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Support vector machine-based classification of
neuroimages in Alzheimer’s disease: direct comparison of
FDG-PET, rCBF-SPECT and MRI data acquired from the
same individuals
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Objective: To conduct the first support vector machine (SVM)-based study comparing the diagnostic
accuracy of T1-weighted magnetic resonance imaging (T1-MRI), F-fluorodeoxyglucose-positron emi-
ssion tomography (FDG-PET) and regional cerebral blood flow single-photon emission computed
tomography (rCBF-SPECT) in Alzheimer’s disease (AD).
Method: Brain T1-MRI, FDG-PET and rCBF-SPECT scans were acquired from a sample of mild AD
patients (n=20) and healthy elderly controls (n=18). SVM-based diagnostic accuracy indices were
calculated using whole-brain information and leave-one-out cross-validation.
Results: The accuracy obtained using PET and SPECT data were similar. PET accuracy was 68B71%
and area under curve (AUC) 0.77B0.81; SPECT accuracy was 68B74% and AUC 0.75B0.79, and both
had better performance than analysis with T1-MRI data (accuracy of 58%, AUC 0.67). The addition of
PET or SPECT to MRI produced higher accuracy indices (68B74%; AUC: 0.74B0.82) than T1-MRI
alone, but these were not clearly superior to the isolated neurofunctional modalities.
Conclusion: In line with previous evidence, FDG-PET and rCBF-SPECT more accurately identi-
fied patients with AD than T1-MRI, and the addition of either PET or SPECT to T1-MRI data yielded
increased accuracy. The comparable SPECT and PET performances, directly demonstrated for the first
time in the present study, support the view that rCBF-SPECT still has a role to play in AD diagnosis.
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Introduction

Alzheimer’s disease (AD) is characterized by structural
and metabolic changes in the brain. The most consistent
evidence of AD-related neuronal degeneration includes
grey matter (GM) atrophy in the temporal lobes and medial
parietal cortex and hypometabolism in the temporoparietal
cortex.1,2

AD is mainly diagnosed by detecting characteristic
patterns of cognitive decline. Its onset is typically insidious–
cognitive decline generally begins years before reaching
the threshold of clinical significance and functional impair-
ment. Neuropsychological testing can help identify and

quantify such cognitive deficits, thus improving diagnostic
certainty. The exclusion of other diseases, which requires
blood tests and neuroimaging investigations, is also a fun-
damental part of the diagnostic process.1,2

T1-weighted magnetic resonance imaging (T1-MRI) is
widely used both to rule out non-AD pathological pro-
cesses (such as brain tumors and infarcts) and to
characterize a typical AD-related pattern of atrophy in
the temporal lobe and medial parietal cortex. Functional
neuroimaging modalities, including 18F-fluorodeoxyglucose-
positron emission tomography (FDG-PET) and regional
cerebral blood flow single-photon emission computed
tomography (rCBF-SPECT) frequently reveal the typical
pattern of hypometabolism/hypoperfusion in temporopar-
ietal regions and can be useful in cases of diagnostic
uncertainty. While FDG-PET has greater sensitivity and
specificity to detect AD-related hypofunctional brain pat-
terns, the rCBF-SPECT method is more readily available
and less expensive in clinical settings.3,4 These functional
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modalities should not be used as the only imaging
measures during the diagnostic workup because they
cannot provide the structural data necessary to exclude
non-AD diagnoses that contribute to cognitive decline.1,2

Although AD studies using mean neuroimaging indices
have brought major advances in the characterization of
group-wise brain abnormalities,5,6 the diagnosis of indivi-
dual cases based solely on neuroimaging data is still not
possible, given that brain findings can vary greatly between
patients.

Diagnosis of early AD can be challenging. The task of
summarizing the complex, highly dimensional neuroima-
ging data into a single label – the presence or absence of
disease – has been addressed with the use of machine
learning-based pattern recognition techniques in different
neuropsychiatric disorders.7 The support vector machine
(SVM) is a multivariate machine learning approach for
classifying individuals through pattern recognition analy-
sis. The aim of SVM is to find the best hyperplane that
separates all data points of one group from those of
another group.8,9 SVM can potentially be applied to
multimodal neuroimaging data to improve the accuracy
of AD diagnosis.10,11

Both FDG-PET and rCBF-SPECT can be combined
with neurostructural data to provide complementary infor-
mation about brain changes associated with AD.1 A recent
systematic review found that although FDG-PET can help
distinguish between different types of dementia, it is at
best only slightly better than rCBF-SPECT in differentiating
AD patients from healthy controls.12 Nevertheless, evi-
dence from studies comparing rCBF-SPECT and FDG-
PET is still ‘‘limited and inadequate’’ and none of the
studies included in the above-mentioned review performed
SVM analyses.12

SVM has been used in AD studies investigating com-
binations of T1-MRI + FDG-PET,13-16 but we are not
aware of another SVM study that has investigated SVM
performance in discriminating AD from controls with a
combination of T1-MRI, FDG-PET and rCBF-SPECT scans
acquired from the same sample. Thus, it is still unknown
whether a combination of T1-MRI plus FDG-PET is superior
to T1-MRI plus rCBF-SPECT.

Intensity normalization is a standard step in studies
involving FDG-PET and SPECT, whether for total tracer
uptake in the brain or for uptake in a single reference
brain region. This procedure minimizes the effects of
inter-individual differences in whole-brain signal, allow-
ing regional patterns of change in metabolic activity to be
identified.17,18 The cerebellum is often used as reference
because it is known to be spared in AD,13,18 and both
cerebellar and global uptake normalization have been used
in SVM studies on AD.13,19 Based on the hypothesis that
the reference region is unaffected by the disease under
investigation18 and on previous semi-quantitative FDG-
PET and rCBF-SPECT studies comparing AD patients
and controls,17,20 we expected cerebellar normalization to
improve diagnostic accuracy. However, no extant SVM
study has directly compared the diagnostic accuracy of
cerebellar and global normalization when distinguishing AD
from controls.

The aim of the present study is to evaluate the diag-
nostic accuracy of SVM in distinguishing AD patients from
healthy controls using neurostructural (T1-MRI) and neur-
ofunctional imaging data (both FDG-PET and rCBF-
SPECT). Our intention was to measure SVM performance
in conjunction with neuroimaging data (both in isolation
and in combination) and characterize the optimal combi-
nation of imaging modalities, as well as to test whether
normalizing radiotracer uptake in the cerebellum (for PET
and SPECT data) would improve the diagnostic perfor-
mance of the classifier.

Methods

Study population

Twenty patients with mild AD and a group of 18 healthy
elderly controls were enrolled. The investigation was
approved by the ethics committees of the institutions
where the study was conducted. Informed consent was
obtained from all participants.

Patients were recruited on their first visit to the memory
outpatient clinics of the Neurology and Psychiatry depart-
ments of the Universidade de São Paulo Medical School.
All patients fulfilled the DSM-III-R21 criteria for mild dementia
and NINCDS/ADRDA22 criteria for probable AD. The Cli-
nical Dementia Rating (CDR) scale23 was used to assess
clinical severity, and only patients with CDR equal to 0.5 or 1
(i.e., mild dementia) were included. Patients with an auditory
deficit or uncorrected visual impairment that could have
interfered with their cognitive evaluation were excluded, as
were those undergoing pharmacological AD treatment with
cholinesterase inhibitors. Healthy controls were recruited
from activity centers and groups for elderly individuals in the
community.

Exclusion criteria for both the AD and control groups
were: less than four years of education, age below 60 or
above 90 years, psychotropic drug use, diabetes mellitus,
the presence of systemic disorders associated with cog-
nitive impairment, or brain lesions incidentally detected in
MRI. Family history of AD and information about current
and previous medical, neurological and psychiatric illness
was obtained during interviews with the participants and
their families. Neurologic or psychiatric disorders prior to
the onset of AD were also exclusion criteria.

Patients with AD underwent an extensive neuropsy-
chological assessment including the following tests: the
Mattis Dementia Rating Scale (DRS),24 the Trail-Making
Test parts A and B, the Hopper Visual Organization Test,
the Rey Auditory Verbal Learning Test, the Wechsler
Memory Scale: logic memory and visual reproduction
subtests, the Rey-Osterrieth complex figure test, the Boston
Naming Test and the Wisconsin Card Sorting Test. Instru-
mental activities of daily living were quantified using the
Functional Activities Questionnaire.25

Image acquisition and preprocessing

Details on image acquisition and preprocessing are pre-
sented as online-only supplementary material.
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Classification using support vector machine (SVM)

We employed a whole-brain approach involving a mask to
exclude voxels outside the brain. This resulted in feature
vectors of 219727 voxels for all modalities (each feature
corresponds to a brain voxel).

We applied SVM8,9,26,27 using LIBSVM software28

(available in the PRoNTo toolbox)11 to classify controls
(class 1) and AD patients (class 2). Considering the large
number of features, we used a linear kernel, since there was
no need to map them to an even higher dimensional feature
space to separate the examples. Due to the comparative
nature of our investigation, the soft-margin SVM penalty
parameter C was fixed to 1, so no grid search was perfor-
med to find the optimal parameter when classifying.

Given that the AD group tended to be older and have
fewer years of education than the control group (Table 1),
the neuroimaging data was corrected for the effects of age
and education. This was achieved through linear algebra
operations involving matrix transformation to remove con-
founding effects from kernels using a residual matrix.29,30

During the training phase, the SVM algorithm finds a
hyperplane that separates the examples in the input
space, thus maximizing the margin of separation between
the classes. Support vectors are data points that lie
closest to the separating hyperplane. Once the decision
function is determined from the training data, it can be
used to predict the class label of a new test example.31

To evaluate the generalization ability of the model, the
dataset was partitioned into a ‘‘training set’’ and a
‘‘testing set.’’ By repeatedly repartitioning the data this
way, we obtained an estimate of the generalization error
of the model. We used a leave-one-out cross-validation

approach32,33 in which a single example (i.e., one AD
patient or healthy control) was left out of testing in each
iteration.

Accuracy was obtained through the number of true
positives (patients correctly classified) and true negatives
(healthy controls correctly classified). Since the number of
examples in each class differed, we calculated a balanced
accuracy measure, which takes the number of samples in
each class into account, giving equal weight to the accu-
racies obtained in test samples. We also compared the
different models using receiver operating characteristic
(ROC) curves, plotting the true positive rate against the
false positive along different threshold values. The area
under the curve (AUC) is a summary measure describing a
classifier’s performance across all decision thresholds.

Statistical significance was tested using permuta-
tions, a non-parametric approach by which the frequency
distribution under the null hypothesis is obtained by cal-
culating many possible combinations under rearrange-
ments of the labels (i.e., ‘‘AD patients’’ vs. ‘‘controls’’)
across the examples. We randomly exchanged the labels
associated with the examples and repeated the complete
procedure (leave-one-out training and test) 1,000 times.
Since permuted labels destroy the correlation between
examples and labels, the classification accuracy should
be close to chance (around 50%). Figure 1 schematically
describes the flow chart of the SVM analysis.

Results

The AD group (11 female) had a mean age of 75.564.0
years and their mean educational level was 7.363.9 years.

Table 1 Demographic characteristics and neuropsychological performance of both groups, and instrumental activities of daily
living of the AD group

AD group Control group p-value*

Age 75.5 (4.0) 72.7 (4.2) 0.06
Male/female 9/11 7/11 0.70
Education (years) 7.3 (3.9) 10.4 (4.8) 0.05
MMSE 21.3 (2.8) 28.1 (1.3) o 0.01

DRS 109.30 (12.98) 134.44 (6.92) o 0.001
Trail-A 112.40 (60.84) 48.11 (16.82) o 0.001
Trail-Bw 263.62 (75.04) 132.67 (44.25) o 0.001
HVOT 69.25 (10.80) 58.83 (9.40) 0.004
RAVLT 19.60 (6.19) 36.28 (5.79) o 0.001
WMS-R-LM 14.30 (8.32) 33.56 (7.68) o 0.001
WMS-R-VR 12.25 (4.61) 27.39 (7.45) o 0.001
ROCFw 19.76 (10.10) 26.69 (7.38) 0.002
BNT 32.85 (9.21) 44.39 (7.06) o 0.001
WCSTw 22.31 (11.86) 29.29 (9.24) 0.046

FAQ 10.00 (6.19) N/A -

Data presented as mean (standard deviation), unless otherwise specified.
AD = Alzheimer’s disease.
*p-value for Mann-Whitney tests (continuous variables) or chi-square test (gender). Wilcoxon rank-sum test for neuropsychological
performance variables and FAQ.
AD = Alzheimer’s disease; BNT = Boston naming test; DRS = Mattis Dementia Rating Scale (total points)24; FAQ = Functional Activities
Questionnaire25; HVOT = Hopper Visual Organization Test (t score, with higher scores reflecting worse performance); MMSE = Mini-Mental
State Examination; N/A = not available; RAVLT = Rey Auditory Verbal Learning Test; ROCF = Rey-Osterrieth complex figure test, copy
subtest; SD = standard deviation; Trail-A and Trail-B = Trail Making Test parts A and B (time in seconds); WCST = Wisconsin Card Sorting
Test, number of correct responses; WMS-R-LM = Wechsler Memory Scale logic memory subtest, immediate recall; WMS-R-VR = Wechsler
Memory Scale visual reproduction subtest, immediate recall.
wMissing data: there were missing data for Trail-B (four patients), ROCF (one patient) and WCST (seven patients and one control).
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Figure 1 Flow chart of SVM analysis. AD = Alzheimer’s disease; AUC = area under curve; BA = balanced accuracy; FDG-PET =
18F-fluorodeoxyglucose-positron emission tomography; SPECT = single-photon emission computed tomography; SVM =
support vector machine; T1-MRI = T1-weighted magnetic resonance imaging; TN = true negative; TP = true positive.
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The mean Mini-Mental State Examination (MMSE) score
was 21.362.3, and the mean time of AD was 22.56
11.0 months. All patients presented a typically slow and
gradual symptom onset, with clinically relevant cognitive
changes beginning 22.5611 months before study enroll-
ment. The AD group’s mean Functional Activities Ques-
tionnaire25 score for instrumental activities of daily living
was 1066.2 points. All AD patients were right-handed. Five
patients had a family history of dementia, but without a
dominant pattern of inheritance.

Healthy controls (11 female, mean age 72.764.2 years,
mean education 10.464.8 years) presented no memory
complaints, their physical and neurological examination
was normal and their CDR score was 0 (no deficit). They
underwent a comprehensive neuropsychological evalua-
tion (including MMSE) to objectively rule out cognitive
deficits,34 and a self-reporting questionnaire35 was used to
exclude depression and other mental disorders (all scores
were less than 8). All controls except one were right-
handed. Volunteers with a family history of AD or any other
form of dementia were excluded.

The demographic characteristics of the two groups are
presented in Table 1. There was a trend towards greater
age and fewer years of formal education in the AD group.
Table 1 also presents the neuropsychological assessment
data for both groups, as well as the Functional Activities
Questionnaire25 scores for the AD group (instrumental
activities of daily living). As expected, the neuropsycholo-
gical performance of the AD group was worse than con-
trols. Further details about the enrolment requirements
and sample characteristics have been described in
Buchpiguel et al.36

Single modality

Table 2 presents the results of analyses performed for
each modality individually, while Figure 2 presents the
ROC curve for each of the functional imaging modalities
compared with the T1-MRI data. The best accuracy in
distinguishing AD patients from controls was obtained
using neurofunctional data. Classification using rCBF-
SPECT resulted in an AUC of 0.75B0.79 and an accu-
racy of 68B74%, while FDG-PET data resulted in
an AUC of 0.77B0.81 and an accuracy of 68B71%.
T1-MRI presented the worst performance, with 58%
accuracy and an AUC of 0.67. Classification accuracy
using neurofunctional data reached statistically signifi-
cant values, although this did not occur when using only
MRI (Table 2). The different preprocessing pipelines for
neurofunctional data did not yield clear differences in
diagnostic performance.

Figure 3 is a graphical representation of predictions
for each single modality classification (T1-MRI, FDG-PET
and rCBF-SPECT). Since multiple analyses were per-
formed for FDG-PET and rCBF-SPECT, this figure pre-
sents only the classifications that resulted in the best
accuracies for each modality (i.e., rCBF-SPECT without
correction for PVE and both FDG-PET and rCBF-SPECT
with cerebellar normalization). Subjects classified as
healthy controls are plotted to the left of the dotted vertical
line (i.e., with negative SVM projections) while subjects to

the right of the vertical line presented positive SVM
projections and were thus classified as having AD.
Classification using only T1-MRI data resulted in more
incorrect labeling than either FDG-PET or rCBF-SPECT
alone.

Figure 4 presents the three discriminant maps showing
the relative weight of brain voxels resulting from the appli-
cation of linear SVM to classify AD patients vs. controls
using each imaging modality (T1-MRI, FDG-PET and
rCBF-SPECT). It is clear in this figure that classifications
based on each modality produce different global patterns
of anatomical distribution of voxel weights.

Combining modalities

Combining neurofunctional data (FDG-PET or rCBF-
SPECT) with T1-MRI yielded better classification accu-
racies (68B74% vs. 58%) and improved AUC (0.74B
0.82 vs. 0.67) than neuroanatomical data alone. However,
the combination of modalities did not present a clear
improvement over isolated neurofunctional data. Table 2
presents the results of analyses with a combination of
modalities and Figure 5 shows the ROC curves for each
combination of modalities.

Discussion

To the best of our knowledge, this is the first SVM-based
neuroimaging study to conduct comparative diagnostic
accuracy assessments of brain T1-MRI, FDG-PET and
rCBF-SPECT data acquired from the same AD patients
and controls.

The lowest diagnostic accuracy resulted from using
only T1-MRI data. One possibility is that nonspecific find-
ings of brain atrophy – variably detected in cognitively
preserved elderly subjects – may complicate the discri-
mination when SVM methods are applied. Moreover, in
SVM investigations with a modest sample size (as in our
case), variations in a single MRI dataset (for instance due
to movement during scanning) may more significantly
affect diagnostic performance.37 The higher accuracy
indices of neurofunctional data relative to MRI-based data
is in accordance with previous T1-MRI and FDG-PET
studies,13,14 confirming the idea that brain metabolic
markers more accurately differentiate AD-related patho-
logical changes from the effects of healthy aging on the
brain.14 Moreover, multimodal neuroimaging studies have
suggested that metabolic changes precede atrophy in
AD.38 Accordingly, using imaging modalities sensitive to
hypometabolism, such as FDG-PET and rCBF-SPECT,
resulted in better accuracy than classification with T1-MRI,
especially considering that the sample consisted of patients
with mild dementia.

Previous studies have used a number of different clas-
sification techniques with variable results,39-42 but, to our
knowledge, ours is the first to demonstrate that a multi-
variate analysis resulted in rCBF-SPECT accuracy indices
comparable to those of FDG-PET. Our rCBF-SPECT find-
ings agree with the results of other AD SPECT studies.43,44

Thus, this imaging technique may still have a role in
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AD diagnosis, especially given its broader availability in
certain regions than FDG-PET.

In the present study, combining neurofunctional and
neuroanatomical data yielded higher accuracy indices
than T1-MRI images alone, which agrees with previous
studies.13,14 Although adding neurofunctional data to neu-
roanatomical data yielded better results, the accuracy
resulting from the combination of modalities was not
clearly superior to that of neurofunctional modalities

alone, which also agrees with previous PET and MRI
studies.13,14 This may be due to the whole brain approach,
since it has been previously shown that using data extrac-
ted only from disease-related regions of interest can result
in increased MRI-T1+FDG-PET classification accuracy
compared to single modality FDG-PET.13,45

Previous SVM-based investigations using FDG-PET or
rCBF-SPECT data did not compare the diagnostic accu-
racy of cerebellar vs. global normalization for distinguishing

Figure 2 Receiver operating characteristic (ROC) curves of single modality classification. CN = cerebellar normalization; FDG-
PET = 18F-fluorodeoxyglucose-positron emission tomography; GN = global normalization; PVE = partial volume effect
correction; SPECT = single-photon emission computed tomography; T1-MRI = T1-weighted magnetic resonance imaging.
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AD from controls. In this study the accuracy indices were
similar for the two tracer normalization procedures. This
suggests that although the normalization procedure can
yield different results in studies comparing mean functional
data between groups of healthy controls and AD,46 the
normalization approach is not as critical when classifying
individuals using pattern recognition analysis.

There are a number of strengths in the present study
that should be highlighted, such as the careful selection
and clinical assessment of controls and patients in early-
stage AD. All three image modalities were performed with
all subjects, allowing for direct comparison of the classifier
performance between modalities and combinations of
modalities. Moreover, we employed state-of-the-art meth-
ods to correct functional neuroimaging data for PVE.

However, the relatively modest sample size is an
important limitation, and this probably influenced our
relatively low accuracy figures compared to studies with
larger samples,37 particularly regarding T1-based MRI
data. However, the novelty of our study lies not in report-
ing how well neuroimaging-based diagnostic performance
indices can discriminate AD from controls using SVM, but
rather in its direct comparisons of neuroimaging mod-
alities, particularly since both the PET and SPECT data
were acquired from the same AD patients and controls.
Indeed, the SVM-based evaluation of such a modestly
sized but carefully screened sample has still provided
sufficient power to produce high diagnostic accuracy
scores when either of these neurofunctional modalities
was included in the analyses. Another limitation of our

Table 2 Classification accuracy for each image and combined image modalities

Modality AUC TP (%) TN (%) BA (%) p-value*

T1 -MRI 0.67 50.00 66.67 58.33 0.1379

FDG-PET
GN 0.81 70.00 66.67 68.33 0.0242
CN 0.77 70.00 72.22 71.11 0.0157

rCBF-SPECT
GN
PVE 0.75 60.00 77.78 68.89 0.0210
No PVE 0.76 70.00 66.67 68.33 0.0214

CN
PVE 0.75 60.00 83.33 71.67 0.0071
No PVE 0.79 70.00 77.78 73.89 0.0043

T1-MRI + FDG-PET (GN) 0.81 75.00 66.67 70.83 0.0198
T1-MRI + FDG-PET (CN) 0.82 70.00 72.22 71.11 0.0014
T1-MRI + rCBF-SPECT (GN, PVE) 0.78 75.00 72.22 73.61 0.0008
T1-MRI + rCBF-SPECT (CN, PVE) 0.74 70.00 66.67 68.33 0.0253
T1-MRI + rCBF-SPECT (GN, no PVE) 0.78 80.00 66.67 73.33 0.0011
T1-MRI + rCBF-SPECT (CN, no PVE) 0.76 75.00 72.22 73.61 0.0003

AUC = area under curve; BA = balanced accuracy; CN = cerebellar normalization; FDG-PET = 18F-fluorodeoxyglucose-positron emission
tomography; GN = global normalization; PVE = partial volume effect correction; rCBF-SPECT = regional cerebral blood flow single-photon
emission computed tomography; T1-MRI = T1-weighted magnetic resonance imaging; TN = true negative; TP = true positive.
*Non-parametric statistical significance.

Figure 3 SVM class prediction of individual subjects for each imaging modality. y-axis: subject identification number. x-axis:
linear projection for each subject. Subjects receiving negative values (i.e., data points to the left of the vertical dotted line) were
classified as controls while those receiving positive values (i.e., to the right of the line) were classified as having Alzheimer’s
disease (AD). Misclassifications can be observed as circles to the left of the separating plane (AD patients incorrectly classified
as controls, i.e., false negatives) and crosses to the right of it (controls incorrectly classified as AD patients, i.e., false positives).
FDG-PET = 18F-fluorodeoxyglucose-positron emission tomography; SPECT = single-photon emission computed tomography;
SVM = support vector machine; T1-MRI = T1-weighted magnetic resonance imaging.
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study is that we estimated neither the intelligence coeffi-
cient of the AD patients and controls nor used a scale to
document the presence, severity and clinical impact of
neuropsychiatric symptoms, which are very common in
AD.47 Nevertheless, the lack of this information is a
common limitation in the field, shared by other SVM
studies on AD.13-16 It is important to point out that neuro-
logic or psychiatric disorders prior to the onset of AD were
exclusion criteria and that the development of neuropsy-
chiatric symptoms has been considered a core feature
of AD.47 Therefore, we believe that our study required
no data correction for the presence of these symptoms.
A third limitation worth mentioning is that the T1-MRI data
was acquired using a 1.5 Tesla scanner, and it is possible
that higher accuracies would emerge if a 3T scanner had

been used. Finally, although the SVM analysis conduc-
ted herein allowed the accuracy of a machine learning-
based approach to be tested with no need for a priori
definitions of anatomical hypotheses, such a whole-brain
multivariate approach limits the interpretability of anato-
mical results. Therefore, although the attribution of voxel
weights was available, we refrain from drawing any con-
clusions about the involvement of specific brain regions.
We intend to address this issue in additional investiga-
tions involving our multimodal imaging data, using an
approach more suitable for extracting anatomical informa-
tion from SVM analyses.48

A growing number of studies are employing machine
learning approaches to deal with the large quantities of
data generated by neuroimaging investigations, and future

Figure 4 Patterns of anatomical distribution of voxel weights resulting from single modality classifications. Positive weights
mean a higher relative measure in that voxel for AD patients than controls. Conversely, a negative weight means a higher
relative measure for controls. The measures are: GM volume for T1-MRI, regional brain metabolism for FDG-PET and regional
cerebral blood flow for rCBF-SPECT. CN = cerebellar normalization; FDG-PET = 18F-fluorodeoxyglucose-positron emission
tomography; GN = global normalization; PVE = partial volume effect correction; SPECT = single-photon emission computed
tomography; T1-MRI = T1-weighted magnetic resonance imaging.
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studies should provide new insights and possibilities. For
instance, the application of SVM techniques to neurofunc-
tional and neurostructural data has already shown the
potential to predict future cognitive decline and conversion
from mild cognitive impairment to AD.49 Another possibility
is using longitudinal neuroimaging data (i.e. rate of change)
as an input for the classifier.50,51 One additional alterna-
tive is to apply a probabilistic framework that allows the

likelihood of diagnosis to be determined so that the concept
of disease as a spectrum from normality to overt AD can be
reflected in the analytical approach.52 Another interesting
idea is to apply machine-learning techniques to combine
neuroimaging data with other types of biomarkers (e.g.,
CSF Ab42, t-tau and p-tau; APOE genotype) to further
improve accuracy.52,53 Finally, it should be pointed out that
although SVM is a popular multivariate machine learning

Figure 5 Receiver operating characteristic (ROC) curves of classifications using a combination of imaging modalities.
CN = cerebellar normalization; FDG-PET = 18F-fluorodeoxyglucose-positron emission tomography; GN = global normalization;
PVE = partial volume effect correction; SPECT = single-photon emission computed tomography; T1-MRI = T1-weighted
magnetic resonance imaging.
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approach, other similar methods have been applied to
AD neuroimaging studies, such as the naive-Bayes clas-
sifier, the Gaussian process and neural network classifi-
cations.52,54-56

In conclusion, SVM performance in distinguishing AD
from controls was better with neurofunctional data (FDG-
PET and rCBF-SPECT) than with T1-MRI. The combina-
tion of neurofunctional and volumetric data also yielded
higher accuracies than T1-MR alone. Classification using
SPECT presented similar results to those obtained with
FDG-PET.
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