
Published online 27 March 2021 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 1
doi: 10.1093/nargab/lqab019

Sequencing error profiles of Illumina sequencing
instruments
Nicholas Stoler1 and Anton Nekrutenko 2,*,†

1Graduate Program in Bioinformatics and Genomics, The Huck Institutes for Life Sciences, The Pennsylvania State
University, University Park, PA 16802, USA and 2Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802, USA

Received June 05, 2020; Revised February 01, 2021; Editorial Decision February 19, 2021; Accepted March 16, 2021

ABSTRACT

Sequencing technology has achieved great ad-
vances in the past decade. Studies have previously
shown the quality of specific instruments in con-
trolled conditions. Here, we developed a method able
to retroactively determine the error rate of most pub-
lic sequencing datasets. To do this, we utilized the
overlaps between reads that are a feature of many
sequencing libraries. With this method, we surveyed
1943 different datasets from seven different sequenc-
ing instruments produced by Illumina. We show that
among public datasets, the more expensive plat-
forms like HiSeq and NovaSeq have a lower error rate
and less variation. But we also discovered that there
is great variation within each platform, with the accu-
racy of a sequencing experiment depending greatly
on the experimenter. We show the importance of se-
quence context, especially the phenomenon where
preceding bases bias the following bases toward the
same identity. We also show the difference in pat-
terns of sequence bias between instruments. Con-
trary to expectations based on the underlying chem-
istry, HiSeq X Ten and NovaSeq 6000 share notable
exceptions to the preceding-base bias. Our results
demonstrate the importance of the specific circum-
stances of every sequencing experiment, and the im-
portance of evaluating the quality of each one.

INTRODUCTION

Assessing the accuracy of next-generation sequencing has
been the focus of much study since these techniques
emerged. In 2011, studies on the Illumina Genome Ana-
lyzer (GA) and GA IIx discovered an association between
errors and certain sequence motifs leading up to the error
site (1,2). One of the studies also produced a profile of sub-
stitution biases, including a strong preference for T-to-G

substitutions (2). This study made use of a phenomenon
where mates in paired-end sequencing experiments ‘over-
lap’. In this situation, the ends of the two reads cover the
same portion of their source fragment. This allows sequenc-
ing errors in one read to be revealed by the other.

In the past few years, many new sequencing instruments
have been introduced. For instance, Illumina has intro-
duced the HiSeq X Ten, with patterned flowcells, NextSeq
500, with 2-dye chemistry and NovaSeq 6000, combining
both in an industrial-scale platform (3). While the basic
reversible chain-terminator principle remains unchanged,
these are significant modifications which could be expected
to introduce their own biases. For instance, labeling nu-
cleotides with only two fluorophores means that guanine is
detected by the absence of signal (3). Some have reported
that this results in overcalling of G’s when artifacts cause
signal dropout (4). On the other hand, a controlled study
compared HiSeq 2500 and NovaSeq 6000 and indicated a
lower error rate in the NovaSeq (5). Evidently, these new
technologies beg examination to determine their effects on
sequencing errors.

Comparing the error rates of sequencing platforms has
been a focus of research since sequencing began. Every new
platform has its advantages and disadvantages, with its er-
ror rate being one of the most important factors. Typically
the error rate is assessed by comparison of results across dif-
ferent platforms with multiple replicates (6). This is the gold
standard for showing how the different technologies oper-
ate in the same hands. These studies are useful when one is
deciding on an instrument to use. But different groups see
different outcomes with the same technology. Even within
the same group, there is often variation from experiment to
experiment (7). And there may be a difference between er-
ror rates observed in an ideal scenario versus typical use ‘in
the wild’. So, knowing the extent of this variation is impor-
tant for consumers of sequencing data produced by others.
Even researchers choosing technologies for their own data
may find it useful to know how much their mileage may vary.

But measuring error is a theoretically difficult task. Some
have taken a simple approach, aligning reads to a reference
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and calling variants as errors (6). But real variants will then
be misclassified as errors as well. Instead, one could first
perform variant calling, assuming the majority allele at any
position is correct and any minor alleles are errors. This will
work well for samples that are known to be highly homoge-
neous, but otherwise there may be true minor alleles which
would be mistaken for errors (8). This can be the case for
samples of microorganisms, viruses, cancers or organelles.
It is difficult to automatically ascertain how homogeneous
a sample is, making it a hurdle for an automated survey.
Also, at sites with low numbers of reads, it is possible that
the error base randomly occurs more often than the true
sample base, causing artifacts in error detection. Another
issue with both of these approaches is that they detect er-
rors from more than just sequencing. Library preparation
steps like polymerase chain reaction (PCR) can also intro-
duce errors. And different preparation techniques can intro-
duce different numbers and types of errors. Both of the error
detection methods above will identify both library prepara-
tion errors and sequencing errors combined.

In a paired-end experiment, when a fragment is smaller
than the length of both reads combined, the ends of the
reads will overlap. This means that, in this overlapping re-
gion, the same DNA fragment is assayed twice. Both reads
share this same exact molecule as an ancestor, and the only
source of errors in-between is from the sequencing instru-
ment. Any PCR errors, cloning polymorphisms, DNA dam-
age or other library preparation errors that have occurred
have already been introduced into the fragment (Figure 1),
and will not produce a difference between the two reads (6).
This provides a powerful method of assaying the sequencing
error introduced by an instrument in any paired-end dataset
with sufficient overlap.

Armed with a method that can be retroactively applied
to a large portion of existing datasets, we can then perform
a large-scale survey of real-world sequencing experiments.
The Sequence Read Archive (SRA) hosts the largest public
database of next-generation sequencing data (9). The SRA
provides metadata which can allow automatically filtering
for qualifying datasets and categorizing them by sequencing
platform. In order to enforce uniformity, we decided to fo-
cus only on one organism: Escherichia coli. We chose E. coli
because of its relatively compact genome, making sequence
alignment simpler. It is one of the most studied prokaryotes,
with a large number of publicly available datasets. Also, in
order to focus on new Illumina technologies, we scoped our
survey to only this manufacturer.

MATERIALS AND METHODS

Obtaining SRA datasets

We selected E. coli datasets from the SRA using the En-
trez Direct utilities from NCBI (10). Using the query ‘Es-
cherichia coli’[Organism], we fetched the metadata for all
186 022 matching runs as of 31 August 2020. A total of
179 306 of these were by Illumina instruments, with 75 118
MiSeq, 36 034 HiSeq 2500 and 1375 NovaSeq 6000. A full
breakdown is given in Supplementary Table S1. We then fil-
tered out single-ended and non-Illumina datasets, ordered
the list to prefer a diversity of sequencing platforms and
submitting groups, and prioritized runs that were the most

likely to have the most read overlap. We then downloaded
the FASTQ files using the SRA toolkit (version 2.10.0) or
EBI’s FTP server.

Determining the best reference

In order to determine the best reference sequence for
read alignment, we performed a ‘meta-alignment’ where
we combined all complete E. coli genomes into one ref-
erence and aligned the sample reads to it. We used
the NCBI Genome database to gather a list of com-
plete genomes. Specifically, we downloaded the table
available at ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
Escherichia coli/assembly summary.txt and selected all as-
semblies with an assembly level of ‘Complete Genome’.
This was 1292 assemblies as of 31 August 2020. We down-
loaded the FASTA files from the ftp path in that table and
concatenated them into a single meta-reference. For each
sample, we aligned its reads to the meta-reference with
BWA-MEM (11) (with the -M flag; version 0.7.17-r1188).
Then we read the alignments with samtools (12) to count
how many alignments were made to each reference. We only
counted primary alignments (SAM flag 256) which were
mapped (flag 4), passed instrument QC (flag 512), were not
PCR/optical duplicates (flag 1024), and not supplementary
(flag 2048). Then we chose the reference with the most align-
ments, excluding references smaller than 2 Mb.

Detecting overlap errors

Detecting errors began by aligning the reads of each run to
the chosen reference. Alignment was performed with bwa
mem -M, as in the previous section. Reads were removed
if they did not belong to a pair where both reads were
mapped (had SAM flags 1 and 2, and not 4 or 8). They
were also removed if they were secondary alignments (flag
256), failed instrument QC (flag 512), were PCR/optical du-
plicates (flag 1024) or were supplementary alignments (flag
2048). Then, errors were detected by pairing read bases by
their reference coordinate, reporting mismatching bases as
errors.

Calculating error rates

We calculated the error rate of each sample by dividing the
number of detected errors by the amount of overlap between
read pairs. The calculation excluded errors where one base
was N. We also broke down the error rate for each sample by
regions of the reads. For each error, we determined where in
both reads it occurred. Then we divided each read into bins
1/10th of the read length long. We defined the bin of the
error to be the bin of the read length it occurred in. If it
was in different bins in the two reads, we took the greatest
of the two (the bin furthest toward the 3′-end of the read).
This is because the main purpose of binning is to reduce
the effect of errors increasing toward the end of reads. If
an error appeared in bin 2 of one read, and bin 10 of its
mate, it is more likely to be from a sequencing error in the
latter read, occurring due to how close to the end of the
read it is. After the binning process, we calculated the error
rate separately for each bin. For each sample, we required

file:ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/assembly_summary.txt


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 3

Figure 1. The steps involved in sequencing a biological sample, and where polymorphisms can arise. This shows a typical procedure to extract DNA from
a sample, prepare a sequencing library and sequence it. Different types of variants are labeled at the point where they can be introduced. The bottom row
indicates which variants are ignored by overlap analysis and which are detected and considered ‘sequencing errors’. At the top is a visualization of what
happens to the DNA in the sample at each step. Arrows indicate the lineage of DNA molecules, either where they are the same actual molecule (horizontal
arrows) or copies of the same ancestor (angled arrows). The visualization focuses on the ancestor molecules of one Illumina flow cell cluster (right). So at
PCR amplification and cluster generation, we ‘zoom in’ to focus on copies of the single molecule which is an ancestor. Red spots indicate variants which
have been introduced, and gray spots indicate where a variant from a previous step becomes fixed in the molecules being shown. These gray variants are
no longer polymorphic among the ancestors of that single, final cluster. These fixed variants are ignored by our error detection method.

at least 2.5 million overlapping bases in a bin to calculate a
valid error rate for it.

Correlating error rates with platform and lab

We selected the samples with valid error rates calculated
in the previous section using the rates as our dependent
variable. Our independent variables were derived from the
‘model’, ‘center’, ‘lab’ and ‘contact’ metadata fields. The lat-
ter three were combined and each combination was deemed
a separate ‘group’. In order to reduce the number of cate-
gories, we combined all groups which appeared less than
four times into an ‘other’ group. We then performed ordi-
nary least squares regression with the model and group as
the independent variables and the error rate as the response
variable. The regression was performed by the statsmod-
els.formula.api.ols function from the statsmod-
els Python package.

Tabulating base frequencies in error sequence contexts

For every genomic location where we detected an error, we
extracted the 20 bp of genomic sequence centered on the er-
ror site. For each substitution in each platform, we counted
the total count of each base at each distance from the er-
ror. We determined the substitution by first examining all
the read bases at the error site. We chose the most common
base as the most likely major allele in the sample. Then, for
each error, we assumed the base that did not match the ma-
jor allele was likely the erroneous base. If neither read base
matched the major allele, we did not call the substitution
or include it in the analysis. Once all the substitutions were
called, we chose the most common one at that site.

Calculating trimer frequencies

For every genomic location with a detected error, we exam-
ined the three genomic bases leading up to, and including
the error site. For every platform, we counted how many
trimers of each type were present in the set of unique er-
ror loci. We converted the counts to frequencies by dividing

by the total number of trimers. We then normalized the fre-
quencies by the prevalence of each trimer in the genome. We
chose the most common reference sequence in our samples,
NZ CP044311.1 from strain RM13752. We counted the
number of each trimer in that sequence, then converted to
frequencies. We then divided each trimer’s error frequency
by its genomic frequency.

Counting post-homopolymer errors

A particular error pattern has been observed in Illumina in
regions with homopolymer runs. After a homopolymer of
a particular base, the base immediately following the ho-
mopolymer will often be subject to a substitution where the
error base is the same as the homopolymer base (1). Here,
we refer to this error type as a ‘post-homopolymer error’.

We examined the sequence context surrounding every
detected error, counting errors which matched the post-
homopolymer pattern. This included every error where the
substituted base matched the previous genomic base. We as-
sumed the substituted base was the base that did not match
the genomic (reference) base at that site. In the raw data,
we included the identity of the preceding/error base and
how many times it was repeated. For Figure 6, we normal-
ized the error counts by the frequency of homopolymers in
the genome. To do this, we analyzed the same genome as
for the trimers, NZ CP044311.1, counting the number of
homopolymers of each base type and length. We then de-
termined the number of post-homopolymer errors of each
type we would expect at random. To do this, we first cal-
culated the per-base frequency of each homopolymer type
in the genome: the number of homopolymers of that base
and length divided by the length of the genome. To get the
expected number of random post-homopolymer errors, we
multiplied this frequency by the total number of errors de-
tected, and divided by four.

RESULTS AND DISCUSSION

Distribution of error rates for each platform

Figure 2 shows the range of error rates in samples from dif-
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Figure 2. Error rates calculated from the overlap between read pairs. Errors were counted from the regions of reads 50–60% of the way through their
lengths. Each SRA run is shown as one point. Only runs with sufficient overlap are shown; each must have a total of at least 2.5 Mb in the 50–60% bin.
The number of runs shown is displayed at the bottom of each distribution. A different color was given to each group with more than three samples in
the survey. Groups with three or fewer are colored white. Groups are defined by the combination of the center, lab and contact metadata fields. Panel (A)
displays all instruments in the survey with more than 10 passing runs. Panel (B) is a zoom on the low-error instruments, showing only runs with an error
rate <0.3%.
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Table 1. Summary statistics for the observed error rates of samples from
each sequencing platform

Error rate (%)

Platform
Number of

samples Median
Standard
deviation

MiSeq 212 0.473 0.938
MiniSeq 40 0.613 0.459
NextSeq 500 160 0.429 0.827
NextSeq 550 171 0.593 0.435
HiSeq 2500 141 0.112 0.544
NovaSeq 6000 239 0.109 0.350
HiSeq X Ten 163 0.087 0.126

The samples and error rates summarized are the same shown in Figure 2.

ferent platforms. For each read pair, errors were only cho-
sen from the region between 50 and 60% of the full read
length. This controls for the variation in overlap between
samples. Error rate is highly correlated with the sequencing
cycle, rising toward the end of each read. In samples with
smaller overlaps, the detected errors will tend to be later in
the reads than in samples with larger overlaps. To reduce
this undesired influence, we selected errors from similar re-
gions in the reads.

The median error rate of each platform is shown in Ta-
ble 1. These vary from 0.087% in HiSeq X Ten to 0.613% in
MiniSeq. These figures are comparable to those determined
in more controlled settings (8,13). Perhaps even more strik-
ing is the variation within each platform. The error rates
vary far more between samples than between platforms.
Previous studies have shown small-scale indications of this
phenomenon (5,7). Ma et al. shows that some portion of
this variation may come from oxidative damage introduced
by differential sample handling (5).

While the error rates may not be significantly different,
their variation does depend greatly on the platform. The
highest standard deviation is in MiSeq, at 0.938 percentage
points. The lowest is in HiSeq X Ten, at 0.126. There seem
to be two categories of platforms––one with higher varia-
tion and error rates, and one with lower variation and er-
ror rates. The instruments in the latter category are HiSeq
2500, HiSeq X Ten and NovaSeq 6000––the most expensive
machines. One explanation could be that users of these ma-
chines spend more time optimizing their runs, since a low-
quality run would be a much more expensive loss.

The HiSeq X Ten is easily the most consistent platform.
Since this instrument is such an expensive installation, we
asked whether the consistency is due to the datasets being
dominated by one lab group. So we colored Figure 2 by lab
group, which shows that there are several groups which are
represented much more than others, and the error rates do
tend to be consistent within each group. A full list of lab
groups is available in Supplementary Table S2. However,
there is substantial diversity overall. Eleven different groups
contributed to our HiSeq X Ten total, with nine contribut-
ing at least five samples. Another notable characteristic is
the bimodal distribution of NovaSeq 6000 samples. This
distribution is due to a cluster of 23 NovaSeq runs from one
group clustered around 0.683%, rather than the 0.106% of
the rest of the NovaSeq samples. While the NovaSeq me-
dian is technically lower than that of the HiSeq 2500, their
error rates are very similar, in contrast to the marked dif-

ference evident in Supplementary Figure S4 of (5). And in
contrast to early reports that HiSeq X Ten had higher error
rates than older HiSeq instruments (14), our survey shows
the error rate of public HiSeq X Ten datasets is even lower
than HiSeq 2500, and more consistent.

In order to investigate how much the error rate of each se-
quencing run depends on the platform versus the group pro-
ducing it, we performed linear regression on all the datasets.
Supplementary Figure S1 shows that the coefficients for re-
search groups are on a similar or greater scale than that of
the sequencing instruments. On the other hand, Supplemen-
tary Figure S2 shows that just as many platforms as groups
are significantly correlated with error rate, after Bonferroni
correction. Figure 2 appears to show clear group-specific
patterns, and this test was able to show significant corre-
lation in three of the groups. On the other hand, three se-
quencing platforms were also shown to correlate with ac-
curacy. So this test does support the idea that despite great
intra-platform variation, accuracy still does depend on the
sequencing platform.

Base frequencies near error sites

Studies of errors in Illumina sequencing have consistently
shown the importance of sequence context. In order to in-
vestigate whether there are platform-specific differences, we
examined the genomic context surrounding each error we
detected. Figure 3 shows the frequency of each base at each
position relative to each error. We further divided each plat-
form by the type of substitution, focusing in this case on
errors that involved adenine (A).

Most platforms followed the common Illumina bias to-
ward substituting a base of the same type as the one pre-
ceding the error. But this phenomenon was inconsistent.
Neither HiSeq X Ten nor NovaSeq 6000 showed much ev-
idence of this trend when looking just at the cumulative
base counts. The same was true for both NextSeq platforms,
but only in the case of A→T, C→A and T→A substitu-
tions. And in all of the substitutions away from A where
this phenomenon was missing, A was over-represented
instead.

Notably, these patterns do not show clear signatures of er-
rors due to the pattern of fluorophore dyes in the respective
instruments. MiSeq and HiSeq use traditional four-color
imaging, where the wavelengths for C and A overlap and
T and G overlap (15). But Figure 3 does not show the C/A
and T/G associations one might expect from this overlap.
And MiniSeq, NextSeq and NovaSeq use two-color imag-
ing, where A shares a wavelength with both C and T, and
G is unlabeled. There have been reports of this resulting
in overcalling of G’s, leading to stretches of polyG’s (4).
PolyG’s would result in a greater over-representation of G’s
leading up to a G substitution. But this is not clearly ob-
served in the plots. MiniSeq may be an exception, but the
effect is only seen in the immediately adjacent base, not any
others. Another expected error would be C→A and T→A
substitutions when preceded by T or C, respectively. This
could occur when phasing causes the red from a preceding
C to mix with the green of a T, or vice versa. This mixed
red/green signal could be misread as an A, which is nor-
mally a red/green mix. But no platform seemed to show an
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Figure 3. The count of each base in the genomic context surrounding each type of substitution. The X-axis represents the distance from the error base.
The rightmost slot is the closest (adjacent to the error base), and the leftmost is the furthest (nine bases from the error). The Y-axis is the count of how
many of each base was observed at each distance from a substitution of that type. Boxes highlight the count of the error base adjacent to the error. Gray
boxes surround counts which are over-represented, as expected. Yellow boxes surround counts which do not seem to follow this pattern.

over-representation of T adjacent to C→A substitutions or
C next to T→A ones.

Frequency of trimer motifs at error sites

Certain sequence motifs are known to be especially error-
prone under Illumina sequencing. We investigated the mo-
tifs associated with our errors to discover if there were
platform-dependent differences. We checked the three bases
leading up to, and including the error base at every error
site. Figure 4 shows the frequency of each trimer at our er-
ror sites, normalized by the expected frequency if there were
no correlation. The top 10 trimers in the entire survey are
shown.

The most error-associated trimer in our dataset is GGT,
a motif which has also been seen in previous studies (2,16).
Most instruments show a similar trend, but there is wide
variation. GGT is far more over-represented in HiSeq
2500 errors than any other platform. NovaSeq 6000 is
at the low end of several of the top trimers, indicating
it is less influenced by these motifs. In contrast, HiSeq
2500 and MiSeq seem to show the most motif-dependent
errors.

Differences in error rate types

A common error mode in Illumina platforms occurs near
homopolymers. After a repeat of the same base multiple

times, Illumina reads will often substitute the first base after
the homopolymer with the homopolymer base. This can oc-
cur due to phasing––lagging molecules will still be incorpo-
rating homopolymer bases while the instrument is reading
the post-homopolymer base (17,18).

In our survey, we observed that this type of error is com-
mon. If we define a homopolymer as any run of three or
more of the same base, this error constitutes between 0.7
and 5.3% of all errors, depending on the base and platform.
Figure 5 shows how common this error is, depending on
how one defines a homopolymer and which base the ho-
mopolymer is composed of.

Figure 6 shows the rate of these errors relative to the
neutral expectation if there were no correlation between er-
rors and homopolymers. Each point is the number of ho-
mopolymer errors divided by the number of homopoly-
mers of that type in the E. coli genome. So in MiniSeq,
G substitutions follow G 3mers about three times more of-
ten than if substitutions were distributed randomly. As ex-
pected, across platforms, even the normalized rates increase
with homopolymer length. Another pattern that is common
across platforms is that G/C homopolymers produce er-
rors at a higher rate than A/T homopolymers. Instruments
which do not fully follow this pattern are NextSeq 550,
HiSeq X Ten and NovaSeq 6000. Interestingly, in the latter
case, the pattern seems to be inverted, with A/T more over-
represented. Another peculiarity of NovaSeq 6000 is that
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Figure 4. The frequency of trimers in the sequence context near errors. Each trimer is the three reference bases leading up to, and including, an error site.
As described in the ‘Materials and Methods’ section, we counted the occurrences of each trimer, then normalized by the abundance of the corresponding
trimer in the genome. A normalized frequency of 1 would mean the trimer is associated with errors exactly as much as in the null hypothesis where errors
are randomly distributed. Trimers are presented in order of their median frequency among all platforms.

Figure 5. Frequency of post-homopolymer errors. For each platform, we found all errors where the error base is identical to the preceding genomic base.
If the preceding genomic base is part of a single-base repeat (homopolymer), we might call the error a post-homopolymer error, depending on the length
of the repeat. This figure shows what percent of all errors are post-homopolymer errors, depending on the threshold one uses for the definition of a post-
homopolymer error. Numbers are broken out by error/homopolymer base. For example, if one decides that any error preceded by a run of at least three
bases of the same identity qualifies as a post-homopolymer error, then about 2% of all C substitutions in MiniSeq are post-homopolymer errors.
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Figure 6. Relative frequencies of post-homopolymer errors in Escherichia coli, by length. Each post-homopolymer error was categorized by its error base
and the length of the preceding homopolymer. Each total was divided by the expected number of errors of that type in the null hypothesis where errors are
randomly distributed. An ‘over-representation’ of 1 is what would be expected in the null hypothesis, while 2 would be twice as abundant.

G/C post-homopolymer errors rates are generally quite low,
in many cases occurring less often than expected by random
chance.

Further examination

Here we developed a method which can be automatically
applied to any paired-end sequencing dataset. We demon-
strated its utility by applying it to a survey beyond the
scale of manual annotation. We were able to show corre-
lations between sequencing platforms, experimenters and
error rates. But there may be other important factors ex-
plaining differences between samples. The cluster of No-
vaSeq 6000 samples with higher error rates, along with a
cluster of six high-error HiSeq X Ten samples, were all
produced by the Gene Expression Omnibus (GEO) group,

which is a repository for expression data (19). This sug-
gested that RNA-seq datasets may tend to have higher er-
ror rates. Luckily, information like this is captured in SRA
metadata. Using that metadata, we reproduced Figure 2,
colored by the LibraryStrategy field (Supplementary Figure
S3). This reveals that all the GEO NovaSeq samples were in
fact ChIP-seq. Only the HiSeq X Ten cluster was RNA-seq.
Additionally, RNA-seq samples appeared at a wide distri-
bution of error rates, showing no clear bias. However, the
only ChIP-seq samples for these platforms were in that No-
vaSeq cluster. In the end, the commonality between these
two clusters was the group (GEO), not the experiment type.
This shows the power of the metadata to test hypotheses.
And with links to other NCBI databases like BioProject and
BioSample, there is even more metadata which could be au-
tomatically obtained about each sample and tested for cor-
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relations. For instance, a previous analysis of SRA metadata
distinguished between published and unpublished datasets,
as this may correlate with data quality (20). Unfortunately,
the SRA metadata schema is far from complete, and there
are some important features of a sequencing experiment
which are not captured. For instance, the version of the Il-
lumina reagent kit has been observed affecting the bias of
sequencing data (6).

Our method of error detection has great advantages in
its ease of automation, ability to be applied retroactively to
a dataset, and its ability to identify errors coming from se-
quencing alone. But it can be made even less biased and au-
tomatable. In our survey, we relied on alignment to a refer-
ence sequence in order to find the overlaps in read pairs. In
theory, the examination of overlaps does not require infor-
mation from a reference at all. One could simply perform
a two-way alignment of each pair of mates to each other.
There are many pairwise alignment algorithms available,
many of which will yield acceptable results even with de-
fault parameters. Some algorithms have trouble when there
is minimal overlap between mates, but careful choice of al-
gorithms and parameters can minimize this issue. By using
pairwise alignment, we would simplify the workflow, elimi-
nating the step that determines the best reference sequence.
It would also eliminate possible biases from alignment arti-
facts. Additionally, it would remove the need to know any-
thing about the subject of the sequencing experiment. This
could allow surveying across organisms, so one could deter-
mine if that is a variable correlated with quality.

DATA AVAILABILITY

The scripts used for the analysis are available on
Github (https://github.com/makovalab-psu/overlaps).

Because of the lengthy compute time for the full anal-
ysis, we have also provided our intermediate data to as-
sist in replicating our analysis (https://www.bx.psu.edu/
nekrut lab/overlap-survey/). With these files, one can re-
peat the analysis performed in the Jupyter Notebooks in
the Github repository, generating all the results presented
here. The sample directories should be placed in a ‘runs’
directory––the parent of runs will be the MAIN DIR in
Jupyter. The rest is explained in the Github README.md.
The align.auto.bam files, which are the majority (1.8TB) of
the data, are provided for transparency but are not neces-
sary for the Jupyter analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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