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Toll-like receptors (TLRs) are pattern-recognition receptors that detect a wide

variety of microbial pathogens for the initiation of host defense immunological

responses. Thirteen TLRs have been identified in mammals, and teleosts contain

22 mammalian or non-mammalian TLRs. Of these, TLR9 and TLR21 are the

cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) recognition TLRs in

teleosts. TLR9 is a mammalian TLR expressed in teleost but not in the avian species.

TLR21 is a non-mammalian TLR expressed in both teleost and the avian species.

Synthetic CpG-ODNs are potent immunostimulants that are being studied for their

application against tumors, allergies, and infectious diseases, and as a vaccine adjuvant

in humans. The immunostimulatory effects of CpG-ODNs as vaccine adjuvants and

their antimicrobial function in domestic animals and teleosts are also being investigated.

Most of our current knowledge about the molecular basis for the immunostimulatory

activity of CpG-ODNs comes from earlier studies of the interaction between CpG-ODN

and TLR9. More recent studies indicate that in addition to TLR9, TLR21 is another

receptor for CpG-ODN recognition in teleosts to initiate immune responses. Whether

these two receptors have differential functions in mediating the immunostimulatory

activity of CpG-ODN in teleost has not been well-studied. Nevertheless, the existence

of two recognition TLRs suggests that the molecular basis for the immunostimulatory

activity of CpG-ODN in teleosts is different and more complex than in mammals. This

article reviews the current knowledge of TLR9 and TLR21 activation by CpG-ODNs.

The key points that need to be considered for CpG-ODNs as immunostimulants with

maximum effectiveness in activation of immune responses in teleosts are discussed. This

includes the structure/activity relationship of CpG-ODN activities for TLR9 and TLR21,

the structure/functional relationship of these two TLRs, and differential expression levels

and tissue distributions for these two TLRs.
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INTRODUCTION

Toll was originally identified in Drosophila as a type I
transmembrane receptor involved in embryo development, and
it plays an important role in innate immune responses to
microbial infection in the adult fly (1–3). Thirteen toll-like
receptors (TLRs), TLR1 to TLR13 were subsequently identified
across all mammalian species, and humans contain ten of them,
TLR1 to TLR10 (4–12). Human TLRs are well-investigated.
These receptors can be divided into three subfamilies and play
an essential role in innate immunity by recognizing a wide
variety of pathogen-associated molecular patterns (PAMPs) from
microbes (9–12). Phylogenetically, TLR1, TLR2, TLR6, and
TLR10 are most closely related. TLR2 recognizes a broad range
of microbial components, including lipoproteins, peptidoglycan,
lipoteichoic acids, lipoarabinomannan, and zymosan (13–19).
TLR2 and TLR6 form a complex that is more specific to
triacyl lipopeptides; whereas, a heterodimer composed of TLR2
and TLR1 selectively recognizes triacyl lipopeptides (20–22).
Ligand recognition of TLR10 has not been well-investigated;
however, a recent paper showed that this TLR is a receptor
for double-stranded RNA (dsRNA) (23). TLR4 is closely related
to TLR5, with the former being responsible for recognizing
lipopolysaccharides on the outer membrane of gram-negative
bacteria and the latter recognizing flagellin, which is a component
of bacterial flagella (24, 25). TLR3, TLR7, TLR8, and TLR9
comprise a TLR subfamily. These TLRs recognize nucleic acid-
derived microbial PAMPs. TLR3 is activated by dsRNA generated
during viral replication in infected cells (26). TLR7 and TLR8
recognize single-stranded (ss)RNA from viruses (27, 28). TLR9
is a receptor for microbial unmethylated cytosine-phosphate-
guanosine (CpG) DNA (29, 30).

TLRs contain an extracellular domain (ectodomain)
comprising multiple leucine-rich repeats (LLRs), a cysteine-
rich motif followed by a transmembrane region, and a highly
conserved cytoplasmic toll/interleukin (IL)-1 receptor (TIR)
domain. The TLR ectodomain is the location of ligand binding,
while the cytoplasmic TIR domain provides a key site for
intracellular signaling (31, 32). Upon activation by ligand
ligation, TLR monomers become dimerized. Their cytosolic
domains subsequently recruit adaptor proteins from the
myeloid differentiation primary response 88 (MyD88) family.
These include MyD88, TIR-domain-containing adapter-
inducing interferon-β (TRIF)/TIR domain-containing adapter
molecule 1 (TICAM1), TIR domain-containing adapter protein
(TIRAP)/MyD88 adapter-like (Mal), toll/interleukin-1 receptor
protein (TIRP)/toll-like receptor adaptor molecule (TRAM),
and SRAM; thereby, initiating downstream signaling pathways
(31). All TLRs, except for TLR3, signal via a MyD88-dependent
pathway. TLR3 and TLR4 utilize a TRIF-dependent pathway
for signaling. In the MyD88-dependent pathway, a MyD88/IL-
1R-associated kinase 1 (IRAK1)/IRAK4/TNFR-associated factor
6 (TRAF6) complex activates transforming growth factor
beta-activated kinase 1 (TAK1), which in turn promotes the
activation of several transcription factors, including factor
kappa-light-chain-enhancer of activated B cells (NF-κB) and
activator protein 1 (AP-1). In the TRIF-dependent pathway,

the TLR recruits TRIF to activate NF-κB, AP-1, and interferon
response factors (IRFs). Activation of NF-κB and AP-1 is
mediated by TRAF6 and receptor-interacting protein (RIP),
and IRF3/7 activation involves a TBK1-IKKε/IKKi complex
(33–35). These transcription factors are key regulators of the
expression of adhesion and co-stimulatory molecules and the
production of various inflammatory cytokines required for
triggering of innate immune responses. This subsequently
leads to the activation of adaptive immune responses
(36–38).

The immunostimulatory properties of microbial DNA were
first discovered in a DNA fraction of bacillus Calmette–
Guerin (39, 40). Additional studies have revealed that the
immune stimulatory activity is present only when the DNA
contains unmethylated CpG deoxynucleotides (41, 42). Synthetic
phosphorothioate-modified CpG-ODNs mimic the functions
of microbial CpG-deoxynucleotides containing DNA (CpG-
DNA). In mammals, CpG-ODNs induce a wide variety of
immune responses. Antigen presentation is promoted in
dendritic cells because of the increased antigen processing and
upregulated expression of costimulatory molecules. Production
of inflammatory cytokines from dendritic cells, monocytes,
and macrophages are increased. B-lymphocytes are activated,
resulting in an increased proliferation and immunoglobulin (Ig)
secretion. Natural killer (NK) cells are activated to produce IFN-
γ. T-lymphocytes are also affected, resulting in initiation of T-
helper (Th)1 responses. Moreover, the generation of cytotoxic T
lymphocytes is increased (43–45).

By in vivo studies with gene knockout mice and in vitro
studies with cell-based TLR9 activation assay, TLR9 was
identified to be the cellular receptor for CpG-ODN (29, 30,
46). In mammals, TLR9 is mainly expressed in dendritic cells,
monocytes/macrophages, and B cells (47–49). Activation of
TLR9 by CpG-ODN results in several immunological effects,
including activation of dendritic cells, monocytes, macrophages,
and NK cells leading to antigen presentation and the production
of cytokines. In addition, induction of TLR9 activates B cells
and increases B-cell proliferation. TLR9 activation upregulates
Th1 polarized cytokine productions. Cytokines including TNF-
α, IL-6, IL-12, interferons, and chemokines promote T cell
activation. These immunologic responses resulted by TLR9
activation replicate the in vivo function of CpG-ODNs further
confirmed that TLR9 is themajor cellular receptor for CpG-ODN
in mammals (45, 50).

Because of these immunostimulatory activities, CpG-ODNs
are being investigated for their properties against tumors,
allergies, and infectious diseases for humans (50). In the last
quarter of 2017, CpG-ODN was approved for the first time
for application in humans. Heplisav-B, a hepatitis B vaccine
containing CpG-ODN as an adjuvant, was approved by the
United States Food and Drug Administration. Two doses of
the new vaccine were satisfactory for immunization compared
with three doses of the current hepatitis B vaccines that contain
aluminum hydroxide as an adjuvant (51, 52). In addition to
their application in humans, CpG-ODNs are being investigated
for their adjuvant and antimicrobial activities in other species,
including domestic animals and teleosts (53–56). These studies
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reveal the potential usages of CpG-ODNs in human health,
agriculture, and aquaculture.

TLR9 AND TLR21 MEDIATE THE
IMMUNOSTIMULATORY ACTIVITY OF
CPG-ODN

Other than the mammalian TLRs, several non-mammalian TLRs
have also been identified in other vertebrate lineages (57, 58).
For example, ten TLRs have been identified in avian genomes.
Analysis of genomic DNA of two distantly related avian species,
chicken and zebra finch, have identified: TLR1La, TLR1Lb,
TLR2a, TLR2b, TLR3, TLR4, TLR5, TLR7, TLR15, and TLR21.
The avian TLR1La, TLR1Lb, TLR2a, TLR2b, TLR3, TLR4, TLR5,
and TLR7 are orthologs to the TLR found in mammals. The
TLR1La and TLR1Lb result from duplication of TLR1-like genes,
and TLR2a and TLR2b result from the duplication of TLR2 genes
in avian evolution (59–63). Mammalian TLR7 and TLR8 have
higher homology to each other than other TLRs, which could
be due to a duplication of the same gene in some evolutionary
duplication event (8). The avian genome contains TLR7 but
does not contain TLR8. The mammalian TLR9 and TLR10 are
also missing from the avian genomes. TLR15 and TLR21 found
in the avian genome do not exist in genomes of mammalian
species. TLR15 is phylogenetically related to the TLR2 family
and appears to be unique to the avian species. In contrast, the
avian TLR21 could be an ortholog to teleost and amphibian
TLR21 (57–59). Interestingly, the avian species do not contain
TLR9; however, like their actions in mammalian species, CpG-
ODNs also activate marked immune responses and provide
protection from microbial infections in chickens (50, 55, 64–67).
Further studies have revealed that chicken TLR21 is a functional
homolog to mammalian TLR9 in terms of responding to CpG-
ODN stimulation (68, 69). The chicken TLR21 conferred cellular
responses to CpG-ODN stimulation when it was over-expressed
in human embryonic kidney (HEK) 293 cells. Knockdown of this
receptor by shRNA significantly reduced the CpG-ODN-induced
production of IL-1, IL-6, and iNOS from chicken DH11 cells
(68, 69).

In teleosts, at least 22 different TLRs have been identified,
including both mammalian (TLR1–TLR4, TLR5M, TLR5S,
and TLR7–TLR9) and non-mammalian TLRs (TLR13, TLR14,
TLR18–TLR28). In addition, orthologs of the mammalian
signaling molecules and transcription factors for TLR functions
have been identified (57, 58, 70–76). These TLRs are divided
into six major subfamilies: TLR1, TLR3, TLR4, TLR5, TLR7, and
TLR11 (57, 58).

The structure and ligand recognition properties of fish
TLR1-3, 5, and 7–9 are similar to those of their mammalian
counterparts. TLR2, a member of the TLR1 family, recognizes
peptidoglycan, lipoteichoic acid, and lipopeptides. TLR3 detects
dsRNAs. TLR5 recognizes bacterial flagellin. Teleost TLRs 7
and 8 respond to dsRNA, as well as to ssRNA, which is
also recognized by mammalian TLR7 and TLR8 (57, 58). In
contrast to mammalian TLR4, fish TLR4 does not recognize
lipopolysaccharides (LPSs) despite its structural conservation

with the former (77). Among non-mammalian TLRs, teleost
TLR19 and TLR22 recognize dsRNAs (78–83). The recognition
of dsRNAs by TLR19 results in the activation of IFN and NF-
κB pathways and the protection of cells from infection by the
grass carp reovirus (84). TLR22 recognizes dsRNAs to induce IFN
production and protect cells from birnaviruses (83). In addition, a
recent study showed that in fish, TLR22 functions as an equalizer
for inflammation through the selective suppression of NF-κB and
the activation of the MAPK pathway (85).

The immunologic effects of CpG-ODNs have been
investigated in numerous teleost species. In these teleosts, much
as in mammalian and avian species, CpG-ODNs upregulate
the activation of macrophages, induce the proliferation of
leukocytes, stimulate cytokine expression, and protect against
bacterial, viral, and parasitic infections. Thus, CpG-ODNs
have been studied for their application as antimicrobial agents
and vaccine adjuvants in teleosts (53, 55). There is interest
in the ligand recognition and functional properties of TLR9
and TLR21 in teleosts since these two TLRs have been shown
to be the cellular receptors for CpG-ODN in mammals and
chickens, respectively. TLR9 and TLR21 from zebrafish (Danio
rerio) were comparatively investigated (86). Direct evidence
to demonstrate that these two TLRs are the functional cellular
receptors for CpG-ODN came from an experiment with cell-
based activation assay in which the overexpression of both
zebrafish (zeb)TLR9 and zebTLR21 in HEK293 cells conferred
cellular responses to CpG-ODN stimulation (86). ZebTLR9 and
zebTLR21 have different recognition profiles for CpG-ODNs
with different nucleotide sequences. ZebTLR9 broadly recognizes
CpG-ODN sequences that have higher activity for human cells
and sequences that contain higher activity for mouse cells. In
contrast, zebTLR21 prefers the CpG-ODNs that have higher
activity for human cells (86). The biological functions of these
two TLRs were investigated further in that study. CpG-ODNs
that activate both zebTLR9 and zebTLR21 are more potent than
others in the activation of cytokine productions in zebrafish
and are more effective in protecting teleosts from the lethal
effects of bacterial infection (86). These suggest that TLR9 and
TLR21 cooperatively mediate the immunostimulatory effect of
CpG-ODN in zebrafish. Beside these, the functions of TLR9 and
TLR21 in other teleosts have not yet comparatively investigated.

STRUCTURAL FEATURES FOR THE
IMMUNOSTIMULATORY PROPERTIES OF
CPG-ODN

Natural CpG-DNA in microbial genomes contains a
phosphodiester backbone that is quickly degraded by nucleases
in vivo. Thus, the phosphorothioate backbone was developed
to create synthetic CpG-ODNs by replacing oxygen with
sulfur in the phosphate group of the nucleic acid to make
them more resistant to nucleases (87–89). Other than this, the
immunostimulatory activity of CpG-ODN is also dependent
on its nucleotide sequence and structure, and it may involve
different strengths of activity in different species, known as
“species-specific activity.” (90–92). Most of our knowledge
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about the structure-dependent activity and species-specific
activity of CpG-ODNs come from studies of the interaction
between CpG-ODNs and mammalian TLR9 (29, 30, 46, 90–
92). Because previous studies used human and mouse cells
which have TLR9 only, in addition the mammalian TLR9 was
identified for investigation earlier than the non-mammalian
TLR21 was.

Based on their structural features, CpG-ODNs are divided
mainly into four classes. Class A (also known as type D) CpG-
ODNs contain a central phosphodiester palindromic region
with one or more CpG-motifs in the palindrome and consist
of poly (G) sequences with a phosphorothioate backbone
attached to the 5′ and 3′ ends. Class B (type K) CpG-ODNs
contain a phosphorothiolate backbone throughout the entire
sequence with several CpG-motifs. Class C CpG-ODNs contain
phosphorothioate backbone with one or two CpG-motifs and
a palindromic sequence at the 3′ end. The CpG-ODNs of
class P contain two palindromic sequences with phosphodiester
cytosines in the palindrome (90, 93–96). Table 1 shows the
structures for the four classes of CpG-ODN. Different classes of
CpG-ODNs have different immunostimulatory effects. Class A
CpG-ODNs stimulate the production of large amounts of IFN-
α and induce the maturation of plasmacytoid dendritic cells
(pDCs) but have little effect on B-cell activation. Class B CpG-
ODNs strongly induce B-cell proliferation, pDC and monocyte
maturation, NK cell activation, and cytokine production. They
also stimulate the production of IFN-α, but to a lesser extent
than class A CpG-ODNs. The extent of the capability of class C
CpG-ODNs to induce B-cell proliferation and IFN-α production
is between that of class A and B CpG-ODNs. The immunological
activities of class P CpG-ODNs are characterized by their high
capability for inducing IFN-α production and NF-κB activation.
Nearly all CpG-ODNs investigated in clinical trials have been
class B CpG-ODNs (90, 93–96).

Another of the major structural features of CpG-ODNs is they
include one or more copies of CpG-deoxynucleotide containing
hexamer (CpG-hexamer) motifs. The immunostimulatory
activity of these CpG-ODNs depends on the number, position,
spacing, and surrounding bases of these CpG-hexamer motifs.
Their species-specific activity is determined by the nucleotide
context of these CpG-hexamer motifs (90–92). For example,
CpG-1826, which contains two copies of the GACGTT-hexamer
motif in 20 nucleotides, is more effective in activating murine
cells than CpG-2007, which contains three copies of the

TABLE 1 | Structural features of CpG-oligodeoxynucleotides (ODNs) in each of

the four major classes.

Class Name Sequence

A CpG-2336 5′- G*G*G*G-A-C-G-A-C-G-T-C-G-T-G-G*G*G*G*G*G−3′

B CpG-2007 5′- T*C*G*T*C*G*T*T*G*T*C*G*T*T*T*T*G*T*C*G*T*T-3′

C CpG-2395 5′-T*C*G*T*C*G*T*T*T*T*C*G*G*C*G*C*G*C*G*C*C*G-3′

P CpG-21798 5-T*C-G*T*C-G*A*C-G*A*T*C-G*G*C*G*C-G*C*G*C*C*G-3

Hyphens indicate phosphodiester and asterisks stand for phosphorothioate bonds. Red

color shows CpG-hexamer and underlining indicates palindromic sequence.

GTCGTT-hexamer motif in 22 nucleotides; however, CpG-2007
is more potent in activating human cells than CpG-1826
(46, 90–92, 97). In addition, the nucleotide length of CpG-ODN
plays a significant role in determining its immunostimulatory
activity. In rabbit cells, CpG-C46 and CpG-C4609, which each
contain 12 nucleotides and have a GACGTT- and AACGTT-
hexamer motif, respectively, generate stronger immune
responses than CpG-1826 and CpG-2007 (98).

SEQUENCE OF CPG-ODN FOR TLR9 AND
TLR21 ACTIVATION IN TELEOSTS

Several CpG-ODNs have been investigated in teleosts for their
immunostimulatory activity and antimicrobial functions. There
are well-written reviews for these properties of CpG-ODN in
earlier works (53, 55). Table 2 summarizes the more recent
work. Most of the CpG-ODNs used in these studies are class
B. Like in mammals, CpG-ODN nucleotide length determines
its immunostimulatory activity in teleosts. In Atlantic salmon
(Salmo salar), CpG-ODNs that are 16–17 nucleotides long
show less immunostimulatory effects that those that are 20–
22 nucleotides long. CpG-ODNs shorter than 13 nucleotides
lose their immunostimulatory properties. In addition, CpG-
ODNs that are more than 30 nucleotides long have rarely
been investigated for their immunologic activity in teleosts
(53, 55, 120).

Compared to what is known about the critical role of CpG-
hexamer motif in the activity of CpG-ODN in mammalian
species, a conclusion has not been reached on what type of
CpG-hexamer motif is best for generating a strong immune
response in teleosts. CpG-1668, which contains one copy of
the GACGTT-hexamer motif in 20 nucleotides, is reported
to have immunostimulatory activity, adjuvant effects, and
antimicrobial properties in different teleosts, including rock
bream (Oplegnathus fasciatus), olive flounder (Paralichthys
olivaceus), orange-spotted grouper (Epinephelus coioides), Asian
sea bass (Lates calcarifer), and Pacific red snapper (Lutjanus
peru) (100–104, 115). Moreover, when fed to Atlantic salmon
(Salmo salar), CpG1668 induced the expression of cytokines,
such as IL-1β and IL-12β, to protect this teleost fish from
infection by sea lice (Lepeophtheirus salmonis), which are the
most important ectoparasites that affect the farming of Atlantic
salmon (106, 107). When administered to rock bream, CpG-
1668 activates stronger protective effects against viral infection
than other CpG-ODNs with GTCGTT-hexamer or with the same
GACGTT-hexamer motif but with different nucleotide lengths
(100). CpG-2006 and CpG2007, which contain three copies of the
GTCGTT-hexamer motifs in 24 and 22 nucleotides, respectively,
have been shown to induce immune responses in yellowtail
(Seriola quinqueradiata), olive flounder, large yellow croaker
(Larimichthys crocea), grass carp (Ctenopharyngodon idella), Nile
tilapia (Oreochromis niloticus), and Atlantic salmon (108, 109,
112, 113, 116, 121). In olive flounder, CpG-2007 has better
protection against Edwardsiella tarda infection than CpG-1668
(112). In grass carp, CpG-1670A, which contains three copies of
the AACGTT-hexamer motif in 25 nucleotides, displays a greater
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TABLE 2 | Summary of CpG oligonucleotides used in teleost.

CpG-ODN Sequence (5′->3′) Action Fish

2722 GTTGTCGTTTTTTGTCGTT Induce NF-κB activation and cytokine expressions via TLR21 (99) Grouper

2727 GTTGTCGTTTTTTGTGCTT Induce NF-κB activation and cytokine expressions via TLR21 (99) Grouper

1668 TCCATGACGTTCCTGATGCT Activate innate and adaptive immune responses, and offer protection from

bream iridovirus infection (100, 101)

Used as an adjuvant for vaccines against V. harveyi infection (102)

Activate innate immune response and upregulate TLR9 and IgM-mediated

immune response (103)

Increase protection against P. dicentrarchi infection (104)

Stimulate upregulation of TLR9, IL-1and chemokine CC (105)

Decrease sea lice infection in CpG-1668 fed group via induction of inflammatory

gene expression (106, 107)

Rock bream

Grouper

Pacific red snapper

Oliver flounder

Cobia

Atlantic salmon

2006 TCGTCGTTTTGTCGTTTTGTCGTT Induce IgM and antimicrobial peptide gene expression (108)

Stimulate IL-1 and IL-6 production and NF-κB activation in head kidney cells

(109)

Elicit better protection against E. tarda through activation of both TLR9 and

TLR21 (86)

Stimulate upregulation of IgM, TLR9, IL-1 and chemokine CC (105)

Promote IgM secretion and upregulation of cd83, cd40, ifna1 and ifnb (110)

Induce MAPK-activated protein kinase 2 activation in phagocytes (111)

Yellowtail

Yellow croaker

Zebrafish

Cobia

Atlantic salmon

Atlantic salmon

2007 TCGTCGTTGTCGTTTTGTCGTT Increase survival rates following challenge with E. tarda (112)

Activate IL-1, IL-6 production and NF-κB activation in head kidney cells (109)

Induce protective effect against S. iniae infection (113)

Elicit better protection against E. tarda through activation of both TLR9 and

TLR21 (86)

Olive flounder

Yellow croaker

Nile tilapia

Zebrafish

2395 TCGTCGTTTTCGGCGCGCGCCG Induce expression of antiviral Mx gene in spleen and liver (105)

Upregulation of TLR21 expression (114)

Cobia

Turbot

1013 CTCACTATCGTTCTTGATT Increase WBC counts, peroxidase activity and oxidative radicals in head kidney,

upregulate immune-related genes and enhance protection against S. iniae

infection (115)

Asia sea bass

1670A TCGAACGTTTTAACGTTTTAACGTT Induce protective antiviral responses against grass carp reovirus (116) Grass carp

1826 TCCATGACGTTCCTGACGTT Activate IL-1, IL-6 production and NF-κB activation in head kidney cells (109) Yellow croaker

C7 GGCGCGCGTCGCGCGCTA Inhibite viral replication, promote proliferation of leukocytes, and enhance

activation of head kidney phagocytes (117)

Olive flounder

205 GATCGCGTGCGTGCGTCTAT Induce macrophage activation, leukocyte proliferation and protect against lethal

E. tarda challenge (118)

Turbot

D ACCGATAACGTTGCCAACGTTGGT Upregulate leucocyte gene expressions including TNF-α, IL-1, TLR9,

IRF-1, Mx, MHCIIa, IgMH and CSF-1R (119)

Gilthead seabream

capacity to protect teleosts against viral infection than CpG-1668
and CpG-2006 (116).

The ability of teleost TLR9 and TLR21 to uniquely distinguish
different types of CpG-hexamer motifs in teleosts may account
for the different CpG-ODN sequences that have been reported
to participate in the induction of immune responses in different
teleost species. The zebTLR9 has been shown to broadly
recognize different CpG-hexamer motifs; however, it more
strongly recognizes CpG-ODNwith the GACGTT- or AACGTT-
hexamer motif than CpG-ODN with the GTCGTT-hexamer
motif. In contrast, zebTLR21 responds more to CpG-ODN with
the GTCGTT-hexamer motif. Further study suggests that CpG-
ODNs with an optimized sequence for activating these two
TLRs can generate the strongest immunostimulatory activity
in this species (86). CpG-ODNs with the GTCGTT-hexamer
motif, such as the CpG-2722 and CpG-2727, have strong effects
on the TLR21 group like that required for the activation of
zebTLR21; in contrast, CpG-1826 with the GACGTT-hexamer
motif does not activate this TLR (99). CpG-2006, CpG-2007,
and CpG-1826 are reportedly able to activate TLR21 in large

yellow croakers (109). The optimized sequence for CpG-ODN
to strongly activateTLR9s or TLR21s from other teleosts has not
been investigated. Given the large diversity in teleost species,
there is not expected to be a universal CpG-ODN sequence
for strong activation of TLR9 or TLR21 from different teleost
species. This means that the interaction of CpG-ODN with TLR9
or TLR21 from different teleost species must be investigated
individually to generate conclusions about how to design a
sequence for CpG-ODN with a strong immunostimulatory
activity in the teleost species.

FUNCTIONAL ACTIVITY OF TELEOST TLR9
AND TLR21 IN RESPONSE TO CPG-ODN
STIMULATION: SUGGESTIONS MADE BY
THEIR STRUCTURE

Along with the requirement of an optimized nucleotide sequence
for CpG-ODN to strongly activate TLR9 and TLR21, whether
CpG-ODN can generate a strong immune response in a teleost
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species is also determined by the intrinsic functional activity of
TLR9 and TLR21 in that teleost. Furthermore, although both
TLR9 and TLR21 in zebrafish are active in response to CpG-ODN
stimulation (86), it is still unclear whether both are functional
in other teleost species. Nevertheless, some suggestions can be
made from the protein sequences analysis of these two TLRs from
different teleost species and the study of the structure/functional
activity relationship of mammalian TLR8.

In mammals, TLR7, TLR8, and TLR9 are phylogenetically
closely related and are a subfamily of TLRs (5, 8). These three
TLRs have an ectodomain in a horseshoe-like shape that consists
of 25 copies of LRRs and a unique undefined region (also called
a Z-loop) between LRR14 and LRR15 (122, 123), as shown
in Figures 1A,B for the ectodomains of TLR9s. This unique
undefined region plays an important role in ligand activation of
members of this TLR subfamily (124–126). Previous studies have
shown that TLR8s from several non-rodent species, including
cat, horse, sheep, and bovine, are activated by their agonists;
whereas, TLR8s from the mouse and rat, two rodent species,
do not respond to ligand stimulation (127). Another study
revealed that rabbit TLR8 (also a rodent TLR8) has very little
activity after ligand stimulation compared to that of humans
(128). Inspection of the ectodomains of these TLR8s reveals
that the lengths of amino acid residues within the undefined
regions varies between TLR8s from the non-rodent group and
those from the rodent group. Compared to non-rodent TLR8s,
the undefined regions of mouse and rat TLR8s are shorter
by five amino acid residues; whereas, the undefined region of
rabbit TLR8 is longer by 34 amino acid residues. Although the
structural base is still unclear, it has been suggested that the lesser
functional activity of these rodent TLR8s is a result of the varied
lengths of their undefined regions (127, 128). Distinct from
TLR8, non-functional TLR7 and TLR9 have not been reported
in mammalian species. Consistently, the length of the undefined
regions in mammalian TLR7s and TLR9s are more conserved
than that in the TLR8s (127, 128).

Like mammalian TLR9s, teleost TLR9s also contain an
undefined region in their ectodomain, which results in an
extruded loop in the horseshoe-shaped ectodomain of these
TLRs (Figures 1A,B). Interestingly, there are large variations
in the length of undefined regions in teleost TLR9s. The
regions in teleost TLR9s are longer than in mammalian TLR9s
(Figure 1B). Moreover, the length of these undefined regions
is more consistent in the more phylogenetically-related teleost
TLR9s than in the more distantly-related teleost TLR9s. For
example, TLR9s of zebrafish, grass carp, common carp (Cyprinus
carpio), Mexican tetra (Astyanax mexicanus), and channel catfish
(Ictalurus punctatus) are more closely phylogenetically related,
and the lengths of their undefined regions are more consistent
than in the TLR9s of the Atlantic salmon and orange-spotted
grouper, which are more distantly related (Figures 1B,C). Given
that the undefined regions play a role in the functional activity of
TLR8, this structural analysis of undefined regions within TLR9s
from different teleosts suggests that there is a large difference in
the intrinsic functional activities of TLR9s from different teleost
species. Furthermore, because the more phylogenetically-related
teleost TLR9s contain more conserved undefined regions, it also

suggests that there are more similar functional activities for the
more closely related teleost TLR9s.

In contrast, although TLR21 is functionally related to
TLR9 in response to CpG-ODN stimulation, TLR21 is more
phylogenetically related to members of the TLR11 subfamily and
is an ortholog closer to the TLR13 subfamily (129, 130). Analysis
of chicken TLR21 revealed that it does not have an undefined
region, as in TLR9. In addition, a study of TLR21 proteins from
different species shows that these TLR21s are highly homologous
(130). The same is true for teleost TLR21s. As Figure 2 illustrates,
undefined regions are not found in teleost TLR21s whether
the TLR21s are closely related or distantly related to each
other; therefore, the highly-diversified ectodomains of TLR9s
from different teleost are not observed in teleost TLR21s. In
general, the teleost TLR9s contain more than 1,000 amino acid
residues, and the teleost TLR21s have <1,000. A lack of the
undefined region in these teleost TLR21s is the main reason why
teleost TLR9s contain more amino acid residues than TLR21s
(Figures 1C, 2C). The more conserved ectodomains of teleost
TLR21s suggest a more stable functional activity of TLR21s
within different teleost species. Nevertheless, these suggestions
made by structural analyses of the teleost TLR9s and TLR21s are
waiting for confirmation by experimental investigation.

EXPRESSION AND TISSUE DISTRIBUTION
OF TLR9 AND TLR21 IN TELEOSTS

In addition to their functional activity, the differential expression
levels and tissue distributions of TLR9 and TLR21 are likely to
be another level of determinant of CpG-ODN efficacy in teleosts.
The expression profile of TLR9 has been investigated in several
different species of teleost and has been shown to be broadly
expressed in different tissue types and development stages (131–
135). In gilthead sea bream (Sparus aurata), the expression levels
of TLR9 transcripts are detected in the gill, head kidney, and
spleen (119). In channel catfish, TLR9 is expressed in the skin,
gill, head kidney, and spleen (135). In addition, TLR9 expression
is inducible by responding to different stimuli and microbial
infections (105, 135). For example, TLR9 is broadly expressed
in larval, juvenile, and adult stages of cobia (Rachycentron
canadum) in all analyzed tissues, including the gill, intestine,
head kidney, liver, skin, and spleen. Cobia challenged with
Photobacterium damselae subsp. piscicida results in increased
TLR9 expression in these tissues with different dynamic profiles
(105). TLR9 expression in the skin and gills of channel catfish is
induced by infection with Ichthyophthirius multifiliis (135).

TLR21 has an expression profile like that of TLR9. In yellow
catfish, the TLR21 gene is detected in fertilized eggs and in the
young up to 30 days after hatching. In adult fish, this gene is
detected in the muscles, stomach, skin, swim bladder, midgut,
brain, spleen, trunk kidney, skin mucus, head kidney, liver,
heart, gill, and blood, with the highest expression in the spleen.
TLR21 mRNA expression levels in the spleen, head kidney, trunk
kidney, liver, and blood of yellow catfish are upregulated after
challenging the fish with killed Aeromonas hydrophila (136). In
turbot (Scophthalmus maximus), TLR21 transcripts are broadly
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FIGURE 1 | Undefined region of toll-like receptor 9 (TLR9) from different teleost species. (A) Computational modeling of the ectodomain protein structures of TLR9

from different species as indicated. These structural models were predicted with SWISS MODEL (www.swissmodel.expasy.org). (B) Alignment of protein sequences

for the undefined regions between leucine-reach repeat (LRR)14 and LRR15 in the ectodomain of TLR9 from different species. Multiple alignments of the amino acid

sequences of TLR21s were performed using ClustalW2 (www.ebi.ac.uk/Tools/msa/clustalw2). (C) Phylogenetic analysis of TLR9s from different species. The

GenBank accession numbers of these TLR9 protein sequences are listed in the left column. Numbers in the right column are the amino acid lengths of these TLR9s.

expressed in different tissues, with the highest expression in the
spleen followed by the head kidney and liver. In addition, after
infection with turbot reddish body iridovirus or stimulation with
polyinosinic:polycytidylic acid and CpG-2395, which contain a
GTCGTT-hexamer motif within 22 nucleotides, the expression

of the turbot TLR21 transcript is upregulated in the gills, head
kidney, spleen, andmuscle (114). In large yellow croakers, TLR21
is expressed in all tested tissues, with higher levels in immune-
related tissues such as the spleen, head kidney, and gills (109).
In rock bream, TLR21 transcripts are ubiquitously expressed in
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FIGURE 2 | Toll-like receptor 21 (TLR21) from different teleost species does not contain an undefined region. (A) Computational modeling of the ectodomain protein

structures of TLR21 from different species as indicated. These structural models were predicted with SWISS MODEL (www.swissmodel.expasy.org). (B) Alignment of

protein sequences for the regions from leucine-reach repeat (LRR)14 to LRR15 in the ectodomain of TLR21 from different species. ClustalW2 (www.ebi.ac.uk/Tools/

msa/clustalw2) was used to perform multiple alignments of the amino acid sequences of TLR21s. (C) Phylogenetic analysis of TLR21 from different species. The

GenBank accession numbers of these TLR21 protein sequences are listed in the left column. Numbers in the right column are the amino acid lengths of these TLR21s.
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different tissues, with higher expression in the spleen followed
by the liver and blood. In contrast, the kidney, heart, gill, head
kidney, and skin have lower expression levels of these transcripts.
In addition, mRNA of the rock bream TLR21 is significantly
upregulated in the spleen after stimulation with Streptococcus
iniae, rock bream iridovirus, and Edwardsiella tarda (137).

Interestingly, the induction of gene expression in different
tissues of cobia by CpG-ODNs is reported to be CpG-ODN-
sequence dependent. CpG-1668 and CpG-2006 induce high
expression levels of TLR9 in the spleen; whereas, CpG-1668 is
more potent in the induction of TLR9 expression in the liver.
In the liver and spleen, CpG-1668 and CpG-2006 induce higher
expressions of IL-1β and CC chemokines than CpG-2395 and the
control CpG-2137; however, in these tissues, CpG-2006 induces
high levels of immunoglobulin M (IgM), and CpG-2395 induces
high expression levels of Mx (105). The underlying reason for
this CpG-ODN sequence- and tissue type-dependent induction
of gene expressions is unclear. However, it may reflect that the
different expression levels of TLR9 and TLR21 in a tissue type and
the ability of TLR9 and TLR21 to differentially recognize different
type of CpG-ODN are the main causes for the different activity
levels of a CpG-ODN in different tissues.

CONCLUSION AND PERSPECTIVES

Most of the knowledge on how to design a nucleotide sequence
for CpG-ODN to achieve strong in vivo immunostimulatory
activity has come from early studies on mammalian species that
express TLR9 only and not TLR21. The discovery of TLR21
as another CpG-ODN receptor in teleosts may explain why
previous experience on the activities of various CpG-ODNs in

mammals cannot be replicated in teleosts. This also suggests that

more understanding of both TLR9 and TLR21 is required for
design of CpG-ODN sequence to have strong activity in teleosts.
Given that the functional activity of TLR9 and TLR21 may vary
among different teleosts, further investigations with cell-based
TLR9 and TLR21 activation assays are required to determine
whether both TLRs in a teleost are functional or if only one of
the two TLRs has the dominant functional activity.

Aquaculture is one of the fastest growing areas of agriculture.
The production of farmed teleosts has exceeded that of captured
teleosts. Farmed teleosts are susceptible to viral, bacterial,
and parasitic infections. Thus, effective immune modulators,
including vaccines, and vaccine adjuvants, are required for the
aquaculture of farmed teleosts (138–140). CpG-ODN has proven
to be an effective adjuvant and antimicrobial agent in teleost
(53, 55). The approval of its usage as a vaccine adjuvant in
humans (51, 52) further supports its effectiveness and safety as
an immunostimulant in agricultural areas, including aquaculture,
for food production.
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