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Current approaches to carbon nanotube (CNT) synthesis are
limited in their ability to control the placement of atoms on the surface of W //
nanotubes. Some of this limitation stems from a lack of understanding of the
chemical bond-building mechanisms at play in CNT growth. Here, we 1o, X_
provide experimental evidence that supports an alkyne polymerization
pathway in which short-chained alkynes directly incorporate into the CNT
lattice during growth, partially retaining their side groups and influencing
CNT morphology. Using acetylene, methyl acetylene, and vinyl acetylene as o //
feedstock gases, unique morphological differences were observed. Interwall
spacing, a highly conserved value in natural graphitic materials, varied to 4o, \\
accommodate side groups, increasing systematically from acetylene to
methyl acetylene to vinyl acetylene. Furthermore, attenuated total reflectance
Fourier-transfer infrared spectroscopy (ATR-FTIR) illustrated the existence
of intact methyl groups in the multiwalled CNTs derived from methyl acetylene. Finally, the nanoscale alignment of the CNTs
grown in vertically aligned forests differed systematically. Methyl acetylene induced the most tortuous growth while CNTs from
acetylene and vinyl-acetylene were more aligned, presumably due to the presence of polymerizable unsaturated bonds in the
structure. These results demonstrate that feedstock hydrocarbons can alter the atomic-scale structure of CNTs, which in turn can
affect properties on larger scales. This information could be leveraged to create more chemically and structurally complex CNT
structures, enable more sustainable chemical pathways by avoiding the need for solvents and postreaction modifications, and
potentially unlock experimental routes to a host of higher-order carbonaceous nanomaterials.
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n improved mechanism for carbon nanotube (CNT) The long-held understanding of CNT formation is that it
synthesis could simultaneously lower cost, enhance occurs through the Vapor—liiquid—sold (VLS) and vapor—
control, and reduce environmental impacts of production. solid—solid (VSS) models. ” VLS and VSS postulate that

vapor-phase hydrocarbons thermally decompose and diffuse
through a liquid or solid catalyst nanoparticle, and then
precipitate on the surface as solid CNT.'* Originally developed
for solid Si whiskers'® and then applied to carbonaceous
materials,'°™"? these precipitation-based mechanisms have
good experimental support but lack chemical detail and
provide few “levers” with which to manipulate CNT

CNT manufacturing remains an energy intensive and
inefficient process, requiring 2—100 times more energy than
aluminum productionl and consuming resources at waste
ratios equivalent to the pharmaceutical industry.” Large-scale
synthesis techniques have poor selectivity and are unable to
produce CNTs with tailored chemistries at high yields.” As a

result, postsynthesis purification and functionalization pro- structure.”"** Variations in the hydrocarbon composition of
cesses are often utilized, and these reduce yield, increase the feedstock gasesZ3’24 and the reactor environment> are
resource consumption, and extend production time." These known to affect CNT morphology, suggesting that thermal
factors contribute to high costs” and high cradle-to-gate decomposition is not complete (e.g, to C; or C, units, as

environmental impacts,”’ preventing many CNT-enabled

products from reaching the market® and potentially offsetting October 20, 2022 Fno NG
environmental benefits during the product’s lifetime.” Identify- January 14, 2023 ;

ing chemical bond-building mechanisms in CNT synthesis January 18, 2023

could help overcome these obstacles and enable more February 6, 2023

transformative CNT-based applications while reducing the

environmental impacts of this expanding industry.>'°~"*
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Figure 1. Alignment and growth analyses of CNT forests. (A) Representative SEM images taken from the side of CNT forests grown with either
acetylene (Ac), methyl acetylene (MAc), or vinyl acetylene (VAc). Insets are synchrotron-based wide-angle X-ray scattering (WAXS) patterns of
entire cross sections of these CNT forests. (B) Average Hermans orientation factor (H) values calculated from WAXS patterns of experimental
triplicates. Error bars represent +1 standard deviation. The p-value on the left was calculated from a one-way ANOVA across values from all three
alkynes, while the p-value on the right comparing methyl acetylene CNTs and vinyl acetylene CNT's was calculated from a pairwise, two-tailed ¢ test
with Bonferroni correction. The other pairwise p-values were all much greater than 0.1 (SI Table S1). (C) Growth rates, (D) terminal heights, and
(E) catalyst lifetimes of the CNT forests. (C and D calculated from growth curves in SI Figure S1). There are at least 3 experimental replicates for
all analyses.
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Figure 2. Atomic- and nanoscale properties determined by synchrotron-based X-ray scattering. (A) Interwall spacing between CNT walls and (B)
total CNT wall thickness (outer diameter — inner diameter) as determined by WAXS. (C) Number of CNT walls was calculated from the interwall
spacing and stack height (i.e., calculated from A and B). (D) CNT diameter, (E) number density throughout an array (ie., calculated from D and
F), and (F) mass density throughout an array as determined by small-angle X-ray scattering (SAXS) and X-ray attenuation. Error bars represent +1
standard deviation of experimental triplicates. p-values were calculated with a one-way ANOVA across all three alkynes. Ac represents acetylene,
MACc represents methyl acetylene, and VAc represents vinyl acetylene. Previous work has demonstrated that the outer wall CNT diameter is
consistent with that of the supporting particle (Shi et al.*>”).
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postulated by VLS/VSS).” Instead, incorporation of carbon
via reaction with the catalyst surface®”*® that bypasses
complete decomposition of carbonaceous feedstock gases is
possible.”” Indeed, acetylene has been identified as a key
precursor in CNT synthesis from multiple experimental and
computational techniques.’”™** Methyl acetylene, vinyl
acetylene, and even hydrogen cyanide have displayed similar
growth-enhancing abilities, suggesting that many short-chained
alkynes could potentially participate in such direct-incorpo-
ration mechanisms.”™”” Here, we sought to determine the
effect of these varied alkynes on nanoscale structural
differences in multiwalled CNT (MWCNT) forests grown in
vertical alignment. If they persist, such differences would
indicate that small alkynes are intact during CNT incorpo-
ration and carry their “cargo” with them, opening up potential
for atomic-scale control in hierarchical nanomaterial structures.

Note that MWCNTs are a critical interrogation platform for
the work presented here, as they have an additional parameter
(interwall spacing) that can be probed. Further, MWCNTs
and variations thereof (e.g., doubled walled nanotubes) have a
broad application space®” owing to their enhanced mechanical
integrity and functionality (e.g, ability to functionalize the
surface tube without compromise to conductivity of an inner
tube). The chemical mechanisms presented here are relevant
to nanotube growth for both single and multiwalled tubes, and
the limitations that have faced scale up and control for both
architectures may be informed by the below enumerated
discoveries.

Alkynes with different side groups (e.g., methyl or ethyl versus
hydrogen) delivered to a resistively heated substrate induced
morphological differences in CNT forests. SEM images of the
sidewall of the forests suggested differences in alignment
(Figure 1A), which was confirmed by X-ray scattering across
billions of CNTs throughout the bulk of the forest. Hermans
orientation factors, H, provide a measure of alignment, where 1
represents perfect vertical alignment, 0 is randomly oriented,
and —0.5 is perfectly horizontal.”®*” Calculated from X-ray
scattering patterns, we find methyl acetylene (MAc)-derived
CNTs were significantly less aligned than vinyl acetylene
(VAc)-derived CNTs (Hy. = 0.28 + 0.02; Hy, = 0.36 +
0.02; p = 0.026, pairwise t test with Bonferroni correction),
while the alignment of the acetylene (Ac) CNTs was
statistically similar to both due the higher variation in
acetylene-derived structures (H,. = 0.36 + 0.06) (Figure
1B). H values ranging from 0.27 to 0.42 are typical of
MWCNT forests,*”*° and previous work has shown that
alignment can be impacted by CNT number density” or
external force exerted on the CNTs.*' However, our forests
had similar number densities (p = 0.89, ANOVA) (Figure 2E)
and experienced similar mechanical forces (i.e., a silicon nitride
cap) during growth. As such, differences in alignment must be
associated with differences in chemical bond-building mech-
anisms. For example, acetylene moieties can engage in pi-back
bonding with empty d-orbitals on the Fe catalyst'” and
participate in polymerization reactions (see SI Schematic S2);
a terminal methyl group could frustrate this polymerization
and result in persistent or dangling methyl groups protruding
from the CNT lattice (as has been leveraged to direct the
placement of methyl groups in ring formation reactions
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elsewhere*™*). Such persistence of a methyl group would
result in defect formation and potential kinks in the lattice,
giving rise to more tortuous structures in methyl acetylene-
derived tubes. In contrast, vinyl acetylene is terminated with a
double bond, which itself can participate in subsequent
polymerization steps. Thus, the vinyl group can incorporate
into the CNT sp2 lattice, producing tubes with fewer defects
and a higher degree of alignment. Acetylene presents an
anomalous result, where alignment is good but highly variable
(ie, there is a larger relative standard error on the H),
presumably due to the rapid reactivity of acetylene®™® (and
higher growth rate; Figure 1C) either at the catalyst or via local
thermal rearrangements creating a variety of alkenes and
alkynes®® that can react to form CNTs. Indeed, such a
phenomenon may explain the anecdotal observation that hot-
walled reactors tend to give more irregular and defective
structures due to the myriad chemical reactants with which the
catalyst can react.

The height displacement growth rate of the acetylene-
derived forests was statistically faster than the methyl- and
vinyl acetylene-derived forests (Figure 1C), whereas terminal
height and catalyst lifetime displayed no significant differences
(Figure 1D, E). Acetylene produced CNTs that grew roughly
30% and 15% faster than methyl acetylene and vinyl acetylene,
respectively (p = 0.035, ANOVA). Here, we note that the we
are reporting height change as a function of time, as measured
by a laser displacement sensor, rather than CNT lengthening
rate.*”** Calculating the lengthening rate from the orientation
and height displacement gave consistent results, where
acetylene produced CNTs that are formed 23% and 15%
faster than methyl and vinyl acetylene, respectively (SI Table
S2). As such, the growth rates should reflect real differences in
chemical kinetics (i.e., reactivity at the catalyst) and diffusion.
We note that diffusive differences would proceed in the order
of acetylene, methyl acetylene, then vinyl acetylene (fastest to
slowest), which was not observed. In contrast, the observed
growth rate differences are consistent with coupled differences
in alignment as well as chemical reactivity, both of which
would operate in the same order and net effect (see detailed
kinetic analysis in Figure S1, Figure S2, Figure S3, Table S2,
and Table S3; briefly, we note that the system follows
Michaelis—Menten kinetics observed in other catalyst-sub-
strate systems). Taken together, these results support the
existence of chemical differences in reactivity and the resultant
nanoscale structures grown from a variety of short-chained
alkynes, suggesting these molecules are intact during
incorporation into a growing CNT lattice.

If methyl and vinyl group moieties are carried as “cargo”
with the corresponding alkyne into CNT structures, rather
than being removed prior to or simultaneously with
incorporation at the catalyst, it is reasonable to expect that
interwall spacing of the MWCNTs would increase from
acetylene-, to methyl acetylene-, to vinyl acetylene-doped
forests. This steady and statistically significant increase was
observed, consistent with the existence of methyl and vinyl
groups protruding from the CNT wall lattice throughout the
MWCNT structure (Figure 2A; p-value = 0.058, ANOVA; n =
3 for each type). Considering the highly conserved interlayer
spacing of graphitic materials in nature (around 3.4 A),"~>
the ability to tune this property with gaseous additives is
noteworthy. There is precedent for altering this spacing in
engineered materials: interlayer spacing between AB-stacked
graphite has been reported at 3.335 A, whereas turbostratic
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and functionalized graphite have larger spacing to compensate
for defects and extra atoms, ranging from 3.36—7.37 A%’
Strain in cylindrical graphitic structures can induce differences
in interlayer spacing, where MWCNT interwall spacing has
varied from 3.2 to 3.8 A, varying inversely with tube diameter
from 632 to 5.8 nm.>® In our experiments, MWCNTSs
exhibited the same tube diameters across the different alkynes
(Figure 2D) and could not explain the observed differences in
MWCNT interwall spacing. Since we used a consistent
annealing process (see SI) in all growths, all catalyst-controlled
properties, such as number of walls, CNT diameter, number
density, and mass density were conserved across the varied
precursors (Figure 2B—F; p > 0.1). These parameters are
largely determined by catalyst size and spacing,”” which can be
tuned with growth temgerature,60 annealing conditions,”"
oxidants in the feedstock,”* or starting thickness of catalyst and
support layer,””** and have been shown to be unaffected by
gas composition (i.e., trace alkynes doped in an ethylene,
hydrogen, and helium atmosphere).”® Therefore, controlling
the reactive atmosphere during CNT growth provides a mode
to independently modulate the atomic-scale structures of the
tubes themselves while preserving other nanoscale and
microscopic features of the material.

Raman and attenuated total reflectance-Fourier transform
infrared (FTIR) vibrational spectroscopies were used to probe
the molecular defects and functional groups in as-grown CNT
forests. Raman analysis revealed subtle yet significant differ-
ences in CNT defects between alkynes (Figure 3). A persistent
shoulder was detected near the G band (approximately 1580
cm™') in the Raman spectra of acetylene- and methyl
acetylene-fed CNTs, but was less prominent in vinyl
acetylene-doped CNTs (Figure 3A). This shoulder at higher
wavenumber (approximately 1620 cm™) is the D’ band,*
which results from a double-resonant phonon scattering
process associated with disruptions (i.e., defects) in graphitic
networks.”>°® Whereas the D band arises from intervalley
resonance,’”’ the D’ is due to intravalley resonance.’®®
Unfortunately, it is difficult to translate this to specific
structural information because defects can include a wide
range of features such as caps, vacancies, heteroatoms,
interstitial sites, and functionalization groups®’® (see SI for
detailed discussion on the limitations of defect quantification
via spectroscopic techniques and isotopic labeling approaches).
Nevertheless, the D and D’ bands are each sensitive to
different types of defects, again suggesting each alkyne gave rise
to distinct atomic-scale features (see SI for further discussion).
Additionally, the different trends observed in both intensity
ratios (Figure 3B, C) and full-width half max (fwhm) values
(Figure 3D) imply differences in defects between the alkyne-
assisted CNTs.

The D/G ratio decreased significantly from 1.94 + 0.09, to
1.67 + 0.13, to 1.36 + 0.05 for acetylene-, methyl acetylene-,
and vinyl acetylene-doped CNTs, respectively (Figure 3B; p =
8 X 1077, ANOVA), implying a decrease in certain types of
defects. In contrast, the D’/G ratio was consistent between
acetylene- and methyl acetylene-doped CNTs (0.58 + 0.04
and 0.61 + 0.08, respectively), but decreased significantly for
vinyl acetylene-fed forests (to 0.42 + 0.03; p = 3 X 107*
ANOVA). Additionally, the fwhm of the D’ band is lower for
vinyl acetylene CNTs than both acetylene and methyl
acetylene CNTs, while the fwhm values of the G and D
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Figure 3. Raman spectroscopy reveals differences in defects among
substituted alkyne-grown CNTs. (A) Raman spectra taken from the
sidewalls of CNT forests. Black curves represent average spectral data
of experimental triplicate forests, normalized to the height of the D
band, and the thickness of the black curve represents +1 standard
deviation. The green, gray, and orange curves are the average
Lorentzian fits to the D (1339 cm™), G (1578 cm™), and D’ (1612
cm™") bands, respectively. The vertical black lines indicate the average
fitted peak location across all spectra. The fitted curves have been
slightly separated, vertically, from the spectral data to aid with
visualization. (B) D/G band and (C) D'/G band intensity ratios
obtained from the Lorentzian fits (A). The p-values were calculated
with a one-way ANOVA across experimental triplicates of all three
alkynes. (D) Full-width half-max (fwhm; cm™) of the Lorentzian fits
for the D, G, and D’ bands. All error bars in (B, C) represent +1
standard deviation of experimental triplicates. Ac represents acetylene,
MACc represents methyl acetylene, and VAc represents vinyl acetylene.

bands increased for vinyl acetylene CNTs (Figure 3C). This
divergence of the fwhm values of vinyl acetylene CNTs further
supports a difference in the defect type or density of the
respective forests, but cannot be strictly interpreted as a unique
feature with known structure.

Thermogravimetric analysis (TGA) curves of experimental
triplicates were nearly identical between alkynes, demonstrat-
ing no significant difference in onset or peak mass loss
temperatures (average = 663 °C; p = 0.93, ANOVA) and no
peaks at lower temperatures (SI Figure S4). Therefore, the
observed differences in Raman results must be explained by
bonding differences in the CNT lattice, rather than differences
in total amounts of amorphous carbon. Finally, variations in D
and D’ bands for vinyl acetylene CNTs are consistent with the
alignment data (Figure 1B) that suggest the partial
incorporation of vinyl groups from vinyl acetylene, resulting
in fewer point defects. Nevertheless, some sp>-C vinyl groups
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necessarily protrude from the CNT walls to drive the larger
interwall spacing (Figure 2A), giving rise to vinyl acetylene-
related point defects that are distinct from those associated
with by the sp>-C methyl groups in methyl acetylene.
Evidence for the existence of persistent alkyne-associated
side groups surviving into the CNT structure was observed via
ATR-FTIR in the unique methyl-absorption bands associated
with methyl-acetylene-doped CNTs (Figure 4). These spectra,

Ac — VAc — MAc

Transmittance (a.u.)

3100 2900 2700 2500 2300 2100
Wavenumber (cm™)

Figure 4. Methyl groups in methyl acetylene-grown CNTs detected in
ATR-FTIR spectra of CNT forests. Dark, solid lines represent the
average of experimental triplicates, while the shaded regions represent
+1 standard deviation. The peaks in the methyl acetylene-doped
CNT spectra at 2915 and 2850 cm™" are due to the asymmetric CH,
stretching and symmetric CH, stretching vibrations, respectively.”" A
noteworthy feature at 2150 cm™ is associated with alkynyl groups
persistent in the solid structures. Ac represents acetylene, MAc
represents methyl acetylene, and VAc represents vinyl acetylene.

taken from intact solids (i.e, no dispersants or sonication),
were similar across all three alkynes except for the appearance
of distinct features at 2915 and 2850 cm™' in the methyl
acetylene-grown CNTs. These absorptions are associated with
asymmetric and symmetric sp> CH, vibrations in stretching
modes, respectively,”’ and they have been associated with
methyl groups in CN'Ts.”””® The unique features suggest that
methyl groups are directly associated with methyl acetylene,
implying that methyl acetylene incorporated directly into the
CNT lattice (e.g., through a polymerization-like mechanism)
rather than dissociating into carbon atoms or C, units that
then assemble into CNTs in a random fashion. Interestingly,
we did not observe any vinyl-associated absorptions in the
spectra of vinyl acetylene-doped CNTs, such as C=CH,
stretching modes at around 3000 cm™". This could either be
due to masking of those features in the CNT structure (e.g.,
vinyl group density was below the detection limit of FTIR) or
a result of the variable incorporation modes of the vinyl group
on vinyl acetylene (see further discussion below. Also note that
other experimental approaches may shed light on the existence
of vinyl groups and ability of alkyne precursors to carry
heteroatom moieties into growing CNT structures74_76). This
versatility is plausible, as vinyl acetylene’s double bond can take
one of two different pathways: (1) protrude from the lattice,
augmenting the interwall spacing (Figure 2A); or (2) react to
incorporate cleanly into the CNT lattice (reducing tortuosity,
Figure 1B, and defect density, Figure 3B, C). Regardless of the
dominant mode, these results demonstrate that feedstock
chemistry can be leveraged to alter CNT structure and
bonding during the growth process. This in situ, gas-directed
functionalization and atomic-scale manipulation has the
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potential to enable routes to a variety of previously inaccessible
materials and has important implications for understanding
how CNTs form on the molecular scale.

Additionally, a noteworthy feature observed at 2150 cm™ is
associated with alkynyl groups (ie., triple bonds) persistent
and common to all the solid CNT structures. This implies the
existence of triple bonds in solid CNT structures, which is
remarkable and suggests that common ball-and-stick models of
CNTs (ie., with all sp>hybridized, aromatic carbon rings) is
incomplete. Other key differences between the spectra exist,
but are difficult to attribute to precise chemical moieties in the
structure due to a lack of peak attribution information (e.g.,
tabulated libraries or predicted IR features). These include the
trimodal peaks between 2700 and 2400 cm™' for Ac, but not
VAc or MAg, an apparent shift of the peak at 2300 cm™’, and
an absorbing feature around 2350 cm™ that is unique to MAc
and Vac.

As a proof-of-concept demonstration (whose scalability and
reproducibility remain to be determined), we illustrated how
temporally varying the main alkyne precursor could give rise to
unique morphological structure in a nanotube forest. Switching
the alkyne precursors from acetylene to methyl acetylene
resulted in a real-time change in the alignment of the nanotube
forest (Figure S; note that growth is from the bottom of the

growth axis

8
=
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R
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=
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Figure 5. SEM image of the morphological evolution in forest
sidewall at the junction where (A) acetylene was replaced by methyl
acetylene and (B) methyl acetylene was replaced by acetylene.

forest in the upward direction), where more aligned structures
appear at the top of the forest and more tortuous structures
appear at the bottom. Conversely, adding methyl acetylene
dopants first and then switching to acetylene causes a tortuous
forest that is not able to fully recover its alignment, presumably
due to disruption of the intertube mechanical forces necessary
for good alignment in these mesoscale structures.”” The
potential for such structural tuning could be leveraged for a
variety of hierarchically structured materials, ranging from size-
exclusion membranes’* "' to patterned interconnects that turn
on demand, and beyond.

The morphological differences in CNTs generated from
unique chemical reactants provides compellin§ evidence for a
metal-mediated polymerization mechanism.**** The structure
of the short-chained (less than C,) alkyne will influence the
fate of the side group in what we introduce as “mixed-mode
polymerization”: alkynes with side groups lacking unsaturated
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Figure 6. Variable alkynes exhibit unique influence on final nanotube structures mixed-mode polymerization, where unsaturated substituents on
small alkynes (less than C4) can incorporate into a CNT lattice (forming sp> bonds) and saturated substitutes protrude from the lattice,

introducing defects (or sp® bonding).

bonds (or pi-orbitals) will frustrate ring closure, leading to
protruding side groups and more tortuous tubes, whereas
alkynes with available pi-bonds may participate in rapid CNT
polymerization or protrude from the CNT lattice (i.e., mixed-
mode; Figure 6). Indeed, there is evidence that diacetylene
(1,3-butadiyne; a “double acetylene” with an unsaturation as a
“side group”) gives rise to rapid CNT formation.***>**
Understanding that alkynes react differently during CNT
synthesis depending on the hybridization of their side group
not only explains the variable atomic and nanoscale features
observed here and in other work, but also helps one imagine
chemical pathways to novel CNT structures. First, the
observation that CNTs can be synthesized from a wide
range of hydrocarbon fuels, where C/H ratios need to be
optimized, is consistent with the common thermal generation
of alkynes and their sensitivity to C/H loading.****~" Second,
failure to achieve fully sp® nanotubes (i.e., those invoked by
ball-and-stick imagery) is reconciled by acknowledgment that
multiple alkynes are present in thermal reactive environments,
and each of these is able to add to a building CNT structure,
yielding more defective tubes. With this in mind, more
attention must be paid to gaseous composition of the reactive
atmosphere in order to achieve the degree of control sought
for many applications (e.g., patterned interconnects or chiral
control). Such data would also enable co-optimization of
environmental performance via rigorous identification of
volatile species concurrently with the synthetic optimization.
Similarly, unreacted feedstocks could be appropriately filtered
and recirculated to support subsequent CNT growth, greatly
improving the product-to-waste ratios common to many
synthetic approaches (other synthetic limitations to this
approach are described in the referenced literature),”%”5>5%%
Finally, more accurate mechanistic models present an
opportunity to unlock hierarchical nanocarbon structures
with atomic-scale manipulation of features. This could include
mechanical strength and electrical applications where nano-
tubes are covalently bonded at strategic locations or with epoxy
resins (e.g., for stronger composites), patterned interconnects
where curvature or turns in a continuous CNT are introduced
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through local switching of precursors (i.e., in pulsed molecular
beam approaches), stacked forests where intertube spacing,
alignment, and side groups vary throughout the height of the
forest (e.g, to enable unique size exclusion applications), or
covalently attaching heteroatoms that can serve as a link to
other precise functionality (e.g, metals or metalloorganic
substances). Such structures and their potential performance
parameters are not often included in exploratory material
databases constructed from computational models due to the
large number of atoms and the associated computational
complexity and power required.”” However, those approaches
are quickly becoming more efficient, and exploring the
potential of these structures in silico could identify best-
candidates for laboratory synthesis and functional performance
corroboration. While these novel nanomaterials are still far
from commercial-scale realization, the work presented here
provides the chemical mechanistic understanding and practical
approach for realization of those next-generation nanomateri-
als.

Vertically aligned multiwall CNT forests were grown in a cold-wall
chemical vapor deposition (CVD) reactor (SI Schematic S1).%" si
substrates (0.5 X 0.5 cm?®) layered with 10 nm AlL,O; and 1 nm Fe
were used as the catalyst. Following an alkyne-assisted growth
recipe,’® CNT forests were grown at 650 °C and atmospheric
pressure with 50% v/v H,, 20% v/v ethylene, and 1% v/v of either
acetylene, methyl acetylene, or vinyl acetylene, balanced with Ar to
achieve a total flow rate of 604 sccm (standard cubic centimeters per
minute; see SI for timing details).

A Keyence laser displacement sensor was used to monitor in situ
height of the CNT forests.” Resulting growth curves of CNT forests
were used to determine terminal height, linear growth rate, and
catalyst lifetime.”” Importantly, we note that vertically aligned forests
are a model system allowing extraction of these growth kinetic
parameters, and the chemical findings may extend to nonaligned
nanotubes as well.

The alkyne-assisted growth method used here consistently
produced CNT forests that covered the entire substrate. CNTs
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reached their terminal heights of over 0.40 mm and in less than S min.
All CNTs were of similar purity, according to thermogravimetric
analysis (TGA) (SI Figure S4).

Synchrotron-based small-angle X-ray scattering (SAXS; for nanoscale
features) and wide-angle X-ray scattering (WAXS; for atomic scale
features) were performed on CNT forests to collect quantitative
morphological information averaged across billions of CNTs
throughout the entire cross-section of the forest. Multiple scans
were taken along the vertical height of the forests, and analyses were
derived from spots with the maximum CNT number density. Degree
of CNT alignment (or tortuosity) was assessed by calculating the
Hermans orientation factor (H) from the X-ray scattering pattern
intensity (I) along the azimuthal angle (¢) via the following
equations:gz’%

1 2
H= E(3<COS ¢y —1) 1)

/0”/21((]5)sin ¢cos® pdg
[ 1 @)sin pdg

(cos™ @) =
()

Average CNT diameter d was extracted from peak positions in
SAXS I versus q curves (d ~ 27t/q),”” where q is the scattering vector’s
magnitude. The average interwall spacing and wall thickness (i.e.,
graphene stack height) were determined from the peak position and
width, respectively, in WAXS I vs q curves.”*”> Mass density in a
forest was determined from the attenuation of the X-ray intensity
using the Beer—Lambert law.”® The CNT number density was then
calculated from the mass density values using the specific surface area
of CNTs.*” Wall number was calculated as stack height divided by
interwall spacing plus 1.

In order to minimize the influence on CNT morphology and
chemistry, CNTs forests were analyzed as-synthesized and not
dispersed in solvent or sonicated. This is critically important because
we sought to elucidate structural details of the as-grown forests.
Preparative techniques required for some characterization, such as
high-resolution transmission electron microscopy (HR-TEM), are
known to induce structural changes. That is, the functional group
attachments that we sought to image could be both induced or
removed by the preparation procedure. As such, it would be
unjustified to use HR-TEM as evidence that chemical functionality
can be tuned with gas chemistry alone (i.e., the preparation technique
is a chemical modification in and of itself). Thus, we exclusively
characterized the materials using nondestructive techniques (see
discussion and limitations to quantification in SI).

Scanning electron microscope analysis (SEM) (Hitachi SU-70) was
conducted at 10 000 magnification on the side of CNT forests 0.1 mm
above the substrate at multiple locations (representative images in
Figure 1A).

Raman spectra from 1200 to 1700 cm™" were taken with a Horiba
LabRAM HR Evolution by focusing a 532 nm laser on the side of
CNT forests. Three different spots on the same face of each forest
were analyzed and averaged. A line was drawn between the two end
points of the spectra and subtracted out to zero the tails. Then, each
spectra was normalized to its respective D band (1339 cm™") height
to facilitate observation of differences in the G (1578 cm™) and D’
(1612 cm™) bands.”” Finally, we fit these bands with three separate
Lorentzian curves’”*’ using the nonlinear least-squares (nls) function
in R. Peak height and full-width half-maximum (fwhm) values were
taken from the fitted curves. Averages and standard deviations were
calculated from the zeroed and normalized spectra of experimental
triplicates.

ATR-FTIR was used to detect bonding differences between CNT
forests grown with different alkynes. As-synthesized CNTs were
scraped off of their substrate directly onto the ATR crystal in an
approximately even coating, and pressed with an anvil to ensure direct

188

contact with the crystal. Spectra were collected in transmission mode
and normalized to a 101-point moving average of the original data.
Averages and standard deviations were calculated from spectra of
experimental triplicates.

All analyses were conducted on experimental triplicates from three
separate growths from each alkyne. Values in the text are reported as
the mean of experimental triplicates, plus or minus one standard
deviation. All data processing and statistical analyses were conducted
in R, and statistical significance was defined as p values below 0.05. All
pairwise t tests with Bonferroni correction (to reduce the chances of
Type I error that increases from multiple tests of hypotheses'®’) are
available in SI Table S1.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00052.

Detailed materials and methods description; schematic
of cold-wall reactor; growth curves of alkynes and
detailed kinetic analysis; thermogravimetric analysis of
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