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Abstract: We study the influence of von Kármán nonlinearity, van der Waals force, and

thermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-

croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-

trostatically actuated clamped rectangular microplates in the presence of van der Waals forces

and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear

transient boundary-value problem to a single nonlinear ordinary differential equation. For the

static problem, the pull-in voltage and the pull-in displacement are determined by solving a

pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to

a deflected configuration of the microplate is determined by solving a linear algebraic equa-

tion. The proposed reduced-order model allows for accurately estimating the combined effects

of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection

profile with an extremely limited computational effort.

Keywords: Microelectromechanical systems, microplate, van der Waals force, pull-in insta-

bility, microsensor
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1 Introduction

Microelectromechanical sensors are currently used in automotive electronics, medical equipment,

smart portable electronics, hard disk drives, and computer peripherals [1]. Electrostatically actuated Mi-

croElectroMechanical Systems (MEMS) are a special class of MEMS that use Coulomb’s force as the

driving mechanism in sensing and actuation. Electrostatically actuated MEMS are used as accelerome-

ters [2], pressure sensors [3], and mass flow and chemical sensors [4]. Electrostatically actuated MEMS

also find applications in the characterization of the material properties of thin films, such as elastic con-

stants and residual stresses, see for example [5]. In addition to sensing applications, electrostatically

actuated MEMS are employed in high-frequency signal filtering [6] and relay switches [7]. A compre-

hensive review of modeling of electrostatically actuated MEMS can be found in [8].

An electrostatically actuated MEMS is generally comprised of a conductive deformable electrode

suspended above a rigid grounded electrode [9]. A direct current (DC) voltage applied across the two

bodies results in the deflection of the deformable electrode and the consequent change in the system

capacitance. When an alternating current (AC) is superimposed on the DC voltage, harmonic motions

of the system are obtained that can be used to realize resonant devices. The applied DC voltage has

an upper limit beyond which the electrostatic force is not balanced by the elastic restoring force in the

deformable conductor. Beyond this critical voltage, the deformable conductor snaps and touches the

lower rigid plate. This phenomenon is known as the pull-in instability, and it was first experimentally

observed in the late sixties [10, 11]. The critical displacement and the critical voltage associated with

this instability are called the pull-in displacement and the pull-in voltage, respectively. Their accurate

evaluation is crucial in the design of electrostatically actuated MEMS. In micro-mirrors [12] and micro-

resonators [13], the designer avoids this instability in order to achieve stable motions; while in switching

applications [7], the designer exploits this effect to optimize the performance of the device.

For a wide class of electrostatic MEMS, the deformable electrode is a flat body whose thickness h

is much smaller than its characteristic in-plane dimension � [14]. Such electrodes can be regarded as

two-dimensional (2-D) plate-like bodies. Since h/� � 1, an approximate distributed model can be

employed, where the system kinematics is described only through the displacement of points on the

movable electrode mid-surface, see for example [15]. Linear and nonlinear problems for microplates

have been studied in [16–23]. When the bending stiffness of the deformable electrode is negligible

as compared to its in-plane stretching and g0/� � 1, where g0 is the initial gap, the electrode can

be regarded as a linear elastic membrane. The membrane approximation is valid for �/h ≥ 400, see

for example [24]. Linear micromembranes have been studied in [25–29]. As discussed in [25], the

membrane approximation yields accurate results for many MEMS devices such as micro-pumps made

of thin glassy polymers and grating light valves comprised of stretched thin ribbons.

With the decrease in electrostatic MEMS dimensions from the micro to the nanoscale additional

nanoscale surface forces, such as the Casimir force and the van der Waals force [30–33], should be

considered, see for example [34]. At small scales, the nanoscale surface forces may overcome elastic

restoring actions in the device and lead to the plates’ sticking during the fabrication process. van der

Waals force and Casimir force can both be connected with the existence of zero-point vacuum oscilla-

tions of the electromagnetic field [31–33]. The microscopic approach to the modeling of both van der
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Waals and Casimir forces can be formulated in a unified way using Quantum Field Theory, see for exam-

ple [30–33]. It is found that the Casimir force is generally effective at larger separation distances between

the bodies than the van der Waals force. Whereas the Casimir force between semi-infinite parallel plates

is inversely proportional to the fourth power of the gap, van der Waals force is inversely proportional to

the third power of the gap. The dependence of these forces on the dielectric properties of the plates and

the filling medium is studied in details in [31], Section 4.1.1. It is important to note that van der Waals

and Casimir forces cannot in general be considered to simultaneously act in MEMS, since they describe

the same physical phenomenon at two different length scales.

MEMS can be subjected to considerable temperature variations during sensing operation, such as in

monitoring aircraft condition and distributed satellites communication, as well as during device packag-

ing [35]. Modeling of the effect of temperature changes on pull-in instability of electrostatically actuated

microelectromechanical switches is addressed in [36–38]. In these studies, it is observed that even a

moderate temperature increase may cause premature failure of the device due to a significant decrease

in the pull-in voltage. On the other hand, temperature drops may lead to considerable increase in the

pull-in voltage even outside the operational range of the switch [39, 40].

We consider rectangular microplates undergoing large displacements under the combined effect of

electrostatic and nanoscale forces. We use the Galerkin method to develop a tractable reduced-order

model for electrostatically actuated microplates. The reduced-order model is derived by taking a family

of linearly independent kinematically admissible functions as basis functions for the transverse displace-

ment and by decomposing the in-plane displacement vector as the sum of displacements for irrotational

and isochoric waves in a 2-D medium. Basis functions for the transverse and the in-plane displace-

ments are related through the nonlinear equation governing the plate in-plane motion. The governing

equations of the reduced-order model are derived from the equation governing the transverse motion

of the microplate. The model is specialized to the case where a single basis function for the trans-

verse displacement is used to yield manageable solutions. In the static analysis, pull-in parameters are

found by solving a system of two nonlinear algebraic equations for the transverse displacement ampli-

tude and the load parameter. The eigenvalue problem corresponding to linear vibrations of the system

about its statically deflected position is solved for the fundamental frequency. We show that the funda-

mental frequency goes to zero as pull-in conditions are approached. The pull-in parameters found from

the eigenvalue analysis agree well with those derived from the static analysis. We investigate effects

of nanoscale forces and thermal stresses on pull-in parameters and small vibrations of electrostatically

actuated microplates.

The rest of the paper is organized as follows. In section 2, we present the governing nonlinear equa-

tions of motion for a von Kármán microplate under the simultaneous effects of thermal loading, elec-

trostatic force, and nanoscale forces. We present expressions of the distributed loads due to either the

Casimir or the van der Waals forces. In section 3, we introduce a reduced-order model for the considered

device that is capable of accurately predicting its dynamics. The derivation of the reduced-order model

follows a procedure typically used for studying deformations of thin two-dimensional structures. That

is, in-plane inertial effects are neglected, and the resulting equation is solved for in-plane displacements

in terms of transverse deflections which are then substituted in the equation governing the evolution of
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transverse deflection. Once transverse deflections have been computed, in-plane displacements can be

found. In section 3, we also briefly outline the technique used to solve equations for the reduced order

model. In section 4, we present our results, that include the pull-in parameters and the fundamental

frequencies for rectangular microplates. We specialize our results to the case where nanoscale effects

can be subsumed into the van der Waals force and we investigate the effect of the van der Waals force on

the pull-in instability and the lowest frequency of the predeformed plate. Conclusions are summarized

in section 5.

2 Problem statement

Figure 1. Sketch of an electrostatically actuated rectangular microplate.

We consider a rectangular plate-like body of longer side � and shorter side ϕ�, ϕ ∈]0, 1], occupying

the three-dimensional regionΩ×(−h/2, h/2) as depicted in Figure 1. The mid-surface Ω is described by

rectangular Cartesian coordinates (x1, x2) aligned with the longer and with the shorter sides, respectively.

We assume that the initial gap g0 between the two conductors and the thickness h of the deformable plate

are much smaller than the characteristic length �. In the proposed model, we assume that g0 and h can be

of the same order of magnitude. Therefore, the maximum displacement that the device can undergo is of

the order of the plate thickness h, but it is much smaller than the characteristic length �, since h/� � 1.

This implies that strains in the deformable electrode are small. Under these assumptions, we use the von

Kármán plate theory to account for large deflections and small strains, see for example [41]. Neglecting

the effect of the rotatory inertia, the von Kármán plate equations in Cartesian coordinates are [41]

�hẅ +D
∂2

∂xk∂xk

(
∂2w

∂xj∂xj

)
− h

∂

∂xj

(
σjk

∂w

∂xk

)
− Fe − Fs = 0, (1a)

�üi − ∂σij

∂xj

= 0, i = 1, 2. (1b)

We use the Einstein summation convention, meaning that when an index variable appears twice in a

single term we are summing over the range {1, 2}; free index also span the range {1, 2}. Furthermore,

D = Eh3/(12(1− ν2)) is the bending stiffness of the plate, E, ν, and � are Young’s modulus, Poisson’s
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ratio and mass density of the plate material, that is assumed to be homogeneous and isotropic, ui and

w are the in-plane and the out-of-plane displacements of a point on the mid-surface, Fe is the Coulomb

force, and Fs is the nanoscale surface force. From equation (1a), we note that Coulomb and nanoscale

forces act along the normal to the microplate mid-surface. This is due to the assumption of perfectly

conducting material. Expressions for the Coulomb and the nanoscale surface forces are discussed below.

We note that in the linear theory of a plate the transverse displacement and in-plane displacements are

decoupled. Therefore, in the linear theory, the Coulomb force and nanoscale forces do not induce in-

plane deformations of the microplate.

In the von Kármán plate theory, the components εij of the in-plane strain tensor are given by

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂w

∂xi

∂w

∂xj

)
. (2)

We assume that the strain tensor admits the additive decomposition εij = εe
ij+εΘ

ij, where εe
ij is the elastic

strain and εΘ
ij the thermal one. We set εΘ

ij = χΘδij , where Θ is the uniform temperature rise, χ is the

coefficient of thermal expansion assumed to be constant, and

δij =

{
1 if i = j

0 if i �= j
, (3)

is the Kronecker delta. Assuming the response of the material to be linear elastic, the constitutive relation

under the Kirchhoff assumption is, see for example [42],

σij =
E

1 + ν

(
εe

ij +
ν

1− ν
εe

kkδij

)
=

E

1 + ν

(
εij +

ν

1− ν
εkkδij

)
− EχΘ

1− ν
δij . (4)

Substituting for σij from equation (4) into equations (1) and using equation (2), we obtain the following

partial differential equations for the displacement fields ui and w

�hẅ +D
∂2

∂xk∂xk

(
∂2w

∂xj∂xj

)
− B

∂

∂xl

((
1

2

(
∂ul

∂xj

+
∂uj

∂xl

)
+ δlj

∂uk

∂xk

)
∂w

∂xj

)

− B

2

∂

∂xk

(
∂w

∂xj

∂w

∂xj

∂w

∂xk

)
+

EχΘ

1− ν

∂2w

∂xj∂xj

− Fe − Fs = 0, (5a)

�hüi − B

2

(
(1− ν)

∂2ui

∂xk∂xk

+ (1 + ν)
∂

∂xi

(
∂uk

∂xk

))

=
B

2

(
(1− ν)

∂

∂xk

(
∂w

∂xi

∂w

∂xk

)
+ ν

∂

∂xi

(
∂w

∂xk

∂w

∂xk

))
, i = 1, 2, (5b)

where B = Eh/(1− ν2).

From an electrical point of view, the system depicted in Figure 1 behaves as a variable gap capacitor.

By assuming that g0/� � 1 and by neglecting fringing fields, the magnitude Fe of the Coulomb or the

magnitude of the electrostatic force acting on the deformable electrode along its normal is given by the

parallel plate approximation [9]

Fe = − ε0V
2

2g2
0 (1 + ŵ)2

, (6)
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where ŵ = w/g0 is the non-dimensional transverse displacement, ε0 is the dielectric constant in vac-

uum, and V is the applied direct current voltage. Therefore, within the parallel plate approximation the

expression for the electrostatic force depends only on the gap g. In [43], perturbation theory is used to

develop expressions for the electrostatic force with corrections to the parallel plate approximations. It is

shown that the parallel plate approximation is adequate when g0 � �, since the first correction multiplies

the ratio g2
0/�

2. Consistent with the parallel plate approximation for the electrostatic force, and the small

deformations assumption in the mechanical model, the distributed load due to the Casimir force per unit

surface area is given by the proximity force approximation [44, 45], which for perfect conductors yields:

Fc = − �cπ2

240g4
0 (1 + ŵ)4

, (7)

where � is the Plank’s constant and c is the speed of light in vacuum. Corrections to equation (7) for

geometries with known and fixed departures from the parallel configurations are reported in [44, 45].

For gaps smaller than the retardation length, that is, for gaps smaller than the wavelength of the virtual

transitions responsible for the quantum dipole fluctuations [31, 33], the Casimir force reduces to the van

der Waals distributed force per unit surface area [46–48]

FvdW = − A

6πg3
0 (1 + ŵ)3

. (8)

In equation (8), A is the Hamaker constant, see for example [31], with values in the range [0.4, 4] ×
10−19J. ∗

van der Waals and Casimir forces between parallel layered metallic surfaces have been extensively

studied in the literature, see for example [31, 33]. For gold-coated aluminum surfaces, it is found that

van der Waals force, see equation (8), is effective in the gap range 0.5 nm− 4 nm. For gaps in the range

4 nm − 1μm, there is a transition between the force-distance dependence g−3 (van der Waals force) to

the force distance dependence g−4 (Casimir force). For gaps larger than 1μm, the interaction between

the plates is described by the Casimir force, see equation (7). Therefore, for perfect conductors, at large

separation distances the interaction force is independent of the material properties of plates, whereas, as

the gap decreases, the interaction force is affected by the material properties of the system. For dielectric

bodies, the van der Waals force is effective at larger distances as shown in [49].

The effect of the Casimir force on pull-in parameters of von Kármán microplates has been studied in

[20, 21]. In the present work, we focus only on the van der Waals force. Therefore, we set Fs = FvdW in

equation (5a).

We introduce the non-dimensional time t̂ = t/τ , where

τ 2 =
12��4

Eh2

(
1− ν2

)
, (9)

and the non-dimensional in-plane displacement ûi = ui�/g
2
0 . Coordinates x1 and x2 are nondimension-

alized as x̂1 = x1/�, x̂2 = x2/�. Henceforth, we use a superimposed dot to denote time derivative with

∗In the literature [31–33], the Casimir force, see equation (7), is usually termed the retarded van der Waals, whereas

the van der Waals force, see equation (8), is called the nonretarded van der Waals. This nomenclature better illustrates the

common physical nature of these surface forces.
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respect to t̂. Also, we drop the superimposed hat on non-dimensional variables. Thus, equations (5)

become

ẅ +
∂2

∂xk∂xk

(
∂2w

∂xj∂xj

)
− 12α

∂

∂xl

((
1

2

(
∂ul

∂xj

+
∂uj

∂xl

)
+ δlj

∂uk

∂xk

)
∂w

∂xj

)

− 6α
∂

∂xk

(
∂w

∂xj

∂w

∂xj

∂w

∂xk

)
+ β

∂2w

∂xj∂xj

+
λ

(1 + w)2
+

μ

(1 + w)3
= 0, (10a)

γüi − (1− ν)
∂2ui

∂xk∂xk

− (1 + ν)
∂

∂xi

(
∂uk

∂xk

)

= (1− ν)
∂

∂xk

(
∂w

∂xi

∂w

∂xk

)
+ ν

∂

∂xi

(
∂w

∂xk

∂w

∂xk

)
, i = 1, 2, (10b)

where

α =
g2

0

h2
, β = 12

χΘ�2

h2
(1 + ν) , γ =

h2

6�2
,

λ =
6ε0V

2�4

Eh3g3
0

(1− ν2) , μ =
2A�4

πEh3g4
0

(1− ν2) .
(11)

The non-dimensional parameters β, λ, and μ are indicators of the effects of thermal stress, the Coulomb

force, and the van der Waals force, respectively, on the MEMS dynamics. We quantify the order of

magnitude of different terms in equations (10) through the order of magnitude of the corresponding non-

dimensional parameters. Since the von Kármán approximation holds for h/�� 1, we neglect the inertial

term in equation (10b) to obtain

(1− ν)
∂2ui

∂xk∂xk

+ (1 + ν)
∂

∂xi

(
∂uk

∂xk

)
= −(1− ν)

∂

∂xk

(
∂w

∂xi

∂w

∂xk

)
− ν

∂

∂xi

(
∂w

∂xk

∂w

∂xk

)
, i = 1, 2.

(12)

We note that equation (12) implies a time-independent link between the in-plane and the transverse

displacements.

We consider the boundary Γ of Ω to be clamped. The kinematic boundary conditions for a clamped

edge are [50]

w = 0 and
∂w

∂x1
= 0 on x2 = {0, ϕ}, ∂w

∂x2
= 0 on x1 = {0, 1}, (13a)

ui = 0, i = 1, 2. (13b)

Initial conditions are not needed since we either study static deformations of the MEMS, or analyze

frequencies of small vibrations around an electrostatically deformed configuration.

3 Reduced-order model

A closed-form solution of the initial-boundary-value problem defined in equation set (10) and bound-

ary conditions in equation set (13) cannot be found. We construct an approximate solution by expressing
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the displacement fields ui, with i = 1, 2, and w as

w (x1, x2, t) =

N∑
n=1

w̄(n) (x1, x2) ζ(n)(t) = W
T (x1, x2) ζ(t), (14a)

ui (x1, x2, t) =

P∑
p=1

ū(p)i (x1, x2) ξ(p)(t) = U
T
i (x1, x2) ξ(t), i = 1, 2, (14b)

where w̄(n) and ū(p)i are basis functions for the transverse and the in-plane displacements and ζ(n) and

ξ(p) are the corresponding amplitude parameters or equivalently the mode participation factors. Basis

functions are collected into the N- column vector W and into the P - column vector Ui, respectively, and

amplitudes are collected into the N- column vector ζ and into the P - column vector ξ, respectively. Each

basis function satisfies the corresponding kinematic boundary conditions prescribed through equation set

(13).

In [20], it is shown that accurate solutions for pull-in parameters of von Kármán microplates can be

obtained by using a properly selected single basis function for the transverse displacement in equation

(14a), that is, by setting N = 1 in equation (14a). Therefore, we derive the reduced-order model by

approximating the transverse displacement field as

w (x1, x1, t) = w̄ (x1, x2) ζ(t). (15)

3.1 Basis functions for in-plane displacement

Basis functions for the in-plane displacement can be determined by solving the following linear eigen-

value problem associated with equation (10b), see for example [41],

κ2ūi + (1− ν)
∂2ūi

∂xk∂xk

+ (1 + ν)
∂

∂xi

(
∂ūk

∂xk

)
= 0, i = 1, 2, (16)

where κ is the wave number. Following [41], we decompose the in-plane displacement as ui = un
i + ut

i,

with i = 1, 2, where un
i and ut

i are displacements associated, respectively, with the longitudinal and the

transverse waves, and satisfy

∂ūn
1

∂x2
− ∂ūn

2

∂x1
= 0, (17a)

∂ūt
1

∂x1
+

∂ūt
2

∂x2
= 0. (17b)

Therefore, equation (16) is equivalent to the following pair of partial differential equations [41]

∂2ūn
i

∂xk∂xk

+ η2
nū

n
i = 0, i = 1, 2, (18a)

∂2ūt
i

∂xk∂xk

+ η2
t ū

t
i = 0, i = 1, 2, (18b)

where ηn = κ/
√
2 and ηt = κ/

√
1− ν are wave numbers of the longitudinal and the transverse waves,

respectively.
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By integrating over the domainΩ and by applying Green’s formulas to transform surface integrals into

line integrals, equation set (17) implies the following set of boundary conditions for the displacements

associated with the longitudinal and the transverse waves

un
1 (x1, 0) = 0, un

2 (1, x2) = 0, un
1 (x1, ϕ) = 0, un

2 (0, x2) = 0, (19a)

ut
2 (x1, 0) = 0, ut

1 (1, x2) = 0, ut
2 (x1, ϕ) = 0, ut

1 (0, x2) = 0. (19b)

Additional boundary conditions are provided by equation (13b) through

un
2 (x1, 0) = 0, un

1 (1, x2) = 0, un
2 (x1, ϕ) = 0, un

1 (0, x2) = 0, (20a)

ut
1 (x1, 0) = 0, ut

2 (1, x2) = 0, ut
1 (x1, ϕ) = 0, ut

2 (0, x2) = 0. (20b)

Therefore, basis functions for the in-plane displacement are given by

ū(p)i = Amn sin (mπx1) sin

(
nπx2

ϕ

)
, m = 1, . . . , p̄, n = 1, . . . , q̄, (21)

where Amn are constants used for normalization, and p = (m − 1)q̄ + n for m = 1, . . . , p̄ and n =

1, . . . , q̄.

3.2 Relation between ξ and ζ

In order to express the coefficients ξ in terms of the single coefficient ζ , we substitute expressions for

the displacement fields given in equations (14b) and (15) into equation (12), premultiply both sides of

the resulting equation with the transpose of the in-plane basis functions vector U, and integrate over the

domain Ω. By applying the divergence theorem and by imposing the boundary conditions in equation

(13b) on the boundary integrals, we finally obtain

ξ(p) = Ξ(p)ζ
2, (22)

where the scalar quantity Ξ(p) is defined through

Ξ(p) = −
∫

Ω

(
(1− ν)

∂ū(p)j

∂xk

∂w̄

∂xk

∂w̄

∂xj

+ ν

(
∂ū(p)k

∂xk

)
∂w̄

∂xj

∂w̄

∂xj

)
dΩ

×
(∫

Ω

(
(1− ν)

∂ū(p)j

∂xk

∂ū(p)j

∂xk

+ (1 + ν)

(
∂ū(p)k

∂xk

)2
)
dΩ

)
−1

. (23)

Equation (22) implies that the full set of amplitude parameters describing the in-plane motion can be

obtained from the single transverse amplitude parameter ζ through the scalar parameter Ξ(p) defined in

equation (23). In addition, we note that the relation between the in-plane motion and the transverse

motion is nonlinear and that the in-plane motion vanishes in the linear theory. Because of the P internal

constraints (22), the reduced-order model for the microplate has 1 degree of freedom.
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3.3 Governing equations of the reduced-order model

The reduced-order model is obtained by premultiplying both sides of equation (10a) with w̄, integrat-

ing the resulting equation over Ω, and substituting into the resulting equation the approximations given

by equations (14b), (15), and (22). We thus obtain∫
Ω

w̄2ζ̈dΩ +

∫
Ω

w̄
∂2

∂xk∂xk

(
∂2w̄

∂xj∂xj

)
ζdΩ

− 12α

∫
Ω

w̄
∂

∂xj

(
ε̄jk

∂w̄

∂xk

+
1

2

∂w̄

∂xk

∂w̄

∂xk

∂w̄

∂xj

)
ζ3dΩ

+ β

∫
Ω

w̄
∂2w̄

∂xk∂xk

ζdΩ + λ

∫
Ω

w̄

(1 + w̄ζ)2
dΩ + μ

∫
Ω

w̄

(1 + w̄ζ)3
dΩ = 0, (24)

where

ε̄ij =

P∑
p=1

Ξ(p)

(
1− ν

2

(
∂ū(p)i

∂xj

+
∂ū(p)j

∂xi

)
+ ν

(
∂ū(p)k

∂xk

)
δij

)
. (25)

From equations (23) and (25), we note that the normalization constants Amn introduced in equation (21)

do not affect ε̄ij. By using the divergence theorem and by imposing the boundary conditions (13a), we

obtain the following equation for the reduced-order system

mζ̈ + (k1 + βk2) ζ + αk3ζ
3 + λfe(ζ) + μfvdW(ζ) = 0, (26)

where

m =

∫
Ω

w̄2dΩ, (27a)

k1 =

∫
Ω

(
∂2w̄

∂xk∂xk

)2

dΩ, k2 = −
∫

Ω

∂w̄

∂xk

∂w̄

∂xk

dΩ, (27b)

k3 = 12

∫
Ω

(
ε̄jk

∂w̄

∂xj

∂w̄

∂xk

+
1

2

(
∂w̄

∂xk

∂w̄

∂xk

)2
)
dΩ, (27c)

fe(ζ) =

∫
Ω

w̄

(1 + w̄ζ)2
dΩ, fvdW(ζ) =

∫
Ω

w̄

(1 + w̄ζ)3
dΩ. (27d)

Equation (26) describes a nonlinear mass-spring single degree-of-freedom system, where the spring

force is the combination of a number of concurring phenomena: linear bending (k1ζ), thermal stress

(k2ζ), nonlinear membrane stretching (k3ζ
3), the Coulomb force (λfe(ζ)), and the van der Waals force

(μfvdW(ζ)). From equation (26), we note that an increase in the device temperature, that is, decreasing

the parameter β, results in mechanical softening effect, whereas a decrease in the device temperature

yields a mechanical stiffening effect. As the parameter β decreases mechanical buckling due to thermal

stress can be reached.

In what follows, we discuss two equivalent methods to extract static pull-in parameters. The first

method is based on the solution of the static problem, while the second one is based on the study of small

vibrations of the system around its static equilibrium configurations. The method based on the vibration

analysis can be used to experimentally determine the pull-in voltage without potentially damaging the

MEMS [51].
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3.4 Extraction of pull-in parameters from the static problem

At the onset of instability the system’s tangent stiffness

K(β, λ, μ, ζ) = k1 + βk2 + 3αk3ζ
2 + λge(ζ) + μgvdW(ζ) (28)

vanishes. The quantities in equation (28) are defined by

ge(ζ) =
dfe

dζ
(ζ) = −

∫
Ω

2w̄2

(1 + w̄ζ)3
dΩ, (29a)

gvdW(ζ) =
dfvdW

dζ
(ζ) = −

∫
Ω

3w̄2

(1 + w̄ζ)4
dΩ. (29b)

Therefore, at the pull-in instability, the reduced-order model satisfies equation (26) with ζ̈ = 0 and the

additional condition

K(β, λ, μ, ζ) = 0. (30)

We solve the problem for λ = 0 to compute the critical value, say μcr, of the van der Waals force

parameter. When μ = μcr the system collapses spontaneously without applying any voltage, that is, for

V = 0. We note that the critical value of the van der Waals force parameter depends on the parameter β

that directly affects the mechanical stiffness. By eliminating μ from equations (26) and (30) with ζ̈ = 0

and λ = 0, we obtain the nonlinear equation(
(k1 + βk2) ζcr + αk3ζ

3
cr

)
gvdW(ζcr) =

(
k1 + βk2 + 3αk3ζ

2
cr

)
fvdW (ζcr) , (31)

whose positive first root gives ζcr. The corresponding value of μcr is given by

μcr = −(k1 + βk2) ζcr + αk3ζ
3
cr

fvdW (ζcr)
= −k1 + βk2 + 3αk3ζ

2
cr

gvdW (ζcr)
. (32)

The effect of the van der Waals force on pull-in parameters λPI and ‖wPI‖∞ is investigated by solving

equations (26) and (30) with ζ̈ = 0 and variable λ for different values of μ in the range [0, μcr]. Here,

‖ · ‖∞ is defined as max(x1,x2)∈Ω | · |. By solving equation (30) for λ and by substituting in equation (26),

we obtain the following nonlinear equation in ζPI:(
(k1 + βk2) ζPI + αk3ζ

3
PI + μfvdW (ζPI)

)
gvdW (ζPI) =

(
k1 + βk2 + 3αk3ζ

2
PI + μgvdW (ζPI)

)
fvdW (ζPI) .

(33)

The lowest positive root of equation (33) gives the non-dimensional pull-in deflection ζPI. The corre-

sponding non-dimensional pull-in voltage is thereby determined from equation (26) with ζ̈ = 0 as

λPI = −(k1 + βk2) ζPI + αk3ζ
3
PI + μfvdW (ζPI)

fe (ζPI)
= −k1 + βk2 + 3αk3ζ

2
PI + μgvdW (ζPI)

ge (ζPI)
. (34)

3.5 Buckling thermal stress parameter from the static problem

The buckling thermal stress parameter βB for a given λ and a given μ is determined by eliminating β

from equations (26) and (28) with ζ̈ = 0. The lowest positive root of the resulting nonlinear equation

λ (fe(ζB)− ζBge(ζB)) + μ (fvdW(ζB)− ζBgvdW(ζB))− 2αk3ζ
3
B = 0, (35)
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gives the value ζB of the displacement parameter corresponding to buckling instability. The parameter

βB is obtained as

βB = −k1 + 3αk3ζ
2
B + λge(ζB) + μgvdW(ζB)

k2
. (36)

3.6 Extraction of pull-in parameters from the linear eigenvalue problem

We determine the lowest frequency of the deflected plate at a given solution (ζ, λ, μ) through the fol-

lowing procedure. We perturb the equilibrium state ζ with a harmonic term exp(iωt) as ζ(t)+ζ exp(iωt),

where ζ is a constant such that |ζ| � |ζ | and i =
√−1. Substituting into equation (26) and retaining

terms linear in ζ, we obtain the following relation for the fundamental frequency ω0

K (β, λ, μ, ζ)− ω2
0m = 0. (37)

Since the tangent stiffness defined in equation (28) is zero at pull-in, it follows that at pull-in the lowest

natural frequency of the system equals zero. This can be viewed as an alternative way of defining the

static pull-in [18, 19, 51, 52].

4 Results and discussion

Integrals appearing in the governing equations of the reduced-order model, including equations (23)

and (27), are evaluated using the 21 × 21 Gauss quadrature rule. We established convergence of the

adopted Gauss quadrature rule by checking that the values of the above integrals do not change by

considering more quadrature points for numerical integration. Results presented below are for ν = 0.25.

For the transverse displacement, we use the following kinematically admissible function in equation

(15)

w̄ (x1, x2) = A0

(
cosh (ϑ0x1)− cos (ϑ0x1)

coshϑ0 − cosϑ0

− sinh (ϑ0x1)− sin (ϑ0x1)

sinh ϑ0 − sinϑ0

)

×
⎛
⎝cosh

(
ϑ0x2

ϕ

)
− cos

(
ϑ0x2

ϕ

)
cosh ϑ0 − cos ϑ0

−
sinh

(
ϑ0x2

ϕ

)
− sin

(
ϑ0x2

ϕ

)
sinh ϑ0 − sin ϑ0

⎞
⎠ , (38)

where ϑ0 = 4.73004 is the lowest nonzero root of the transcendental equation coshϑ cos ϑ = 1, and

the constant A0 is chosen by normalizing w̄ with respect to its maximum value. The basis function in

equation (38) equals the product of the first transverse modes of vibration of clamped-clamped Euler

beams of lengths 1 and ϕ, respectively.

Since w̄ in equation (38) is symmetric about the axes x1 = 1/2 and x2 = ϕ/2, the basis functions

u(p)i in equation (21) with mod (mod(m, 2) + mod(n, 2), 2) = 0 imply Ξ(p) = 0 in equation (23). Here,

mod(m, n) gives the remainder in the division of m by n. Therefore, the number of degrees of freedom

in equation (14b) is given by

P =
1

2
(p̄q̄ −mod (p̄q̄, 2)) , (39)

where only basis functions u(p)i such that mod (mod(m, 2) + mod(n, 2), 2) = 1 are considered. Results

below are computed by selecting p̄ = q̄.
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In [20], it is shown that convergent solutions for pull-in parameters of rectangular von Kármán mi-

croplates are obtained for p̄ = q̄ = 4, corresponding to P = 8. Thus, results presented herein are

computed with 9 basis functions in the reduced-order model.

4.1 Critical value of van der Waals force parameter

Figure 2 shows the variation of the critical van der Waals force parameter μcr with respect to the

aspect ratio ϕ for two values of α = g2
0/h

2 and for λ = 0 and β = 0. Numerical data in Figure 2 are

interpolated with

μcr = f(α)

(
1 +

4∑
k=2

ϕ−k

)
, (40)

where the function f(α), plotted in Figure 3, is given by

f(α) = 3.91α+ 36.7. (41)

We note that the critical parameter μcr increases rapidly as the plate aspect ratio ϕ decreases. We further

remark that if two opposite edges are clamped and the remaining two edges are left traction free, the

MEMS can be modeled as a plate undergoing cylindrical deformations [52]. In the case of slender

electrodes, effect of fringing fields that has been discarded in this work becomes relevant as discussed in

[53–55]. It is highly unlikely that clamped rectangular plates with ϕ � 1 will be used in practice due to

their relatively high stiffness. For ϕ � 1 and the longer edges traction free, the MEMS can be modeled

as a beam for which the analysis in [53, 54] applies.

For the Casimir force, the function f(α) in equation (41) equals 2.31α + 35.8; see [20]. As pointed

out in [20], equation (40) gives approximate values of μcr.

Figure 2. Variation of μcr with the aspect ratio ϕ for (a) α = 1 and β = 0 and (b) α = 4 and β = 0.
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4.2 Effect of van der Waals force on pull-in parameters

In Figures 4 and 5, we plot the pull-in parameters versus μ in the range [0, μcr] for α = 1 and β = 0

for a square and a rectangular plate. As μ increases the pull-in parameter λPI decreases monotonically

from its maximum value λmax
PI corresponding to μ = 0 to its minimum value 0 corresponding to μ = μcr.
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Figure 3. Variation with α of the function f(α) in equation (40).
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The value μ = μcr represents the intersection of the curves with the horizontal axis. With an increase in

μ, the non-dimensional maximum transverse displacement decreases monotonically from its maximum

value ‖wPI‖max
∞

attained for μ = 0 to its minimum value corresponding to μ = μcr. For a MEMS made

of a specified material, equation (11)5 implies that �4/(h3g4
0) is proportional to μcr. Thus, μcr provides

a quantitative indication of the devices’ size that can be safely fabricated. This means that reduced

deflection ranges are allowable for devices having a large value of μcr since μcr is inversely proportional

to g4
0 . By comparing results depicted in Figures 4 and 5, we conclude that a change in the aspect ratio

of a plate from 1 to 1/2 significantly increases λmax
PI and it does not noticeably affect the difference

‖wPI‖max
∞

− ‖wcr‖∞.

Figure 4. (a) λPI and (b) ‖wPI‖∞ versus μ for a square plate with α = 1 and β = 0.
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For μ = 0.3μcr and α = 4, we depict in Figure 6 deformed shapes of a square plate when λ 	 200

and ‖w‖∞ 	 0.59, and of a rectangular plate with ϕ = 1/2 when λ 	 1500 and ‖w‖∞ 	 0.59. In

both cases thermal effects are discarded by selecting β = 0. Fringe plots of the van der Waals pressure

(cf. equation (8)) are also exhibited in the same plots. For the same value of ‖w‖∞ the maximum

magnitude of the van der Waals pressure for the rectangular plate is nearly an order of magnitude higher

as compared to that for the square plate; note that FvdW in equation (8) does not depend upon the applied

voltage. Its value is negative because it acts along the negative z-axis.
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Figure 5. (a) λPI and (b) ‖wPI‖∞ versus μ for a rectangular plate (ϕ = 1/2) with α = 1 and β = 0.
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4.3 Effect of thermal stress on pull-in and critical van der Waals force parameters

In Figure 7, we plot the variation with β of the critical van der Waals force parameter μcr for a square

plate and a rectangular plate with ϕ = 1/2, and also two values of α. We recall that the parameter β

in equation (11) is a measure of the prestress due to a uniform change Θ in the microplate tempera-

ture. For each case examined, we observe that μcr increases with decreasing temperature and decreases

with increasing temperature. Indeed, from equations (11) and (28), a positive increment of temperature

decreases the overall stiffness, whereas a negative increment increases the overall stiffness. Thus, the

temperature affects the minimum size of the device that can be safely fabricated.

In the absence of van der Waals force, that is, for μ = 0, Figure 8 exhibits the variation with the

prestress parameter β of the pull-in voltage λPI for a square plate, and a rectangular plate with ϕ = 1/2,

and also two values of α. We note that magnitudes of the compressive and tensile thermal stresses are

limited, respectively, by the buckling instability of the MEMS and the tensile strength of the material of

the MEMS.

4.4 Pull-in parameters from the analysis of frequencies of a deformed plate

Table 1. Values of ω̄0 in Figures 9, 10, 11 and 12.

α ϕ = 1 ϕ = 1/2

μ = 0 μ 	 0.3μcr μ = 0 μ 	 0.3μcr

1 36.1 34.2 98.6 93.4

4 36.1 34.2 98.6 93.5

In Figure 9, we report, for two different values of μ, the fundamental frequency ω0 of the deflected

microplate versus λ for α = 4 and β = 0 and for a square and a rectangular plate. The natural frequency

is normalized with respect to the value ω̄0 corresponding to λ = 0; values of non-dimensional ω̄0 for Fig-

ures 9 and 10 are reported in Table 1. The corresponding dimensional frequencies equal ω̄0

√
D/(��4).

As reported in [56], for μ = 0 and λ = 0, the values of the non-dimensional frequency ω̄0 equal 36.108
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Figure 6. For μ 	 0.3μcr and α = 4, deformed shape of (a) the square plate with λ 	 200 and

‖w‖∞ 	 0.59, and (b) rectangular plate with ϕ = 1/2, λ 	 1500 and ‖w‖∞ 	 0.59. Fringe plots of the

van der Waals pressure are also displayed.
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Figure 7. For α = 1 (solid line) and α = 4 (dashed line), variation with β of the critical van der Waals

force parameter μcr for (a) square plate and (b) rectangular plate with ϕ = 1/2.
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Figure 8. For α = 1 (solid line), α = 4 (dashed line), and μ = 0, variation with β of the pull-in voltage

parameter λPI for (a) square plate, and (b) rectangular plate with ϕ = 1/2.
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and 98.592 for the square and the rectangular plate with ϕ = 1/2, respectively.

The variation of ω0/ω̄0 with λ is non-monotonic due to the combined effect of the strain hardening

represented by k3ζ
3 and the softening effect introduced by the Coulomb and the van der Waals forces.

Indeed, from equation (26), it is clear that the overall behavior of the Coulomb and the van der Waals

forces is equivalent to a nonlinear spring with negative spring constant. When the strain-hardening effect

is negligible the fundamental frequency monotonically decreases to zero, as it is typically predicted by

the linear plate theory.

Figure 9. Normalized fundamental frequency versus λ for μ = 0 (solid curve), μ 	 0.3μcr (dashed

curve), α = 4 and β = 0; (a) ϕ = 1 and (b) ϕ = 1/2.
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Results reported in Figure 10 show that for α = 1 and β = 0 the fundamental frequency monoton-

ically decreases, implying that in this case the softening effect related to the Coulomb and the van der

Waals forces overwhelms the strain hardening effect due to the mechanical nonlinearity. We note that

the value of λ corresponding to ω0 = 0 agrees with the λPI found from Figures 4 and 5 which of course

should be true since in both cases K (ζ, λ, μ) = 0. This provides an alternative way to find the pull-in

parameters.
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Figure 10. Normalized fundamental frequency versus λ for μ = 0 (solid curve), μ 	 0.3μcr (dashed

curve), α = 1 and β = 0; (a) ϕ = 1 and (b) ϕ = 1/2.
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4.5 Effect of thermal stress on the fundamental frequency of predeformed plates

In Figures 11 and 12, we plot for μ = 0 the non-dimensional fundamental frequency of the deformed

plate versus β for two values of λ. The natural frequency is normalized with respect to the value ω̄0

corresponding to λ = 0, μ = 0 and β = 0 reported in Table 1. The value of β for which ω0 = 0

corresponds to the buckling instability of the MEMS plate, and is found with the method explained in

section 3.5. For β ≤ βB, the fundamental frequency is computed from equation (37) with μ = 0, the

constant value of λ, and the corresponding ζ satisfying equation (26).

For α = 4 (g0/h = 2) and λ �= 0 the trend is non-monotonic due to the concurrent effects of the

strain hardening (αk3ζ
3) and the thermal softening (βk2ζ). For the case studied, when α = 1 the thermal

softening is dominant with respect to the strain hardening, and the fundamental frequency monotonically

decreases. For λ = μ = 0, the buckling is due to equal biaxial thermal stresses of β 	 53 for both α = 1

and 4. In the absence of the Coulomb and the van der Waals forces the thermal stress at the onset of

buckling is unaffected by the initial gap between the two plates.

Figure 11. For the square plate, fundamental frequency versus β for μ = 0, λ = 0 (solid curve) and

λ = 150 (dashed curve); (a) α = 1 and (b) α = 4.
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Figure 12. For the rectangular plate with ϕ = 1/2, fundamental frequency versus β for μ = 0, λ = 0

(solid curve) and λ = 1000 (dashed curve); (a) α = 1 and (b) α = 4.
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5 Conclusions

We have studied effects of thermal stress and nanoscale forces on pull-in instability and resonant

behavior of electrostatically actuated microplates. Mechanical nonlinearities are accounted for by mod-

eling the deformable microplate using the von Kármán plate theory. The thermal stress is modeled as

a homogenous residual stress depending on the microplate temperature. Nanoscale surface forces are

described using the van der Waals force. We have derived a simple and tractable mass spring single

degree of freedom model for analyzing the behavior of the considered device. The reduced-order model

is derived by using a single basis function for the transverse displacement and eight basis functions to

describe strain hardening due to membrane stretching.

Results show that the pull-in voltage and the pull-in deflection are strongly affected by thermal stresses

and the van der Waals force. More specifically, as the temperature of the MEMS increases the pull-in

voltage decreases. Moreover, the van der Waals force becomes more relevant as the MEMS size is

reduced and can potentially lead to the spontaneous collapse of the system in absence of applied voltage.
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