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Abstract: Water desalination by membrane distillation (MD) can be affected by a wide range of
operating parameters. The present work uses combinational approach of Analytical Hierarch pro-
cess (AHP) and Fuzzy Analytical Hierarchy process (Fuzzy-AHP) to identify the most important
parameters in the MD desalination. Five process parameters and key-performance indicators, named
derivable outputs (DOs), are considered, along with the critical factors affecting these DOs in the
current study. The DOs and the critical influencing factors (CIFs) are selected based on their exper-
imental feasibility. The investigation involves five DOs, which are liquid entry pressure, thermal
power consumption, permeate quality, permeate flux, and pumping (feed circulation) power. A total
of twenty-five critical influencing factor were associated with the DOs. The identification of the DOs
and CIFs was based on the literature review, and further analyses were performed. Both methods,
AHP and Fuzzy-AHP, determined six extremely important CIFs in the desalination MD, which are
feed temperature, feed concentration, or feed salinity; feed flow rate; membrane hydrophobicity;
pore size; and membrane material. Moderately important CIFs are found to be four by both methods.
These common CIFs are feed solution properties, membrane thickness, feed channel geometry, and
pressure difference along the feed channel. Finally, the least preferred CIFs are four common in both
methods that are MD configuration, duration of test, specific heat of feed solution, and viscosity.

Keywords: membrane distillation; critical influencing factors (CIFs); analytic hierarchy process
(AHP); Fuzzy-AHP; multiple decision maker (MDM); derivable output

1. Introduction

Freshwater is a basic requirement globally. With continuous increase in population
and the rapid exhaustion of freshwater resources, the attention is now turning towards
the desalination of seawater. Even now, 11% of the total world’s population has no
access to portable pure water. Although world surface comprises of 70% water, 97%
of which being salty and is inaccessible to human use. Industrialization, diminishing
rainfall and global warming worsened the situation further to reach a critical point wherein
available pure water is also getting exhausted [1]. To meet these constant increasing water
needs, seawater desalination or brackish water treatment can be helpful to face the global
demand of freshwater. Abundant water supply can be obtained by seawater desalination,
which includes separation of impurities, minerals, and salts to reduce the excessive salt
concentration of the seawater to become portable water. However, this removal of salt
from seawater is an expensive process [2].

The produced water by the second generation technologies (Figure 1) comes in a better
quality and higher cost efficiency compared to the first generation technologies. As the salt
removal capacity of membrane distillation (MD) and reverse osmosis (RO) is high, these
processes are extensively studied. MD is basically a membrane thermal driven process,
but RO is pressure-driven [1]. Membrane distillation (MD) is proving to be a promising
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technology. It basically uses thermal energy for the separation of water. In this process,
only water vapor can pass through the pores of hydrophobic microporous membrane.
In comparison with other desalination methods, MD exhibits great advantages, such as
energy utilization, low operating temperature, and high salt rejection rate. The hydrostatic
pressure is also less, as of what is observed in the RO process. Hence, MD could be a
competitive process once fully commercialized. Considering these conclusions, affordable
materials can be deployed in MD. Plastic can be used to reduce corrosion issues [3].
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The process of MD can be classified into four main types of configurations [4,5]:

1. Direct Contact Membrane Distillation (DCMD): The membrane in this method is
directly in contact with the hot feed solution and cold permeate stream [6]. Difference
in temperature and partial pressure between the two sides across the membrane
causes the molecules of water to evaporate at the interface of the membrane and the
hot feed stream. Condensation of the formed vapor takes place at the interface of the
membrane and the cold stream, after passing through the membrane pores [7].

2. Air Gap Membrane Distillation (AGMD): In this type of MD, an air gap is insinuated
between the membrane and the condensation surface where the generated water
vapor condenses. The other side of the condensation surface is cooled by a cold
stream [8].

3. Sweep Gas Membrane Distillation (SGMD): In this method of MD, a carrier in the
form of a cold inert gas is used to sweep the generated water vapor formed on the
permeate membrane side [9]. The condensation takes place in a separate chamber
outward from the membrane module.

4. Vacuum Membrane Distillation (VMD): A vacuum pressure is applied to increase
the partial pressure difference across the membrane to maximize the driving force
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of the water evaporation, wherein a vacuum pump is used to apply vacuum on the
permeate side of the membrane [10]. As the saturation vapor pressure is higher than
the applied vacuum pressure, the evaporation rate is augmented. The condensation
of the produced water vapor takes place in a condenser outside the membrane
module [11].

Some of the benefits of MD can be listed as [12]:

• MD process is a reliable alternative to other desalination methods as it functions at
reduced pressure leading to decreased equipment cost and improved safety process.

• MD is an environmentally friendly and cost-efficient process, as it can utilizes energy
from solar sources and even the waste heat from other processes.

• MD is successfully being used in food industry for the concentration of juices and milk.
• MD has low organic fouling, low energy cost, and the absence of limitations caused

by osmotic pressure effect.

Multi-Criteria Decision-Making (MCDM) is a process of finding the best set of alterna-
tives by comparing them to get the best results. Analytical Hierarchy process (AHP) is a
type of (MCDM) tool. AHP is mathematically structured to help in solving multicriteria
problems. This method requires conviction in assessing the importance of each decision
bases against others using crisp numeric to estimate better. Fuzzy concept improves the
old AHP method in capturing the fuzziness of multiple decision-makers by using linguistic
terms, like extremely preferred, moderately preferred, etc. Fuzzy-AHP is the ranking struc-
ture in which a relative comparison is estimated using fuzzy membership [13]. Triangular
fuzzy numbers can be used in preparing pairwise comparison matrix using Fuzzy-AHP.

In the last decade, different studies have been conducted in the field of water treat-
ment and desalination by using MCDM. Srdjevic et al. [14] applied AHP to evaluate four
wastewater treatment methods to treat water from colored metals industry. The study
found that the biological treatment method was the optimal compared to the other three
methods (evaporation, chemical, and separation). Manekar et al. [15] utilized Fuzzy-AHP
to optimize the water pretreatment module for the produced water in the textile indus-
try, and they reported that Fuzzy-AHP is an effective optimization method. Chamblas
and Pradenas [16] deployed three MCDM methodologies (AHP, ELimination Et Choice
Translating REality (ELECTRE), and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS)) to select optimum seawater desalination method. The study ex-
amined six different desalination methods and reported membrane technology as superior.
Al-Araidah et al. [17] employed Fuzzy-AHP to inspect technical and nontechnical criteria
in the selection of RO membrane. The inspection concluded that the highest technical
and non-technical criteria were salt rejection and cost, respectively. Talaeipour et al. [18]
applied AHP to find the optimum desalination method for groundwater by comparing
nano-filtration (NF), RO and hybrid NF/RO. The study found that the best performance
was the hybrid NF/RO. To the best knowledge of the authors, the application of MCDM
has never been performed to identify the most critical parameters for desalination by
membrane distillation.

The aim of this study is to estimate and prioritize the critical influencing factors (CIFs)
of MD process using MCDM approach. The study uses AHP and Fuzzy-AHP to evaluate
the effect level of the critical factors.

2. Methodology

Some important factors have come out in this area by reviewing the literature. Based
on the attempts of different researchers and their study on different factors which were
influencing the process of MD, five types of derivable outputs are considered for evaluation.
Optimization of these derivable output will help in estimating the rank of each critical
influencing factor. The five derivable outputs which affect the process of membrane
distillation are thermal power, liquid entry pressure, rejection rate, pumping power, and
permeate flux. Critical influencing factors of MD are identified based on the following steps:
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1. Detailed analysis of literature on membrane technologies and effect of different factors
influencing membrane distillation.

2. Identification of critical factors which influence the performance of the MD process.

Based on the above steps, a framework was made to select CIFs as shown in Figure 2.
These CIFs of MD are used to improve the derivable outputs (DOs) based on their weigh-
tages and prioritization. Mixed approach of Fuzzy-AHP and AHP-multiple decision-maker
(MDM) are utilized in attaining the subsequent priorities of CIFs grouped together. De-
tailed analysis of literature was helpful in finalizing the five derivable outputs from the
existing seven derivable outputs. The derivable outputs that were neglected in this research
are, temperature polarization coefficient and concentration polarization coefficient. Table 1
describes the derivable outputs which are further categorized into CIFs, based on which
the weightages were assigned and were later prioritized.
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Table 1. Derivable output and critical influencing factor (CIF) of MD.

Derivable Outputs Critically Influencing Factors References

Pumping Power

Flow rate/Reynold’s number [10,19–32]

Feed channel geometry [10,22–24,33–40]

Pressure difference along the feed channel [21,22,33,41–59]

Feed solution properties (like viscosity of
liquid which is dependent on temperature

and concentration of liquid)
[22,24,31,35,60–63]

Liquid entry pressure

Hydrophobicity of the membrane (like
Contact angle) [8,11,21,23,24,27–30,45,47–49,57,63–100]

Material of membrane [1,8,22,29,33,35,40,92–94,100–116]

Pore size [22,27,28,30,31,33,35,39,41,44,50,57,64,70,88,89,94,100,
117–127]

Feed solution properties, like concentration
and surface tension of the feed [23,24,29,30,35,48,60,63,112,127–129]

Rejection Rate

Feed Concentration [12,28–30,33,39,43,45,48,52,54,59,60,63,70,73,86,88,89,
100,119,123,127,129–141]

Pore size of membrane [12,21,22,27,28,30,31,33,35,39,41,44,50,57,64,70,88,89,
94,100,117–125,130]

Type of membrane [1,8,22,26,33,37,39,45,98–100,107–123]

Feed temperature [22,23,27,33,39,41,43,46,48,51,52,54,57,59,60,68,70,86,
88–90,100,118,119,122,123,126,130,138–150]

Thermal Power

Temperature Difference (between the inlet
and at the outlet of the feed channel) [12,19,21,22,33,34,39,43,52,60,119,138,145,146,149–153]

Flow rate/Reynold’s number [10,20–22,24–32,151,154–157]

Specific heat of feed liquid [19,22,35,73,118,151,152,158]

Flux

Feed temperature (Temperature of the tank)

[19,21–23,33,39,41,43,45–
48,51,52,54,57,59,60,68,70,73,86,88–

90,100,118,119,122,123,126,127,130,133,138–152,159–
161]

Flow rate/Reynold’s number [4,10,20–22,24–36,47,50,53,57,79,94,137,140,162–166]

Feed Concentration [12,28,29,33,39,43,45,48,52,54,59,60,63,70,73,86,88,89,
100,118,122,123,127,129,131–137,139–141]

Duration of the experiment [22,28–31,50,80,130,164–167]

Membrane Configuration (Air gap, VMD,
etc.) [5,33,34,40,42–49,70,106,114,116,119,123,168]

Feed channel geometry [8,10,19,24,33,35,40,103,104,162]

Type of membrane (varying thickness) [22,24,28,30,34–39,64,89,94,117,121,124,126,130]

Type of membrane (varying pore size) [4,22,30,31,33,35,39,41,44,50,64,70,88,89,94,100,117–
125,159,169]

Two methodologies, namely AHP-MDM and Fuzzy-AHP, are presented in this study.
AHP is used in solving complex problems which require systematic decision-making. It
utilizes multi-level hierarchy of goal outputs, as well as sub-critical factors, whereas Fuzzy-
AHP uses fuzzy set theory and the extension principle based on goal-oriented application.
To avoid vagueness, multiple decision-makers are incorporated hence fruitful results from
AHP-MDM are obtained.
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2.1. Analytic Hierarchy Process (AHP) Theory

Analytic Hierarchy process (AHP) is the process of solving multi-level and multi-
criteria problems. It utilizes pairwise judgmental matrix obtained from the geometric mean
of multiple decision-makers (MDM). Vast experience of decision-maker is used to frame
the linguistic pair-wise decision matrix from Saaty’s nine-point scale as shown in Table S1
in the Supplementary Materials [170]. AHP process is based on two main objectives, i.e.,
expert knowledge and experience in obtaining final opinion. Final opinion is taken and
assigned linguistic terms to these opinions which help in framing the pairwise comparison
matrix of each expert. Biases in decision that can be avoided by considering multiple
experts’ opinions are termed as multiple decision-makers (MDM). By taking the geometric
mean of all the pairwise matrices and synthesizing, this may lead to highly accurate single
AHP-MDM matrix.

The basic steps of AHP are illustrated here:
Step 1: Derivable outputs (DOs) and (CIFs) of MD are combined to form a pair-wise

comparison matrix ‘C’. This matrix ‘C’ is the decision matrix and is prepared by using crisp
numeric values of Saaty’s nine-point scale, as shown in Table S1 in the Supplementary
Materials. Matrix ‘C’ is the preference level of each element with respect to the other
element. It can be said that element Cij is preference of ith element with respect to jth in
terms of preference level.

C =


C11 C12 . . . C1j
C21 C22 · · · C2j

...
...

...
...

Ci1 Ci2 . . . Cij

 (1)

Step 2: From each linguistic expert advice, pairwise comparison matrix ‘C’ is devel-
oped to form each decision matrix (DM). Then a geometric mean is obtained for each DM,
and the geometric mean is normalized to obtain the priority vector.

Step 3: The elements from the ‘C’ matrix are utilized to obtain the summation of the
product of the sum of the column vector of each element in the DM, pair-wise DM with the
values of priority vector in the corresponding row to obtain the principal Eigen values as
given below:

λEigen =
k

∑
i,j

CiPj (2)

where λEigen is the principal Eigen value, Ci is the sum of the column vector, and Pj is the
priority vector values of each row of the DM.

Step 4: Any AHP process is subjected to consistency check. It decides the consistency
of the decision-maker as per derived decision matrix ‘C’. The consistency index is estimated
by using Equation (3) as shown [17]:

(C.I) =

(
λEigen − N

)
(N − 1)

(3)

where C.I is called consistency index, N is the total number of elements in each matrix.
Step 5: To estimate final consistency ratio it is mandatory to calculate random index

which is given by Equation (4) as shown:

R.I =
1.98 (N − 2)

N
(4)

where R.I is called random index.
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Step 6: It is mandatory to have consistency ratio less than 10%, only then the decision
matrix is said to be satisfied. If the consistency ratio is more than 10% then it is subjected to
further revision. This consistency ratio is calculated by Equation (5) as shown:

C.R =
C.I
R.I

(5)

where C.R is called consistency ratio.
Step 7: From the decision matrix ‘C’, the fuzzy numerical value table is generated, as

shown in Table S2 in the Supplementary Materials. This fuzzy linguistic scale is used to
obtain the pairwise comparison matrix (Mi, i = 1, 2, . . . , n) for main derivable output of
MD. Table S1 in the Supplementary Materials can be used in assigning weightages to these
matrices. The Eigen values, C.I, R.I, and C.R, are estimated as in steps 2 to 6, respectively.

2.2. Fuzzy-AHP Theory

Fuzzy-AHP is the application of extension principal together with fuzzy set theory.
This is utilized to avoid inaccuracies and biases during decision-making. Fuzzy-AHP
is preferred over AHP due to the removal of manual judgment errors. Fuzzy-AHP is
also more efficient because realistic decisions are attained from the given set of criteria’s
and alternatives. Basic steps of a Fuzzy-AHP are to define the goal and create a pairwise
comparison matrix to check the consistency of the problem. Fuzzy triangular number
can be set to attain the weightages and ranking. Following section describes the Fuzzy
set theory and application of this in fuzzy state. The Fuzzy-AHP set theory helps the
decision-maker in designing robust pairwise matrix. By selecting crisp numeric values
from decision-maker, biases may inculcate leading to misleading alternatives. To avoid
such vagueness in values a set of fuzzy triangular number (p, q, r) and trapezoidal fuzzy
number (p, q, r, s) are utilized to obtain the pair-wise decision matrix. Figure S2 in the
Supplementary Materials represents the typical form of fuzzy triangular number.

Arithmetic operations can be carried out by using two sets of fuzzy triangular num-
bers. Fuzzy triangular numbers are represented by Ã1 and Ã2 as (p1, q1, r1) and (p2, q2, r2),
respectively. Fuzzy triangular numbers are useful in obtaining the information and
helpful in attaining information of vagueness and uncertainty. Various types of arith-
metic operations carried out can be represented by the following equations. Only two
fuzzy triangular numbers are used to undergo any arithmetic operation (Figure S2 in the
Supplementary Materials).

Ã1 ⊕ Ã2 = (p1 + p2, q1 + q2, r1 + r2) (6)

Ã1 	 Ã2 = (p1 − p2, q1 − q2, r1 − r2) (7)

Ã1 ⊗ Ã2 = (p1 p2, q1q2, r1r2), (8)

λ⊗ Ã1 = (λp1, λq1, λr1) where λ > 0, λ ∈ R (9)

Ã1
−1

=

(
1
r1

,
1
q1

,
1
p1

)
(10)

Principle of Extension analysis:
Comparison of two fuzzy triangular numbers is done by extent analysis. Goal and

objective are two sets given by X = {x1, x2, . . . xn} and Y = {Y1, Y2, . . . Yn}, respectively.
Extent analysis for each goal is carried out by extent principle, so ‘m’ extent values are
as follows:

A1
gi, A2

gi, . . . Am
gi, i = 1, 2, . . . , n (11)

where Aj
gi(j = 1, 2, . . . , n) (12)

Equation (12) represents fuzzy triangular numbers and are represented by (p, q, r)
Step 1: Developing structural network for the above goal:
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Membrane distillation techniques are grouped into number of multiple levels which
consists of DOs and CIFs. Based on the decision-maker, structural network is verified and
arranged as per hierarchical order for ranking. The DO and CIFs are placed as per priorities
shown in Figure 3.
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Step 2: Generating pairwise comparison matrices for DOs and CIFs of membr-
ane distillation:

As per the decision-makers, a pairwise comparison matrix was developed for both
DOs and CIFs. In the matrix, fuzzy triangular numbers were used in developing relation-
ship between each other elements of matrices.

Step 3: Attaining value of Fuzzy extent:

Fi =
m

∑
j=1

Aj
gi ⊗

[
n

∑
i=1

m

∑
j=1

Aj
g i

]−1

(13)

Using summation of fuzzy triangular number, m extent values ∑m
j=1 Aj

g i are attained:

m

∑
j=1

Aj
g i =

(
m

∑
j=1

pj,
m

∑
j=1

qj,
m

∑
j=1

rj

)
(14)

[
n

∑
i=1

m

∑
j=1

Aj
g i

]−1

(15)

where Equations (14) and (15) represent summation of following equation:

Aj
g i (j = 1, 2, . . . , m) (16)
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which is calculated as follows:

n

∑
i=1

m

∑
j=1

Aj
g i =

(
m

∑
j=1

pj,
m

∑
j=1

qj,
m

∑
j=1

rj

)
(17)

Inverse of Equation (17) will be[
n

∑
i=1

m

∑
j=1

Aj
g i

]−1

=

(
1

∑n
i=1 ri

,
1

∑n
i=1 qi

,
1

∑n
i=1 pi

)
(18)

Step 4: Degree of supremacy from the possibility of two fuzzy triangular numbers are
given by the following relation [13,17]:

A2 = (p2, q2, r2) ≥ A1 = (p1, q1, r1) (19)

Supremacy is given by the relation

V(A2 ≥ A1) = sup[min(µA1(x), µA2(y))], y ≥ x (20)

Transforming Equation (20) gives Equations (21) and (22):

V(A2 ≥ A1) = hgt (A2 ∩ A1) = µA2( f ) (21)

µA2( f ) =


0 i f q2 ≥ q1
1 i f p1 ≥ r2

(p1−r2)
(q2−r2)−(q1−r1)

otherwise
(22)

As there are multiple decision-makers involved, there will be ‘K’ matrices for ‘K’
number of decision-makers, resulting in ‘n’ number of elements

M̃K =
{

ˇpijk

}
, (23)

where M̃K = ˇpijk =
(

pijk, qijk, rijk

)
(24)

Equation (24) represents relative importance of ith to jth element with respect to ‘K’
decision-makers. Hence, Equations (25)–(27) represent the aggregate.

pij = min
(

pijk

)
, k = 1, 2, . . . , k, (25)

qij =
k

√
k
a

k=1
qijk (26)

rij = max
(

rijk

)
, k = 1, 2, . . . , k (27)

The two fuzzy triangular numbers A2 = (p2, q2, r2), A1 = (p1, q1, r1) intersects at
‘F’, as shown in Figure S2 in the Supplementary Materials. From the highest intersection
between two fuzzy numbers, µA1 and µA2 ordinate, q is obtained. Hence, A1 and A2 can
be calculated by the following equations:

V(A1 ≥ A2) and V(A2 ≥ A1) (28)

Step 5: Attain the degree of possibility for convex fuzzy number which must be greater
than ‘k’ convex:

A1(i = 1, 2, . . . , k) (29)
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Equation (29) represents fuzzy number, which is derived as

V(A ≥ A1, A2, . . . , AK) = V[(A ≥ A1) and (A ≥ A2 and . . . and (A ≥ AK))]
= minV(A ≥ Ai), i = 1, 2, . . . , k

(30)

Hence,
d(ai) = minV(Fi ≥ FK) f or k = 1, 2, . . . , m; k 6= i (31)

Weight vector is obtained by:

W ′ =
(
d′(a1), d′(a2), . . . , d′(an)

)T (32)

such that ai(i = 1, 2, . . . , n) has ‘n’ number of elements.
Step 6: Evaluate normalized weight vectors.
Normalized weight vectors are estimated using Equation (33):

W = (d(a1), d(a2), . . . , d(an))
T (33)

where ‘W’ is a numeric value.
Step 7: Estimating the score of each CIF dimension and prioritization.
The overall priority weightages of each DO and its CIFs are estimated by taking the

product of global weight and local weight. The global weightages of DO and CIFs are
arranged in decreasing order to give the rank.

A mixed approach of AHP-MDM and Fuzzy-AHP has been used in deriving and
ranking CIFs of MD. AHP-MDM provides a synthetic assessment from linguistic decision-
makers (LDM), whereas Fuzzy-AHP helps in removing biases present in the decision-
making. Decision-makers play a critical role in qualitative assessment. Naveed et al. [13]
used three and five decision-makers in AHP and Fuzzy-AHP and found having three
decision-makers gave more accurate results whereas five decision-makers showed vague-
ness. Based on the literature review [13,17,18,170,171], three LDMs with more than five
years’ experience in membrane distillation were considered. One of the decision-makers is
from the industrial field (desalination plant), and two are from the academic field. Apart
from the core engagements, they also had long exposure in the field of membrane distilla-
tion. The LDMs were convinced to unite for the academic and research cause for which
they agreed without any reservation whatsoever. A detailed review of the literature was
carried out for identifying CIFs of MD. Five main derivable outputs were identified, which
are pumping power, liquid entry pressure, rejection rate, thermal power, and flux. Figure 3
shows the framework for evaluating and prioritizing the derivable outputs based on CIFs
of MD.

Three linguistic decision-makers (LDMs), i.e., LDM1, LDM2, and LDM3, assessed
five dimensions that are given in Tables 2–4. Table 2 is the linguistic decision matrix
obtained from the decision-maker-1 (LDM-1). As per the preferences of the decision-maker,
weightages of dimensional output were estimated by using AHP process. The weightages
obtained suggest that decision-maker-1 feels permeate flux is the most important output,
whereas thermal power and pumping power were rated as the least preferred. Liquid
entry pressure and rejection rate were rated almost equally after flux by decision-maker-1.
Table 3 is also linguistic decision matrix obtained from decision-maker-2 (LDM-2). Though
flux was most preferred output and pumping power was given as the least preferred
output by decision-maker-2, the order of preference as per LDM2 were flux, rejection rate,
liquid entry pressure, thermal power, and pumping power, respectively. The decision
matrix from linguistic decision by decision-maker-3 (LDM-3) is shown in Table 4. As per
the pairwise matrix of LDM3, weightages were estimated using AHP and found to have
almost the same sequence as that of other decision-makers as flux, liquid entry pressure,
rejection rate, thermal power, and pumping power, respectively.
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Table 2. Pairwise comparison of derivable outputs of MD using AHP-MDM by linguistic decision-maker (LDM)1.

Pumping Power Liquid Entry
Pressure

Rejection
Rate

Thermal
Power Flux Weightages

Pumping Power 1.00 0.50 0.33 3.00 0.33 0.1280135

Liquid Entry
pressure 2.00 1.00 2.00 0.50 0.50 0.1929312

Rejection Rate 3.00 0.50 1.00 2.00 0.50 0.1894944

Thermal Power 0.33 2.00 0.50 1.00 0.20 0.1241332

Flux 3.00 2.00 2.00 5.00 1.00 0.3654277

Table 3. Pairwise comparison of derivable outputs of MD using AHP-MDM by LDM2.

Pumping Power Liquid Entry
Pressure Rejection Rate Thermal

Power Flux Weightages

Pumping
Power 1.00 0.33 0.33 2.00 0.33 0.103005549

Liquid Entry
pressure 3.00 1.00 2.00 0.50 0.50 0.210475692

Rejection Rate 3.00 0.50 1.00 4.00 0.50 0.218381505
Thermal Power 0.50 2.00 0.25 1.00 0.25 0.123796605

Flux 3.00 2.00 2.00 4.00 1.00 0.344340649

Table 4. Pairwise comparison of derivable outputs of MD using AHP-MDM by LDM3.

Pumping Power Liquid Entry
Pressure Rejection Rate Thermal

Power Flux Weightages

Pumping
Power 1.00 0.25 0.33 2.00 0.50 0.118000588

Liquid Entry
pressure 4.00 1.00 2.00 0.50 0.33 0.212988213

Rejection Rate 3.00 0.50 1.00 3.00 0.50 0.208436462
Thermal Power 0.50 2.00 0.25 1.00 0.33 0.123790924

Flux 2.00 3.00 2.00 3.00 1.00 0.336783813

3. Results and Discussions

Table 5 is obtained after synthesizing the results of the three decision-makers. Weights
from AHP-MDM are subjective weights, as it purely depends on the decision-maker.
Decision-makers have utilized the experience combined with literature to decide the
preference of each output with respect to the others. To avoid vagueness in weightages,
geometric mean of Tables 2–4 is carried out over arithmetic mean as the former is not
characterized by reciprocity. This is to have more consistency in the final weightages.
The order of the final weightages is: ‘flux’, followed by ‘rejection rate’, then ‘liquid entry
pressure’ which is continued by ‘thermal power’, and, finally, ‘pumping power’. Table 5
provides synthetic results which are obtained from AHP-MDM, which is less biased than
the AHP analysis of each LDM’s.

As the next step is to achieve the aggregated value from the multiple decision-makers
to single relevant matrix, which is composite weightages of all the CIFs, as shown in Table 6.
Geometric mean was again applied to weightages obtained from all decision-makers, to
obtain a single value. This is repeated for each DO and its corresponding factors obtained
after aggregation. This gives the local weights of each factor. The product of these local
weights and weightages obtained in Table 5 were utilized in attaining the global weights of
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each CIF. As per the decreasing order of these global weights, the ranks were estimated as
shown in Table 6.

Weightages estimated by using Fuzzy-AHP process are represented in Table 7. The
triangular fuzzy number scale is used to create the pair-wise matrix in Fuzzy-AHP process.
As the pairwise matrix obtained in Fuzzy-AHP consists of fuzzified numbers, synthesizing
this pairwise fuzzy numbers was done as per steps mentioned in the equations 14 through
33. The weightages which consist of fuzzy number are de-fuzzified and normalized to
find the final weightages shown in Table 7. Here, the weightages are similar to the ones
in Table 5, which show the maximum weightage is given to ‘flux’, then ‘rejection rate’,
followed by ‘liquid entry pressure’, and then ‘pumping power’, followed by ‘thermal
power’, respectively.

The aggregate values of all the CIFs obtained by using Fuzzy-AHP are listed in Table 8.
Fuzzified pairwise matrix for DOs and their corresponding factors is performed to estimate
the weightages. The product of these local weightages with the weightages obtained
in Table 7 leads to global weightages. Table 8 consists of aggregate weightages, global
weightages, and the values of local weightages of all the CIFs. Therefore, Table 8 is termed
as composite weightages of CIFs using Fuzzy-AHP. Accordingly, the global weightages
and rankings are estimated.

Figure 4 illustrates the criteria of weightages obtained for all the CIFs using both
AHP-MDM and Fuzzy-AHP. It represents the weightages of all the 23 CIFs using both
AHP-MDM and Fuzzy-AHP. In Figure 4, the values of weightages estimated by using
AHP-MDM and Fuzzy-AHP are not the same. The weightage of flow rate is 0.0938, attained
highest value, followed by feed temperature, which is 0.0904, and then hydrophobicity,
with a value of 0.0817, as estimated using Fuzzy-AHP, whereas the weightage of feed
temperature with value of 0.0853 was highest, followed by hydrophobicity with a value
of 0.0836, and then followed by 0.0711 for flow rate, as calculated using AHP-MDM. To
have a clear picture and understanding of both methods, graphs representing the ranking
of both methods are plotted in Figure 5.

Figure 5 focuses on prioritizing all the CIFs based on both AHP-MDM and Fuzzy-
AHP processes. As per the ranks, it is evident that flow rate is the most critical factor
that influence flux. The flux has the highest value of weightage estimated using both
AHP-MDM and Fuzzy-AHP. The flux is greatly influenced by flow rate followed by feed
temperature. Flow rate of flux is ranked 1, followed by feed temperature, which is sub-
factor of rejection rate, and then continued by hydrophobicity, which influences liquid
entry pressure, according Fuzzy-AHP. The trend changes slightly when compared to AHP-
MDM. As in AHP-MDM, feed temperature, which is subset of rejection rate, is ranked 1,
followed by hydrophobicity, a subset of liquid entry pressure, and flow rate, which is a
subset of flux ranked 3. Though viscosity is a sub-factor of pumping power, it is ranked
last, preceded by specific heat, which is a subset of thermal power, maintaining the same
ranks by both methods, AHP-MDM and Fuzzy-AHP. Obviously, from Figures 4 and 5,
there are critical factors which have influence on two or three different DOs. For example,
flow rate is the most important factor that affects thermal power, pumping power, and the
flux. This repetitiveness and complexity can be resolved by estimating the summation of
these recurring factors namely flow rate, feed channel geometry, feed temperature, pore
size, and feed concentration. The weightages were evaluated only for the CIFs by avoiding
repetitiveness, as shown in Table 8. In practical terms, there are only 16 factors, which are
called the CIFs, that affect different outputs of MD.

To have a broader view, Table 9 has been synthesized to rank and classify the CIFs that
affect the MD process. By deploying both AHP and Fuzzy-AHP, the classification includes
three groups (‘extremely important’, ‘moderately important’, and ‘least important’). From
Table 9, it can be said that ranks 1 to 7 attained from AHP-MDM and Fuzzy-AHP are
undisputable. The CIFs that are extremely important remain the same by both methods,
AHP-MDM and Fuzzy-AHP. In case of AHP-MDM, temperature difference is considered as
moderately important factor, whereas estimation by Fuzzy-AHP suggests that temperature
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difference is least important. Similarly, the type of membrane is considered to be least
important when the value of weightage is estimated using AHP-MDM, but it is considered
moderately important in case of Fuzzy-AHP analysis. Based on these results, we may
recommend focusing more research on the extremely important and moderately important
CIFs to improve MD desalination performance.

Table 5. Synthesized results of derivable outputs of MD using AHP-MDM.

Pumping Power Liquid Entry
Pressure Rejection Rate Thermal Power Flux Weightages

Pumping
Power 1.00 0.35 0.33 2.29 0.38 0.116112164

Liquid Entry
pressure 2.88 1.00 2.00 0.50 0.44 0.204823141

Rejection Rate 3.00 0.50 1.00 2.88 0.50 0.205390803
Thermal Power 0.44 2.00 0.31 1.00 0.26 0.123864583

Flux 2.62 2.29 2.00 3.91 1.00 0.349809308

Table 6. Composite weightages of CIFs of MD by using AHP-MDM.

S.No Main DOs Weightages CIF Local Weights Global
Weights

Overall
Ranking

1
Pumping

Power
0.116112164

Flow Rate 0.4381 0.0509 7
Feed Channel Geometry 0.1846 0.0214 20

Pressure Difference 0.2677 0.0311 17
Viscosity 0.1096 0.0127 23

2
Liquid Entry

pressure 0.204823141

Hydrophobicity 0.4081 0.0836 2
Material Of Membrane 0.2062 0.0422 12

Pore size 0.2156 0.0442 10
Feed Properties (concentration

and Surface tension) 0.1701 0.0348 15

3 Rejection Rate 0.205390803

Feed Concentration 0.2554 0.0525 6
Pore size 0.2229 0.0458 9

Type of Membrane 0.1064 0.0219 19
Feed Temperature 0.4153 0.0853 1

4 Thermal Power 0.123864583
Temperature Difference 0.3212 0.0398 13

Flow rate 0.5228 0.0648 5
Specific Heat 0.1560 0.0193 22

5 Flux 0.349809308

Feed Temperature 0.1882 0.0658 4
Flow Rate 0.2034 0.0711 3

Feed concentration 0.1365 0.0477 8
Duration 0.0602 0.0211 21

Membrane Configuration 0.0841 0.0294 18
Feed channel Geometry 0.0962 0.0337 16

Membrane thickness 0.1102 0.0385 14
Pore Size 0.1213 0.0424 11
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Table 7. Pairwise comparison of derivable outputs of MD using Fuzzy-AHP.

Pumping
Power

Liquid Entry
Pressure Rejection Rate Thermal

Power Flux Weightages

Pumping
Power (1.00,1.00,1.00) (0.25,0.33,0.50) (0.25,0.33,0.50) (1.00,2.00,3.00) (0.25,0.33,0.50) 0.1050

Liquid Entry
pressure (2.00,3.00,4.00) (1.00,1.00,1.00) (1.00,2.00,3.00) (0.33,0.50,1.00) (0.33,0.50,1.00) 0.2001

Rejection Rate (2.00,3.00,4.00) (0.33,0.50,1.00) (1.00,1.00,1.00) (3.00,4.00,5.00) (0.33,0.50,1.00) 0.2276

Thermal Power (0.33,0.50,1.00) (1.00,2.00,3.00) (0.20,0.25,0.33) (1.00,1.00,1.00) (0.20,0.25,0.33) 0.1022

Flux (2.00,3.00,4.00) (1.00,2.00,3.00) (1.00,2.00,3.00) (3.00,4.00,5.00) (1.00,1.00,1.00) 0.3651

Table 8. Composite weightages of CIFs of MD by using Fuzzy-AHP.

S.No Main DOs Weightages CIFs Local Weights Global
Weights

Overall
Ranking

1
Pumping

Power
0.1050

Flow Rate 0.4309 0.0452 10
Feed Channel Geometry 0.1497 0.0157 21

Pressure Difference 0.2914 0.0306 15
Viscosity 0.1280 0.0134 23

2
Liquid Entry

pressure 0.2001

Hydrophobicity 0.4085 0.0817 3
Material of Membrane 0.2062 0.0413 12

Pore size 0.2420 0.0484 8
Feed Properties

(concentration and Surface
tension)

0.1432 0.0287 16

3 Rejection Rate 0.2276

Feed Concentration 0.2693 0.0613 6
Pore size 0.2203 0.0501 7

Type of Membrane 0.1131 0.0257 17
Feed Temperature 0.3973 0.0904 2

4 Thermal Power 0.1022
Temperature Difference 0.2415 0.0247 18

Flow rate 0.6131 0.0627 5
Specific Heat 0.1454 0.0149 22

5 Flux 0.3651

Feed Temperature 0.1928 0.0704 4
Flow Rate 0.2568 0.0938 1

Feed concentration 0.1310 0.0478 9
Duration 0.0562 0.0205 20

Membrane Configuration 0.0675 0.0246 19
Feed channel Geometry 0.0915 0.0334 13

Membrane thickness 0.0847 0.0309 14
Pore Size 0.1195 0.0436 11
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Table 9. Weightages and ranks of CIFs using AHP-MDM and Fuzzy-AHP.

CIF AHP-MDM AHP-MDM
RANKS

AHP-MDM
Classification Fuzzy-AHP Fuzzy-AHP

RANKS
Fuzzy AHP

Classification

Flow Rate 0.1868 1 *** 0.2017 1 ***

Feed Temperature 0.1511 2 *** 0.1608 2 ***

Pore size 0.1324 3 *** 0.1422 3 ***

Feed Concentration 0.1002 4 *** 0.1091 4 ***

Hydrophobicity 0.0836 5 *** 0.0817 5 ***

Feed Channel
Geometry 0.0551 6 *** 0.0491 6 ***

Material of
Membrane 0.0422 7 ** 0.0413 7 **

Temperature
Difference 0.0398 8 ** 0.0247 12 *

Membrane
thickness 0.0385 9 ** 0.0309 8 **

Feed Properties
(concentration and

Surface tension)
0.0348 10 ** 0.0287 10 **

Pressure Difference 0.0311 11 ** 0.0306 9 **

Membrane
Configuration 0.0294 12 * 0.0246 13 *

Type of Membrane 0.0219 13 * 0.0257 11 **

Duration 0.0211 14 * 0.0205 14 *

Specific Heat 0.0193 15 * 0.0149 15 *

Viscosity 0.0127 16 * 0.0134 16 *

*** Extremely Important. ** Moderately Important. * Least Important.

4. Conclusions

In this work, an attempt was made to prioritize the derivable outputs based on CIFs of
desalination by MD. AHP and Fuzzy-AHP methods of multi-criteria decision-making were
deployed to prioritize DOs and CIFs. The CIFs influencing the DOs are determined based
on exclusive literature review and expert’s opinions. The study revealed that permeate flux
was the major DO and followed by liquid entry pressure, while the least influencing DO
was thermal power and pumping power. From the weightages obtained by both methods,
the extremely important CIFs were grouped together, as flow rate, feed temperature,
pore size, hydrophobicity, and feed concentration. The moderately important CIFs are
material of membrane, membrane thickness, pressure difference, feed properties, and type
of membrane. The least important CIFs are viscosity, specific heat, duration, temperature
difference, and membrane configuration.
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