used to ensure the lack of multicolinearity among the selected predictors [32]. The

first set of predictors was selected based on previous studies that successfully modeled the dis-

tribution of other Bactrocera species [4,22] and included the following climatic variables:

annual mean temperature (Bio1), mean diurnal range (Bio2), maximum temperature of warm-

est month (Bio5), minimum temperature of coldest month (Bio6), annual precipitation

(Bio12), precipitation of wettest (Bio13) and driest month (Bio14). Additionally, a second set

of variables was employed by removing the variables Bio5 and Bio6.

MaxEnt and most correlative ENMs generate pseudo-absence sample points randomly

selected from the background study area [33]. While some studies used a minimum convex

polygon around the occurrence points as background, others adopted a less arbitrary selection

based on biophysical classifications such as biomes [34] or climatic zones [22,35]. Here, biocli-

matic methods of background selection were adopted given their simplicity and practicality

and because they have proved to be effective for other fruit fly species [22]. The distribution

records were intersected with Köppen-Geiger climate zones obtained from CliMond (http://

www.climond.org) at the spatial resolution of 2.5 arc-minutes. The climate zones containing

one or more distribution records were used to restrict background during model training

(Fig 1).

Fig 1. Background and occurrence points of native (b) and invasive (a) populations of Bactrocera carambolae used

in the modeling process. Colours refer to Köppen-Geiger classifications in the native and invaded range, while the

grey area represents areas not used as background. Af = extremely hot and moist; Am = extremely hot and xeric;

Aw = extremely hot and arid.

doi:10.1371/journal.pone.0166142.g001
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MaxEnt allows users to select a variety of “feature classes” that can be used to build very

complex and highly nonlinear response curves [26]. A feature is a function of an environmen-

tal variable, and in MaxEnt it can be a combination of six classes: linear (L), quadratic (Q),

product (P), hinge (H) and threshold (T). Because parsimonious models can be generated

using different combinations of feature classes [36–38], five of these combinations were tested

in this study: L; H; LQ; LQH and LQHPT.

While users can specify the feature to be used, MaxEnt automatically selects individual fea-

tures for each predictor that contribute most to model fit using regularization coefficient β
[23,26]. The regularization coefficient can be tuned by multiplying it by a user-specified con-

stant (Regularization multiplier), altering the overall level of regularization rather than chang-

ing the β parameter individually [26,27]. Studies have demonstrated that less complex and

transferable models can be built by tuning the regularization multiplier to values higher than

the default of MaxEnt [26, 27,38]. Therefore, in addition to MaxEnt default, regularization

multiplier values of 3 and 5 were also tested in the development of the models.

Model evaluation

The performance of the models was assessed using threshold-independent and threshold-

dependent metrics. As threshold-independent evaluation, the Area Under the Curve (AUC)

and the Bayesian Information Criterion were used (BIC). For presence-background evalua-

tions, AUC assess the discriminatory ability of the model, quantifying the probability that the

model correctly ranks a random presence locality higher than a random background pixel

[27]. AUC values range from 0 to 1; a value of 0.5 indicates the model did not perform better

than random; values between 0.5 and 0.7 indicate poor performance; between 0.7 and 0.9 indi-

cate reasonable or moderate performance; while values higher than 0.9 indicate high perfor-

mance [10]. Additionally, BIC was calculated with the software ENMtools v1.3 [31] using the

full data set. BIC provides information on the relative quality of a model taking into account

model complexity (number of parameters) and goodness-of-fit [25].

Two threshold-dependent metrics were used to evaluate model performance: omission

rates (OR) at the minimum training threshold (MPT), and OR at 10% training presence

threshold (TP10). The expected value of OR at MTP is 0 and 0.10 at TP10. Values higher than

the expected indicate over-fitting and poor performance of the models [13,28]. In order to

select models with high performance and low complexity, the following criteria was adopted:

OR at MTP and TP10 closer to 0 and 0.10, respectively, low BIC values and AUC values higher

than 0.8.

Model transfer across space

Once the best model was selected, it was projected onto other regions of the world to access

the global potential distribution of B. carambolae. Because models are calibrated based on the

relationship between occurrence records and climate in the study area, projecting it onto other

regions with non-analogous climatic conditions can be problematic, since the models are not

informed about how species would respond to climatic novelty [39,40]. To assess climate nov-

elty in the transferred regions, a Multivariate Environmental Similarity Surface test (MESS)

implemented in MaxEnt was performed. MESS is an index that expresses the similarity of any

given point to a reference set of points, with respect to the chosen predictor variables [32].

Negative values discriminate areas where at least one variable has a value that is outside the cal-

ibration range. Additionally, we restricted model projections to climate conditions encoun-

tered during training by disabling extrapolate options in MaxEnt. The final model was run

with the logistic output and then binary maps displaying unsuitable and suitable environments
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were built using the thresholds MTP and TP10. Areas above the MTP were referred as suitable,

whereas areas above TP10 were considered optimal for B. carambolae [41].

Spatial analyses

A survey in the CABI database (www.cabi.org/isc/datasheet/8700) was conducted to assess the

plants used as host by B. carambolae. Based on this survey, the acreages of the following eco-

nomically important fruit species were obtained for each Brazilian municipality in 2014 from

the database of the Brazilian Institute of Geography and Statistics (IBGE, available at www.

ibge.gov.br): avocado, cashew, guava, orange, lemon, papaya, mango and tangerine (S1 Fig). In

order to quantify the production areas at risk of attack, the suitability map of B. carambola
were intersected against maps of fruit acreage in Brazil. Municipalities that partially or totally

overlapped with the predicted distributions of the carambola fruit fly were accounted as at risk

of attack. Both the acreage and the number of municipalities at risk of attack by B. carambolae
were assessed.

Results

Climate space occupied by native and introduced populations

The carambola fruit fly is found across three and two Köppen-Geiger climatic zones in its

native and invaded ranges, respectively. In both native and invaded ranges, B. carambolae pop-

ulations predominantly occur in tropical zones with extremely hot and moist regions (S2 Fig).

The principal component analysis of the climatic data defined a climate space of reduced

dimensionality allowing the investigation of niche conservatism and differentiation. The first

two components of the PCA were significant and together explained 70.3% of the overall varia-

tion. The principal component analysis showed a high niche overlap between native and intro-

duced populations (Fig 2). The accessible climate space available to B. carambolae in its native

and invaded ranges (light and dark grey points in Fig 2) forms two overlapping clouds, and

Fig 2. Principal component analysis (PCA) performed with 19 bioclimatic variables. Red symbols represent

native populations; blue symbols are invasive populations, light and dark grey points represent 1000 random points

extracted from the native and invasive backgrounds, respectively.

doi:10.1371/journal.pone.0166142.g002
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indicates that the accessible climate space in the invaded range includes only a portion of the

climate space occupied in the native region.

Model assessment

Overall, 30 MaxEnt models built with different combinations of environmental predictors, fea-

ture classes and regularization were evaluated for predicting the potential distribution of the

carambola fruit fly (Table 1). Although all models performed better than random, AUC values

varied widely, ranging from 0.61 to 0.92. This variation in model performance can also be

observed by the comparison between observed and expected omission rates at the thresholds

MTP and TP10. Some models showed omission rates of up 0.31 above the expected value. In

general, higher AUC and lower omission rates and BIC values were obtained as regularization

Table 1. Summary of performance statistics of models for Bactrocera carambolae. Best models are highlighted in bold, and the asterisk indicates the

selected one.

MaxEnt settings BIC ΔBIC AUC Omission rate

Variables1 Features RM MPT 10%

Bio1, Bio2, Bio5, Bio6 Bio12, Bio13, Bio14 L 1 982.20 8.95 0.81 0.11 0.28

3 980.28 7.04 0.89 0.11 0.25

5 977.38 4.14 0.92 0.11 0.14

H 1 1017.61 44.36 0.76 0.27 0.33

3 978.27 5.03 0.91 0.02 0.17

5 980.89 7.65 0.90 0.11 0.12

LQ 1 980.51 7.27 0.84 0.11 0.25

3 976.85 3.61 0.89 0.06 0.16

5 973.52 0.28 0.90 0.04 0.14

LQH 1 1005.56 32.32 0.73 0.18 0.36

3 985.47 12.23 0.89 0.04 0.20

5* 973.24 0.00 0.91 0.02 0.14

LQHPT 1 999.15 25.90 0.76 0.18 0.41

3 980.92 7.68 0.89 0.04 0.22

5 979.74 6.50 0.88 0.07 0.18

Bio1, Bio2, Bio12, Bio13, Bio14 L 1 978.63 5.39 0.70 0.11 0.30

3 980.34 7.09 0.75 0.11 0.25

5 977.38 4.14 0.84 0.07 0.16

H 1 1007.18 33.93 0.73 0.09 0.27

3 975.17 1.93 0.84 0.02 0.16

5 980.89 7.65 0.86 0.02 0.14

LQ 1 980.49 7.25 0.73 0.07 0.30

3 976.85 3.61 0.70 0.07 0.29

5 973.95 0.71 0.86 0.05 0.14

LQH 1 998.45 25.20 0.70 0.05 0.21

3 985.47 0.89 0.80 0.05 0.20

5 973.83 0.59 0.86 0.03 0.14

LQHPT 1 1004.47 31.22 0.61 0.16 0.39

3 974.13 0.89 0.75 0.09 0.25

5 1 6.50 0.82 0.03 0.18

1Bio1 = Annual mean temperature, Bio2 = Mean diurnal range; Bio 5 = Maximum temperature of warmest month; Bio 6 = Minimum temperature of coldest

month; Bio12 = Annual precipitation; Bio13 = Precipitation of wettest month and Bio14 = Precipitation of driest month.

doi:10.1371/journal.pone.0166142.t001
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multiplier increased. The models built using the default settings of MaxEnt showed the highest

omission rates, indicating model over-fitting. Based on the criteria adopted in the present

study, the best model included seven variables (Bio1, Bio2, Bio5, Bio6, Bio12, Bio13, Bio14),

linear, quadratic and hinge features, regularization multiplier equals to 5, and showed the low-

est BIC value and omission rates, as well as AUC higher than 0.9.

Mean diurnal temperature range (Bio2), precipitation of the driest (Bio14) and wettest

month (Bio 13) were the most important predictors that contributed to the final model. The

probability of presence decreased as mean diurnal temperature range and precipitation in the

driest month increased. By contrast, higher precipitation in the wettest months increased the

probability of occurrence of B. carambolae (S3 Fig).

Potential distribution of B. carambolae

Potential distribution maps with logistic and binary outputs showing suitable (MTP) and opti-

mal (TP10) conditions are shown in Fig 3. Climatically suitable areas were predicted in Central

and South America, Sub-Saharan Africa and Southeast Asia. In Central America, these areas

included Costa Rica, Guatemala, Honduras, Panama and eastern coast of Mexico. In South

America, suitable areas were identified in Brazil, Colombia, Ecuador and Venezuela within the

Amazon region, east coast and isolated areas in Midwest and Southern Brazil, Southern Para-

guay and Northern Argentina. Optimal areas for the occurrence of B. carambolae included

Amazon region and east cost of Brazil.

In Africa, suitable habitats were predicted in sub-Saharan countries within monsoon, tropi-

cal rainforest and tropical savanna climate conditions, including Democratic Republic of

Fig 3. Predicted suitable habitats for B. carambolae showing logistic (a) and binary outputs (b), as well as MESS

analysis (Elith et al. 2010). Warmer colors in the logistic map indicate high suitability. The binary outputs include

suitable and optimal conditions for the species, represented by the minimum presence threshold (MTP) and 10%

training presence threshold (TP10), respectively.

doi:10.1371/journal.pone.0166142.g003
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Congo, Congo, Gabon, Equatorial Guinea, west of Angola and Southern Nigeria, Benin, Togo,

Ghana, Ivory Coast, Liberia and Sierra Leone, northern and southeastern Tanzania, Southeast

Kenya and east coast of Mozambique and Madagascar (Fig 3). Areas predicted as optimal for

B. carambolae included western sub-Saharan Africa and Southeastern Democratic Republic of

Congo and east coast of Mozambique and Madagascar. Projection also indicates that areas in

east and west coast of India and northern Australia are under risk of invasion by B.

carambolae.

The areas predicted as suitable for B. carambolae include mostly regions within the climate

categories of Köppen-Geiger found in its native range, characterized by hot and humid cli-

mates (Af and Am) or extremely hot and arid areas (Aw). This indicates that suitable habitats

typically exhibit a high annual precipitation, but not necessarily throughout the year, similarly

to that found for B. invadens [4]. The areas predicted as suitable in Southern Brazil and China,

which are classified as humid subtropical climate, reinforce these findings, since these regions

are characterized by warm summers with precipitation dispersed throughout the year (Ca and

Cb).

MESS analysis [32] indicating climatic areas outside the model’s calibrated range (non-

analogous climates) are shown in Fig 3. These areas included southwestern South America,

northern and southern Africa and central and southern Australia. An examination of the most

dissimilar variables shows that the differences observed between transferred areas and those

used for calibration are associated with maximum and minimum temperatures and annual

precipitation.

Risks to Brazilian fruit production

The acreage of eight economically important fruit species under risk of attack varied widely,

which is expected because the production of these fruits is concentrated in different regions of

the country (Fig 4). The production of cashew is the one that is at higher risk, with almost 90%

of its production area within the suitable range of B. carambolae, followed by papaya (78%),

tangerine (51%), guava (38%), lemon (30%), orange (29%), mango (24%) and avocado (20%).

In cases such as guava, mango and orange, the percentage of municipality within the potential

distribution range of B. carambolae is higher than the percentage of producing area under risk.

This indicates that major producing areas of these fruits are outside the potential distribution

range of the carambola fruit fly.

Discussion

This study integrated ENM methods and spatial analysis to identify climatically suitable areas

for the occurrence of B. carambolae in a global scale, focusing on the risks of invasion in the

major fruit production areas in Brazil. Prior to the development of the model, niche conserva-

tism was evaluated based on known native and invaded occurrences and the results indicate

that no significant climatic niche shift occurred during the invasion of South America. Also,

the comparison between the niche occupied by native and invaded populations indicates that

the accessible climate space in the invaded range includes only a portion of the climate space

occupied in the native region, suggesting that B. carambolae may expand its actual range in

South America if effective preventive measures are not taken.

The performance of the models varied widely as a result of the changes made in the default

settings of MaxEnt. In this study, the factors that exert most influence on model performance

were regularization multiplier values, followed by the feature classes included in the model

and the number of environmental variables. The models ran with the default settings had com-

paratively poor performance. This indicates the importance of testing different MaxEnt

Potential Distribution of Bactrocera carambolae
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configurations to obtain high-performance models, corroborating the findings of studies con-

ducted with other species [27,37,38,42,43]. Also, by changing the default settings of MaxEnt

one can build models with an appropriate level of complexity, which is a desirable attribute for

improving model’s transferability to other regions [43].

Selection of predictor variables has been recognized as an essential step in the modelling

process [44–46]. Biological significance of the environmental data, resolution, extent of the

study range as well as multicollinearity have been cited as factors influencing model results

[29, 45, 47, 48]. Here, the recommendation that priority should be given to predictors with bio-

logical significance [29,49] was followed and two sets of variables were used. Nevertheless,

only subtle differences in model performance were recorded between the two sets of variables.

Although AUC values were consistently higher when models were run using seven variables

Fig 4. Percentage of counties and acreage of eight economically important fruit species cultivated in Brazil

under risk of attack by Bactrocera carambolae.

doi:10.1371/journal.pone.0166142.g004
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instead of five, the threshold-dependent metrics do not indicate that these models performed

better. This corroborates other studies that question the exclusive use of AUC values for model

comparison and selection [25,50–53].

The combination of different feature classes may generate highly nonlinear response curves

and very complex and over-fitting models [26]. In this context, one can expect that models

built using fewer feature classes result in less complex models with better performance. How-

ever, the results obtained with different species are conflicting; while some studies found that

the default settings generates high performance models [54], others found that forcing the

models to use less features resulted in robust models [27,38]. Former studies have shown that

an appropriate level of complexity is necessary to correctly model the species response to envi-

ronmental factors [26,38]. Here, the appropriate level of complexity was obtained by combin-

ing complex features (LQH) with higher regularization. This indicates the importance of

testing different regularizations to obtain robust models, particularly when projected to other

areas, as previously demonstrated by other studies [27, 28, 37, 38, 54].

Prior to inferring areas of potential invasion, it is worth to emphasize that MaxEnt model

was used in this study to identify suitable climate space for B. carambolae, but without consid-

eration of biological interactions and historical factors related to the species’ geographic distri-

bution [10,35]. Particularly in the case of fruit flies, interspecific competition between exotic

and native species seems to play an important role on their abundance and distribution [55].

This was demonstrated for Bactrocera and other fruit fly species, and interestingly when differ-

ent Bactrocera species invaded new regions previously occupied by polyphagous fruit flies of

another genus, the interspecific competition has generally resulted in a reduction in numbers

or niche differentiation of the established species [55]. In addition to climate suitability, it is

known that propagule pressure (i.e. the number of individuals introduced to a novel region)

influences the likelihood of establishment of an insect species in a new geographic area [3,56].

The propagule pressure depends on the frequency and amount of fruits transported from

infested regions and the likelihood of these fruits being infested with B. carambolae.

Because of the above-mentioned limitations, ENMs should be interpreted as the geographi-

cal representation of the environmental conditions that are suitable for a species [57,58]. In

this context they are an essential tool to identify suitable areas for invasive species, which ulti-

mately represent regions that are more vulnerable to invasion than one presenting unsuitable

conditions [4]. According to model predictions, a significant portion of the Brazilian territory

was identified as suitable for B. carambolae, including east coast, northern region and some

areas of Midwest and Southern Brazil. Several cultivated and wild plant species were identified

as potential hosts for B. carambolae in South America [59,60]. Some of these species have wide

geographical distribution in the region, and may act as corridor of plants, facilitating the

spread of the insect pest through the continent.

The spread of B. carambolae to the areas identified as suitable for the pest may represent a

significant economic loss for producers, since that more than a half of the acreages of crops

such as cashew, papaya and tangerine are within these areas. Severe economic losses can also

occur when only a portion of the acreage of an economically important crop is attacked. This

can be the case of orange, whose Brazilian production comprises almost 35% of the world pro-

duction [61] and 29% of its acreage are within the potential distribution range of B.

carambolae.

In addition to economic losses, the global spreading of B. carambolae may have high social

and environmental costs. Although the economic losses associated with the B. carambolae
invasion of the major fruit producing areas can be quantified, it is difficult to predict the

potential impacts on the environment resulted from an increase in the use of pesticides for

pest control. Recent experiences with the introduction of insect pests in Brazil show that the
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indiscriminate use of highly toxic pesticides is a real threat to environment and human health.

The bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was reported for the

first time in the South American continent in Brazil in 2013 [62,63], causing an economic

damage of approximately US$ 800 million [64]. This situation has led to excessive use of insec-

ticides even when pest populations were low or non-existent, worsening the situation due to

the elimination of natural enemies and increase in environmental contamination [64]. Given

the recent history of biological invasions of insect pests and the potential losses associated with

outbreaks of B. carambolae, it would not be surprising if the same problems experienced in the

recent past reoccur with the carambola fruit fly.

It is widely accepted that preventing invasions is more cost-effective than eradicating or

controlling the invading species once they have established in a region [65,66]. The informa-

tion generated here can be used to the development of pest risk analysis by policy maker and/

or plant protection organizations to determine priority areas for sanitary inspection and

installment of detection traps. Using the information on fruit trade across the country and the

knowledge on the existence of plant corridors associated with the suitability maps generated

here, efforts can be coordinated and concentrated strategically in the areas under risk of inva-

sion in order to prevent the spreading of the pest beyond the currently occupied areas.

In conclusion, the present study used occurrence records associated with climatic data to

compare the climatic space occupied by native and invasive populations of B. carambolae and

employed ENMs to forecast the suitable habitats available for this species in a global scale.

These data were used to estimate the percentage of the fruit acreage at risk of attack by this

pest in Brazil. The area currently occupied by B. carambolae in its introduced range is climati-

cally similar to the native range. Climatically suitable areas were predicted in Central and

South America, in Sub-Saharan Africa and in India and Southern China. Because the produc-

tion of fruits is concentrated in different regions of Brazil, the acreage under risk of attack by

B. carambolae varied widely according to fruit species. The production of cashew is the one

that is at higher risk, with almost 90% of its production area within the suitable range of B. car-
ambolae, followed by papaya and tangerine. This study provides an important contribution to

the knowledge on the ecology of B. carambolae and the data generated here could be used to

help direct further experiments and modeling exercises to develop tools for predicting the

potential spread and impact of the pest.
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