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Abstract

The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen
Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive
pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6
from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial
epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines.
Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal
colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered
intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the
nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role
not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the
respiratory tract.
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Introduction

Two of the main virulence factors of Streptococcus pneumoniae are

the polysaccharide capsule that surrounds most S. pneumoniae

strains and the toxin pneumolysin [1]. It has been shown that

pneumolysin can stimulate the innate immune response including

release of the inflammatory cytokine CXCL8 from the host’s

airway epithelial cells [2–4].

The pneumococcal capsule is mainly composed of polysaccha-

rides, with each capsule type having a different composition and

linkage of the sugars and other components [5]. S. pneumoniae is

classified into over 90 different serotypes on the basis of antibody

reactions with the capsule [6–9]. Some serotypes frequently

colonize the human nasopharynx asymptomatically whereas

others are more associated with invasive diseases such as

pneumonia, sepsis or meningitis, but are found less frequently in

the nasopharynx because they colonize for a shorter duration [10–

12].

Epithelial cells express pattern-recognition receptors (PRRs)

that are required to signal the presence of pathogens and to recruit

and activate professional antigen presenting cells such as

macrophages or dendritic cells [13]. Numerous pro-inflammatory

chemokines and cytokines are secreted such as CXCL8, IL-6, IL-

1b, granulocyte-macrophage colony stimulating factor (GM-CSF),

transforming growth factor (TGF) a and –b [14]. Secretion of

cytokines tends to be a brief, self-limited event with synthesis

beginning with gene transcription and mRNA having a short half-

life [15].

Toll-like receptors (TLRs) 2-6 are expressed on airway epithelial

cells. TLR2 is the principal receptor for recognition of bacterial

components (e.g. lipoprotein, lipoteichoic acid, peptidoglycan,

GPI anchor) and some viral envelope proteins [16]. TLR signaling

in epithelial cells is not only important for microbial defence but

also for mucosal homeostasis which is determined by the

magnitude of signaling [13]. CXCL8 plays a major role in the

initial control of respiratory tract infection due to its chemotactic

activity for neutrophils and monocytes [17] and can be secreted by

all cells which have TLRs [18].

In the current study we tested the role of the pneumococcal

capsule in pro-inflammatory cytokine induction using human

pharyngeal and bronchial epithelial cells and in a murine model of

nasopharyngeal colonization. We also looked at the effect of the
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capsule on the ability of the bacteria to disseminate into the lungs

following nasopharyngeal colonization.

Materials and Methods

Ethics statement
All animal experiments were performed at the University of

Liverpool and with prior approval from the UK Home Office and

the University Ethics Committee.

Bacteria
The bacterial wild type and mutants strains used are listed in

Table 1. The capsule mutants were constructed according to the

protocols described previously [9,19]. The pneumolysin mutant

was a kind gift from Professor Jeremy Brown (University College

London, UK) [20]. For the construction of D39cps-ply2 mutant,

the D39cps2 mutant was used and mutant construction performed

according to the method described previously [21]. Briefly, the up-

and downstream flanking regions of the pneumolysin-gene were

Table 1.

Strain Description Capsule Pneumolysin

D39 Wild type serotype 2 (NCTC 7466) + +

D39cps2 Mutant lacking capsule [33] 2 +

D39ply2 Mutant lacking pneumolysin [20] + 2

D39cps2ply2 Mutant lacking both capsule and pneumolysin (current study) 2 2

110.58 Wild type nonencapsulated [34] 2 +

110.58::D39cps Mutant with serotype 2 capsule [19] + +

doi:10.1371/journal.pone.0092355.t001

Figure 1. Effect of capsule and pneumolysin on CXCL8 and IL-6 induction in human nasopharyngeal and bronchial epithelial cells.
Detroit 562 nasopharyngeal epithelial cells (A and B) and bronchial epithelial cells (C and D) were assessed for CXCL8 (A and C) and IL-6 (B and D)
release after exposure to wild type or mutant pneumococcal strains. All experiments were performed in triplicate at each of three CFU concentrations
(1, 1.5 and 2 6106) and the results pooled for each strain. Note different scales of Y axes. Error bars indicate SEM. * indicates significant difference.
doi:10.1371/journal.pone.0092355.g001
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amplified using iProof polymerase (Bio-Rad, Switzerland) using

the following primers: upstream forward primer KO_Ply_us_F 59-

GATTGATAATACCAGCACTC-39, upstream reverse primer

KO_Ply_us_R 59-GGTAGAGGATAAGGTAG-39, downstream

forward primer KO_Ply_ds_F 59-ATCGTAATTCATAGCTAG-

39 and downstream reverse primer KO_Ply_ds_R. PCR condi-

tions were: 98uC for 30 sec, 35 cycles of 98uC for 10 sec, 55uC for

15 sec, 72uC for 20 sec and then 72uC for 10 min. PCR, using the

same conditions, was also performed to amplify a spectinomycin

cassette from the plasmid. The primers (us_Ply_Spec_F1 59-

CTAGCTATGAATTACGACTAGTGGATCCCCCGTTTGA-

39 and Spec_ds_Ply_R1 59-CTACCTTATCCTCTACCATAG-

TTCCCTTCAAGAGCGATACC-39) were designed to create

overhangs which allowed fusion of the three PCR products as

described elsewhere [22]. The fusion reaction, using Phusion High

Fidelity Polymerase (Fisher Scientific, Switzerland), was: 98uC for

1 min, 10 cycles of 98uC for 10 sec, 50uC for 15 sec, 72uC for

1 min then the primers (KO_Ply_us_F and KO_Ply_ds_R) were

added followed by 25 cycles of 98uC for 10 sec, 62uC for 15 sec,

72uC for 2 min 30 sec and then 72uC for 10 min. The amplified

construct was then isolated from a 1% agarose gel. After

transformation, clones were selected on CSBA plates supplement-

ed with 200 mg/ml spectinomycin [23]. Incubation was performed

under anaerobic conditions. Knockout of the pneumolysin gene

was confirmed by PCR and by sequencing using primers

KO_Ply_us_F and KO_Ply_ds_R using the following conditions:

98uC for 30 sec, 35 cycles of 98uC for 10 sec, 55uC for 15 sec,

72uC for 1 min 15 sec followed by 72uC for 10 min [24].

Bacteria were plated on Columbia sheep blood agar (CSBA)

plates and incubated overnight at 37uC and 5% CO2. Liquid

cultures of bacteria were prepared using either 5 ml of Chemically

Defined Medium (CDM) [25] supplemented with 50 mM of filter-

sterilized sucrose or 5 ml of Brain Heart Infusion (BHI) broth.

Bacteria were grown to mid-log phase, meaning to OD600 of 0.1 to

0.2 in CDM and to OD600 nm of 0.5 to 0.8 in BHI, and then

counted in a Neubauer chamber. The bacteria were pelleted,

washed twice with pyrogen-free PBS then resuspended in 1 ml

Eagle’s minimum essential medium (MEM; Invitrogen, Basel,

Switzerland) without FCS and warmed in a water bath to 37uC.

Epithelial cell culture, exposure to pneumococcus and
cytokine assays

The human pharyngeal epithelial cell line Detroit 562 (ATCC

CCL 138) was cultured as published earlier in MEM supplement-

ed with 10% of heat-inactivated fetal calf serum (FCS), 2 mM of

L-glutamine (Invitrogen, Basel, Switzerland), 1% sodium bicar-

bonate (Invitrogen, Basel, Switzerland), 16 MEM non-essential

amino acid solution (Sigma, St. Louis, MO, USA), 1 mM sodium

pyruvate (Sigma, St. Louis, MO, USA), 100 mg/ml streptomycin

and 100 U/ml penicillin at 37uC in 5% CO2 [26]. Cells were

grown in 24-well plates to a confluent cell layer (<36105 cells per

well). MEM containing the bacteria at three CFU concentrations

(1, 1.5 and 2 6 106) were added to the Detroit 562 cells and the

plates centrifuged at 173 g for 5 min at 25uC. After 24 h of

incubation at 37uC and 5% CO2 supernatants from the wells were

collected in Eppendorf tubes, spun down at 132 g for 3 min at

room temperature, and then stored at -80uC until further use.

Immortalised human bronchial epithelial cells (iHBEC) were

kindly provided by Professor Jerry W. Shay, (University of Texas,

Dallas, USA) [27]. The iHBECs were grown in Keratinocyte

serum-free media (Invitrogen) supplemented with epidermal

growth factor and bovine pituitary extract. All cells were grown

and experimented upon in humidified 5% CO2, 95% humidity air

at 37uC, in the absence of antibiotics. Confluent iHBECs

monolayers were grown in 24 well plates and incubated in

serum-free media for 18 h prior to investigation. Unstimulated

cells were used as controls. Cells were cultured in 24 well cell

culture plates for 24 h with medium or live S. pneumoniae. After

incubation, culture supernatants were collected, centrifuged at 10

000 g for 5 minutes to remove cellular debris and filter sterilized

and stored at 280uC until assayed.

The amounts of CXCL8 and IL-6 were measured by ELISA

(R&D systems ELISA kits, Abingdon, United Kingdom).

The experiments with both of the epithelial cell lines were

performed in triplicate on three different days at three CFU

concentrations (1, 1.5 and 2 6 106) in each experiment.

Mouse model
Age-matched 8–12 week old female MF1 mice (Charles River,

UK) were intranasally infected with 1 6105 colony forming units

of S. pneumoniae in 10 ml PBS as previously described [28]. Mice

were sacrificed at pre-determined time points post-infection and

organs removed for assessment of bacterial numbers and ELISA

analysis. Nasopharynx and lungs were homogenized in PBS and

serially diluted onto blood agar for enumeration of bacterial

numbers by the Miles and Misra method. For the CFU counting,

gentamicin plates were used to select for pneumococci and in the

case of the bacteria that disseminated to the lung, colonies were

picked and streaked onto plates with an optochin disc to confirm

that they were pneumococci. Homogenates were retained for use

in ELISA to measure a murine homologue of human CXCL8,

CXCL2/MIP-2, using a kit from R&D systems.

Statistics
Student t test was used to assess the significance of the results.

Results and Discussion

We investigated the effect of capsule on CXCL8 and IL-6

induction in cells of the upper and lower respiratory tract using

wild type S. pneumoniae serotype 2 (strain D39) and its capsule-

Figure 2. Effect of capsule and pneumolysin on CXCL8
homologue induction in the mouse nasopharynx. CXCL8
homologue (CXCL2/MIP-2) detected in nasopharyngeal homogenate
of mice three days after exposure to wild type or mutant pneumococci
expressed as a percentage of the value obtained with the wild type
strain. Error bars indicate SEM. * indicates significant difference from
value of the parent strain.
doi:10.1371/journal.pone.0092355.g002
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deleted mutant. In addition, we compared the naturally occurring

nonencapsulated clinical isolate 110.58 with its mutant in which

the capsule of D39 has been inserted. Furthermore, D39 mutants

in which pneumolysin alone was deleted or both pneumolysin and

capsule were deleted were tested to investigate the role of capsule

in the presence or absence of toxin (see Table 1 for bacterial wild

type and mutant strains).

Deletion of capsule from D39 caused a small, but non-

significant, increase of CXCL8 from the upper respiratory tract

cells and insertion of the D39 capsule into strain 110.58

significantly decreased CXCL8 levels (p = 0.04) (Figure 1A).

Deletion of pneumolysin significantly decreased CXCL8 com-

pared to wild type control (p = 0.0009) but CXCL8 levels

increased when the capsule was additionally deleted when

compared to pneumolysin deletion alone (p = 0.0036). The same

pattern was seen for IL-6 but the cytokine concentrations were

lower and not significantly different between cells exposed to

different strains (Figure 1B). For the bronchial epithelial cells,

deletion of capsule in D39 caused a decrease in CXCL8 (p ,

0.0001) but insertion of D39 capsule in strain 110.58 also caused a

decrease in CXCL8 (p , 0.0001) (Figure 1C). These responses

were in contrast to upper respiratory cells indicating a clear niche

difference in host responses to pneumococcal capsule with the

caveat that these are in vitro findings and we cannot conclude

whether the pattern of cytokine release would be the same from

the epithelial cells in their original anatomical locations. Deletion

of pneumolysin in D39 decreased CXCL8 levels in keeping with

the response of upper respiratory cells (p , 0.0001), however

CXCL8 was only slightly increased upon the additional deletion of

the capsule (p , 0.0001) once again indicating a capsule-

dependent difference in upper versus lower respiratory tract

responses. IL-6 values were low with no difference between D39

and its capsule-deficient mutant but with levels reduced by

insertion of the capsule into strain 110.58 (p = 0.0002). Deletion

of pneumolysin increased IL-6 level (p , 0.0001) but additionally

deleting the capsule reduced the level (p , 0.0001) (Figure 1D).

Overall, capsule restricted the release of CXCL8 from

respiratory tract epithelial cells in contrast to pneumolysin, which

stimulated the release of CXCL8.

No significant difference in cytotoxicity or haemolytic activity

was observed between the encapsulated or nonencapsulated

pneumococci (data not shown).

Figure 3. Capsule did not affect colonization of the nasopharynx but only nonencapsulated strains reached the lungs. Each symbol
represents the CFU from the nasopharynx or lungs of an individual mouse on days 1, 3, 8 and 15 after intranasal inoculation. (No bacteria were
detected at day 0 before any bacteria were administered.) Horizontal bars indicate means.
doi:10.1371/journal.pone.0092355.g003
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Having found that the capsule plays an important role in

regulating CXCL8 induction in vitro, we next tested the influence

of the capsule in a mouse model of nasopharyngeal carriage.

Figure 2 shows that no difference in CXCL8 homologue

(CXCL2/MIP-2) levels were detected between encapsulated or

nonencapsulated strains in the nasopharynx and that deletion of

pneumolysin did not have a measurable effect either. Importantly

however, when the capsule was additionally deleted in the

pneumolysin mutant, CXCL8 homologue level increased (p =

0.05) supporting the in vitro finding that capsule suppresses CXCL8

release but that this effect may be masked by the presence of

pneumolysin.

Interestingly, in vivo bacterial kinetics showed that, while the

presence or absence of capsule did not appear to affect the ability

of the pneumococcus to colonize the nasopharynx, only nonen-

capsulated pneumococci disseminated from the nasopharynx to

the lungs (Figure 3) suggesting that the absence of capsule is

important in facilitating pneumococcal movement from the

nasopharynx to the lungs. Although nonencapsulated strains are

expected to adhere to epithelial cells more efficiently than

encapsulated strains, we did not detect higher numbers of

nonencapsulated strains than encapsulated colonizing the naso-

pharynx.

The capsule is an important virulence factor as the thick

polysaccharide layer helps the bacteria to escape opsonization and

phagocytosis [29]. Encapsulation of the pneumococcus protects

from complement activation. IgG and c-Adenosyl-monophosphate

receptor protein (CRP) binding to the bacterial surface are

reduced and thus activation of the classical pathway is impaired.

Additionally, the degradation of C3b to iC3b is decreased by the

capsule and phagocytosis by Fcc receptor occurs less frequently

[30]. Therefore, innate immunity initiated by encapsulated

bacteria that causes macrophages and neutrophils to enter the

nasopharynx as a result of chemotactic activity of CXCL8 will

then not lead to efficient opsonophagocytosis of the bacteria due to

the polysaccharide capsule. Here we suggest that restriction of the

initial step of CXCL8 release from the epithelial cells by the

polysaccharide capsule may also contribute to bacterial survival.

There has been a recent study which also investigated the innate

immune response due to Streptococcus pneumoniae in epithelial cells

and which did not find a clear difference between wildtype strains

and their capsule knock out mutants in terms of CXCL8 induction

[31]. However, this group used microarrays to characterize the in

vitro transcriptional response whereas here we have detected

CXCL8 itself both in vitro and in a mouse model of nasopharyngeal

colonization. Another group, like us, found greater CXCL8

production in response to nonencapsulated pneumococci than

their encapsulated parent strains [32].

In conclusion, we find that the pneumococcal capsule plays an

important role in regulation of innate immunity by reducing

CXCL8 release from upper respiratory tract cells and also by

restricting pneumococcal dissemination into the lower respiratory

tract, where the pneumococcus would normal elicit a strong pro-

inflammatory response leading to its clearance. We would argue

that this is in keeping with the natural role of the pneumococcus as

a commensal of the upper respiratory tract, whereby its primary

function is to establish colonization with limited or no host

inflammation to sustain its longer term survival in the nasopharynx

without host mediated clearance.
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