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Abstract: An increased understanding of low-density lipoprotein receptor (LDLR) and its regulation
may facilitate drug development for the treatment of hypercholesterolemia. Triciribine (TCN), which
is a highly selective AKT inhibitor, increases the stability of LDLR mRNA downstream of extracellular
signal-regulated kinase (ERK) in human hepatoma cells (HepG2). Here, a candidate approach was
used in order to determine whether the RNA-binding proteins (RBPs) ZFP36 ring finger protein like
1 (ZFP36L1) and Hu antigen R (HuR) play a role in TCN-mediated stabilization of LDLR mRNA.
The depletion of HuR led to a reduction of LDLR mRNA stability, an event that was more pronounced
in TCN-treated cells. TCN was found to induce the translocation of nuclear HuR to cytoplasm
in an ERK-dependent manner. ZFP36L1 depletion increased the stability of LDLR mRNA consistent
with its destabilizing role. However, in contrast to HuR, TCN had no effect on LDLR mRNA turnover
in ZFP36L1-depleted cells. TCN induced the phosphorylation of ZFP36L1 in an ERK/RSK-dependent
manner and promoted its dissociation from the CCR4-NOT complex. in sum, these data suggest that
TCN utilizes ERK signaling to increase the activity of HuR and inhibit ZFP36L1 to stabilize LDLR
mRNA in HepG2 cells.

Keywords: AKT; LDLR; TCN; mRNA-stability

1. Introduction

Low-density lipoprotein receptor (LDLR) mediates the cellular uptake of plasma low-density
lipoprotein cholesterol (LDL-C), the elevated levels of which are associated with an increased risk
of cardiovascular disease. The number of LDLR that is expressed on the surface of hepatocytes
is the major determinant of the circulating levels of LDL-C [1,2]. The LDLR levels are regulated
by an array of mechanisms that operate at the transcriptional, posttranscriptional, and posttranslation
levels. the transcription of LDLR is controlled by the transcription factors, called sterol regulatory
element-binding proteins (SREBPs), whose activities are regulated by the intracellular levels
of cholesterol [1,2]. At the posttranslational level, LDLR protein stability is subject to regulation by both
proprotein convertase subtilisin/kexin 9 (PCSK9) and inducible degrader of LDLR (IDOL) [3,4].
in addition to the regulation of gene transcription, LDLR levels are dynamically regulated
by the modulation of its mRNA turnover in response to extracellular stimuli [5,6]. LDLR mRNA has
a half-life of approximately 1-2 h in HepG2 cells and it becomes stabilized two- to three-fold in response
to extracellular stimuli, including phorbol 12-myristate 13-acetate (PMA) [7], bile acids [8,9], berberine
(BBR) [5,10,11], and triciribine (TCN) [12]. Whereas TCN inhibits the serine/threonine protein kinase
(AKT) signaling pathway and PMA activates protein kinase C (PKC), both compounds modulate
signaling pathways related to cell growth. Therefore, several clinical studies have been performed,
and are in progress, to evaluate TCN and PMA as pharmacological compounds in the treatment
of cancer, amongst other diseases (ClinicalTrials.gov).
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The regulation of LDLR mRNA decay is controlled through its 3'UTR, which consists of four
adenylate uridylate-rich element (AREs) functioning in mRNA decay by binding a network
of RNA-binding proteins (RBPs) [13,14]. Among these, Hu antigen R (HuR) is one of the few
RBPs identified that confers stability to LDLR mRNA [9,13,14] whereas ZFP36 ring finger protein like-1
and -2 proteins (ZFP36L1 and ZFP361.2) and KH-type splicing regulatory protein (KSRP) accelerate
the turnover of LDLR mRNA [13,15]. Other RBPs, such as D and I members of the heterogeneous
nuclear ribonucleoprotein family (hnRNP D and hnRNPI), either stabilize or destabilize LDLR mRNA,
depending on their isoform expression profiles and cellular context [16-19].

HuR is a ubiquitously expressed member of the embryonic lethal abnormal vision family
of RBPs [20]. HuR is predominantly localized to the nucleus where it carries out various functions,
such as the regulation of pre-mRNA processing [21,22]. However, when translocated into the cytoplasm,
HuR exerts a stabilizing effect on its mRNA targets [22-24]. One such target is LDLR mRNA [13], which
is stabilized in an HuR-dependent manner in response to farnesoid X receptor activation and the AMPK
activator, AICAR [9,14]. Interestingly, the stabilizing effect of HuR on LDLR mRNA in response
to AICAR appears to require the activity of ERK [14].

ZFP36L1 and ZFP36L2 belong to the TPA-inducible sequence 11 (TIS11) protein families that, upon
binding to AREs in the 3" UTRs of their target mRNAs, recruit the CCR4-NOT complex to the adjoining
polyA tail, thus promoting the deadenylation of mRNA and ultimately its degradation [15].
Phosphorylation plays a critical role in regulation of the activity of TIS11 family members [25].
for instance, phosphorylation of ZFP36 by MK2, a kinase downstream of p38 MAPK, has been
found to diminish its mRNA-destabilizing activity [26]. Similarly, the phosphorylation of ZFP36L1
and ZFP36L2 by p90 ribosomal S6 kinase 1 (RSK1), a downstream effector of ERK signaling, has been
shown to induce their disengagement from CCR4-NOT complex and the loss of its de-stabilizing
function, resulting in the stabilization of LDLR mRNA [15].

Recently, it was reported that TCN increases LDLR levels by preventing the degradation of LDLR
mRNA in an ERK activity-dependent manner [12]. This work aimed to elucidate the mechanism that
underlies this property of TCN. to do so, a candidate protein approach was adopted, and attention
was directed towards trans-acting factors that, in addition to lying downstream of ERK, have been
demonstrated to alter the stability of LDLR mRNA. in this report, it was shown that both HuR
and ZFP36L1 contribute to the stabilizing effect of TCN on LDLR mRNA.

2. Results

2.1. HuR and ZFP36L1 Modulate Endogenous LDLR Expression and mRNA Stability in HepG2 Cells

HepG2 cells were transfected with HuR or ZFP36L1 siRNA and analyzed for HuR and ZFP36L1
protein levels in order to examine the knockdown efficiency of their respective siRNAs. HuR siRNA
reduced HuR protein levels by only approximately 70% (Figure 1a). In contrast, siRNA directed against
ZFP36L1 efficiently reduced ZFP36L1 protein level (Figure 1a). Next, the impact of the reduction
in HuR and ZFP36L1 protein level on LDLR expression was examined. Figure 1a and Figure S1 show
that a siRNA-mediated decrease in HuR levels reduced LDLR protein and its mRNA approximately
30% (Figure 1b) though its mRNA stability was only slightly decreased (Figure 1c). The depletion
of ZFP36L1 enhanced LDLR protein (Figure 1a and Figure 51) and mRNA expression twofold (Figure 1b)
and were echoed by increased mRNA stability (Figure 1c).
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Figure 1. HuR and ZFP36L1 modulate endogenous low-density lipoprotein receptor (LDLR) expression
and mRNA stability in HepG2 cells. (a) HepG2 cells were transfected with either a non-targeting
control (NT), HuR or ZFP36L1 siRNAs. Twenty-four hours post transfection, cells were harvested
and lysates subjected to immunoblotting using the indicated antibodies. One representative Western
blot is shown (1 = 4). The graph in the right panel depicts the intensity of LDLR after normalization
to the B-actin protein (1 = 4). (b) Twenty-four hours post transfection, cells were harvested and total
mRNA was extracted and subjected to quantitative RT-PCR (qPCR) using primers specific to LDLR,
ZFP36L1, HuR, and GAPDH mRNA. Error bars show standard deviation of the mean. * p < 0.05,n =9.
(c) Twenty-four hours post transfection, cells were incubated with Act D, or not, for four hours. Cells
were harvested at time zero (without Act D) and after four hours, respectively, and subjected to total
RNA-extraction and gPCR of LDLR mRNA, normalized to GAPDH mRNA. the graph shows the LDLR
mRNA level remaining after four hours Act D treatment, relative to NT siRNA-transfected control cells.
Error bars show standard deviation of the mean. *p < 0.05,n =5.

2.2. HuR and ZFP36L1 Contribute to TCN-Mediated Stabilization of LDLR mRNA

The impact of HuR- and ZFP36L1-specific siRNAs on the ability of TCN to stabilize LDLR mRNA
were examined to explore the potential roles of HuR and ZFP36L1 in modulating the TCN-induced
LDLR mRNA stability. HuR depleted cells exhibited reduced LDLR protein and mRNA expression
in response to TCN, as shown in Figure 2a,b and Figure S1. Consistently, TCN increased the turnover
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rate of LDLR mRNA in HuR-depleted cells (Figure 2c). These data indicate a role for HuR as a mediator
of the stabilizing effect of TCN on LDLR mRNA.
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Figure 2. HuR and ZFP36L1 contribute to triciribine (TCN)-mediated stabilization of LDLR mRNA. (a)
HepG2 cells were transfected with either a non-targeting (NT), 1HuR or ZFP36L siRNA. Twenty-four
hours post transfection, cells were treated with or without TCN and harvested after four hours. Lysates
were subjected to immunoblotting with the indicated antibodies. One representative blot is shown
(n = 4). The graph in the right panel depicts the intensity of LDLR after normalization to the B-actin
protein (n = 4). (b) a similar experiment, as described in (a), was performed and cells were subjected
to total RNA extraction and qPCR of LDLR mRNA, normalized to GAPDH. Error bars show standard
deviation of the mean. * p < 0.05, n = 3. (c) Twenty four hours post transfection, cells were added
TCN, or not, for four hours before being exposed to Act D. Cells were harvested at time zero (without
Act D) and after four hours with Act D, respectively, and subjected to total RNA-extraction and qPCR
of LDLR mRNA, normalized to GAPDH mRNA. the graph shows the LDLR mRNA level remaining
after four hours Act D treatment in vehicle and TCN-treated cells. Error bars show standard deviation
of the mean. *p < 0.05.
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In ZFP36L1-depleted cells, TCN had no effect on LDLR protein or mRNA (Figure 2a,b), or its
mRNA turnover (Figure 2c), contrary to HuR. These results imply that TCN inhibits the LDLR
mRNA-degrading activity of ZFP36L1, an event that would contribute to the stabilization of LDLR
mRNA by TCN.
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Figure 3. TCN induces phosphorylation of ZFP36L1 downstream of ERK. (a) HepG2 cells were
exposed to TCN for four hours and lysates were immunoblotted with the indicated antibodies. One
representative blot is shown, (1 = 3). (b) Cells were exposed to U0126 for one hour before treatment
with TCN or phorbol 12-myristate 13-acetate (PMA) for four hours. Lysates were immunoblotted with
the indicated antibodies. (c) Cells were transfected with pcDNA4/TO-HA-ZFP36L1 and the day after
transfection added U0126 for one hour, prior to addition of TCN for four hours. Lysate were subjected
to immunoblotting with the indicated antibodies. IP: immunoprecipitation. (d) Cells were exposed
to TCN for four hours or PMA for one hour. 25 pg of total lysate were treated as indicated and subjected
to immunoblotting using the indicated antibodies. CIAP (calf intestinal alkaline phosphatase), PI
(phosphatase inhibitor). One representative blot is shown, (n = 3).

2.3. TCN Induces Phosphorylation of ZFP36L1 Downstream of ERK

TCN-treated cells were examined for the gel mobility behavior of ZFP36L1 as a proxy for its
phosphorylation status and, thus, its activity in order to reveal whether TCN phosphorylates ZFP36L1.
TCN treatment led to a prominent ZFP36L1 gel mobility shift, an event that was associated with
an increased LDLR protein expression, as shown in Figure 3a. If the gel mobility shift of ZFP36L1
is due to ERK dependent phosphorylation it should be lost upon treatment with the MEK/ERK
inhibitor U0126. Indeed, upon the co-treatment of cells with U0126, TCN was unable to induce
ZFP36L1 phosphorylation (Figure 3b,c). Consistent results on ZFP36L1 gel mobility shift were obtained
in HA-ZFP36L1 transfected cells, both in total lysate and HA-ZFP36L1 immunoprecipitated samples
(Figure 3c). the cell extracts of PMA and TCN-treated HepG2 cells were incubated with calf intestinal
alkaline phosphatase (CIAP), in the presence or absence of phosphatase inhibitors (PI) prior to analysis
on SDS-PAGE, to ascertain that the observed TCN-induced changes in the gel mobility of ZFP36L1
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occurs as a result of its phosphorylation (Figure 3d). Cell extracts from PMA-treated cells were
included in this assay because PMA has been shown to induce phosphorylation-induced gel mobility
retardation of ZFP36L1 [15]. CIAP eliminated the TCN-induced gel mobility retardation of ZFP36L1,
an event that was inhibited when cell extracts were co-treated with PI, as can be seen in Figure 3d.
Thus, TCN induces phosphorylation and a gel mobility shift of ZFP36L1.
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Figure 4. TCN-induced ZFP36L1 phosphorylation is mediated by the ERK downstream target RSK1.
(a) HepG2 cells were treated with either U0126, BI-D1870 or not for one hour prior to the addition
of TCN for four hours. Lysates were immunoblotted with the indicated antibodies. (b) HepG2 cells
were treated with BI-D1870 or not for one hour prior to addition of TCN for four hours or PMA for one
hour. PMA was used as a positive control in this assay. Lysates were subjected to immunoblotting with
the indicated antibodies. the graph below the blot depicts the intensity of LDLR after normalization
to the 3-actin protein, * p < 0.05, n = 3. (c) HepG2 cells from a duplicate experiment, as described
in (b) were harvested and subjected to total RN A-extraction and qPCR of LDLR and GAPDH mRNA,
**p <0.005, n = 3. (d) HepG2 cells were transfected with either a non-targeting control (NT) or RSK1
siRNAs. Twenty-four hours post transfection, TCN or PMA were added for four hours and lysate
were subjected to immunoblotting using the indicated antibodies. the graph below the blot depicts
the intensity of LDLR after normalization to the $-actin protein (n = 3). Error bars represent standard
deviation from the mean. * p < 0.05, n = 3.
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2.4. TCN-Induced ZFP36L1 Phosphorylation is Mediated by the ERK Downstream Target RSK1

The possibility that TCN-induced phosphorylation of ZFP36L1, an event that is dependent on ERK,
could be mediated by RSK1, was considered [15]. to examine this assumption, HepG2 cells were
treated with TCN in the absence or presence BI-D1870, an inhibitor of RSK1, and then analyzed
for phosphorylation of ZFP36L1. As shown in Figure 4a, TCN induced ZFP36L1 phosphorylation
and increased the activity of RSK1, as judged by the phosphorylation of its substrate LKB1I.
Indeed, co-treatment of cells with either U0126 or BI-D1870 reduced ZFP36L1 phosphorylation
and abolished RSK1-activity. Consistently, cells that were treated with TCN or PMA, had increased
LKB1 phosphorylation, as well as LDLR protein expression, an event that was abrogated in BI-D1870
treated cells (Figure 4b and Figure S2). the LDLR mRNA level consistently echoed that of its protein
(Figure 4c). in order to confirm the results using RSK1-inhibitor BI-D1870 presented in Figure 4b),
siRNA targeting RSK1 was performed and the abrogated effects of TCN and PMA on LDLR protein
levels were also seen in RSK1-depleted cells (Figure 4d and Figure S3). These results show that TCN
requires the activity of RSK1 to induce ZFP36L1 phosphorylation, an event that is associated with
TCN-induced LDLR mRNA.

2.5. TCN Inhibits Association of ZFP36L1 with CNOT7

Adachi et al. [15] demonstrated that the destabilizing effect of ZFP36L1 on LDLR mRNA
requires the binding of the CCR4-NOT-deadenylase complex to its 3'UTR. Upon phosphorylation
of ZFP36L1, it dissociates from the CCR4-NOT complex and consequently stabilizes LDLR mRNA [15].
Therefore, three co-immunoprecipitation experiments were performed in order to examine whether
TCN affected the interaction between ZFP36L1 and CNOT?. HepG2 cells were first co-transfected with
FLAG-CNOT7 and HA-ZFP36L1 and then treated without, or with, TCN or PMA. Cell lysates were
subsequently immunoprecipitated with anti-FLAG antibodies and the retrieved immunocomplexes
were examined by blotting for HA-ZFP36L1 (Figure 5a). PMA treatment was used as the positive
control for the modulation of CNOT7 and ZFP36L1 interaction [15]. TCN and PMA phosphorylates
ZFP36L1, an event that is abolished upon co-treatment with U0126 (total lysate in Figure 5). As can
be seen in Figure 5, CNOT7 immunocomplexes contained ZFP36L1 indicating that these two proteins
interact. Importantly, the exposure of cells to TCN or PMA reduced the level of ZFP36L1 in CNOT7
immunoprecipitates. Furthermore, co-treatment with U0126 partially reversed the inhibitory effect
of TCN on CNOT7 and ZFP36L1 interaction (Figure 5a).

In Figure 5b, the cell lysates were transfected with HA-ZFP36L1 and immunoprecipitated with
anti-HA antibodies and the retrieved immunocomplexes were examined by blotting for endogenous
CNOT7. HA-ZFP36L1 immunocomplexes contained CNOT?7 indicating interaction between these
two proteins. the exposure of cells to TCN or PMA reduced the level of CNOT7 in ZFP36L1
immunoprecipitates. Additionally, co-treatment with U0126 increased the interaction between CNOT7
and ZFP36L1 when compared to TCN- and PMA-treated cells.

Figure 5c shows cell lysates that were transfected with FLAG-CNOT7 and immunoprecipitated with
anti-FLAG antibodies and the retrieved immunocomplexes were examined by blotting for endogenous
ZFP36L1. CNOT7 immunocomplexes contained ZFP36L1, indicating again that these two proteins
interact. Importantly, the exposure of cells to TCN or PMA reduced the level of ZFP36L1 in CNOT7
immunoprecipitates. Furthermore, co-treatment with U0126 partially reversed the inhibitory effect
of TCN on CNOT7 and ZFP36L1 interaction (Figure 5c). Together, these complementary data
presented in Figure 5a-c show that the interaction between ZFP36L1 and CNOT? is reduced upon TCN
and PMA-treatment. Inhibiting ERK1/2 with the co-treatment of U0126 increases the binding affinity
of ZFP36L1 and CNOT?, compared to TCN- and PMA-treatment alone (Figure 5a—c).
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Figure 5. TCN inhibits association of ZFP36L1 with CNOT?. (a) HepG2 cells were co-transfected with
FLAG-CNOTY? and HA-ZFP36L1. (b) HepG2 cells were transfected with HA-ZFP36L1. (c) HepG2
cells were transfected with FLAG-CNOTY. (a—c). One day post transfection cells were treated with
or without U0126 for one hour before exposure to TCN or PMA for four hours. Lysate were subjected

to immunoprecipitation with the indicated antibodies and retrieved immunocomplexes and total lysate

were subjected to immunoblotting with the indicated antibodies. IP: immunoprecipitation.

2.6. TCN Induces Translocation of Nuclear HuR to the Cytoplasm in an ERK-Dependent Manner

The effect of TCN on HuR localization was examined because HuR exerts its stabilizing effect
on target mRNA after translocation to cytoplasm [23,24,27]. PMA treatment served as a positive control,
since it has been shown to induce translocation of HuR from nucleus to cytoplasm [28]. Western
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blot analysis using whole-cell lysates revealed no obvious change in the total HuR expression upon
TCN treatment (Figure 6a), but, upon subcellular fractionation, a two-fold increase in HuR protein
levels was detected in the cytoplasm (Figure 6b), similar to that for PMA (Figure S4). Co-treatment
of TCN-exposed cells with U0126 prominently reduced HuR abundance in the cytoplasm, as judged
from the western blot presented in Figure 6¢c and Figure S5. the effect of TCN on the intracellular
localization of transfected HA-HuR was also examined by immunofluorescence microscopy to confirm
the fractionation data. in untreated cells, HuR localized mainly to nuclei, whereas upon TCN
or PMA-exposure HuR localization was more prominent in the cytoplasm (Figure 6d-f). In order
to obtain an overall picture of the cellular HuR localization upon TCN or PMA treatment, HA-HuR
was examined in between 600 and 900 cells for the different treatments. the proportion of cells with
cytoplasmic HuR-staining prominently increased upon TCN and PMA-treatment, when compared
to untreated cells (Figure 6f). Nuclear HuR was accordingly reduced upon TCN and PMA exposure
(Figure 6f). In addition, TCN and PMA-treated cells co-treated with U0126 had an equal proportion
of HuR in nuclei and cytoplasm for all treatments (Figure 6f). In sum, these results show that TCN
promotes the nuclear export of HuR to cytoplasm in an ERK-dependent manner.

3. Discussion

Pharmacological approaches that increase LDLR expression are required in order to treat
hypercholesterolemia and orally ingested small molecule therapy such as statin therapy is the most
convenient approach. Small molecule-induced stabilization of LDLR mRNA represents a very attractive
approach to increase LDLR protein expression in order to treat hypercholesterolemia. Previous studies
reported that the LDLR mRNA is labile, but that it can be stabilized in the presence of different
small molecule compounds, such as berberine [5], canadine [11], AICAR [14], gemfibrozil [29],
chenodeoxycholic acid [8] and triciribine [12]. While the mechanism of LDLR mRNA stabilization
by canadine and gemfibrozil is still unknown, triciribine (TCN) shares similarities to berberine, AICAR,
and chenodeoxycholic acid by stabilizing LDLR mRNA through an ERK1/2-dependent pathway,
and involve the LDLR 3’UTR [5,8,12,14].
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Figure 6. TCN induces translocation of nuclear HuR to cytoplasm in an ERK-dependent manner.
(a) HepG2 cells were treated with, or without U0126 for one hour prior to addition of TCN or not for four
hours and total lysate were immunoblotted with the indicated antibodies. (b) the cells were treated with
TCN for four hours and subjected to subcellular fractionation with NE-PER™ Nuclear and Cytoplasmic
Extraction Reagents. Nuclear and cytoplasmic fractions were immunoblotted with the indicated
antibodies. (c) Cells were treated with, or without, U0126 for one hour prior to the addition of TCN
for four hours and subjected to subcellular fractionation and the cytosolic fraction was immunoblotted
with the indicated antibodies. (d) HA-HuR transfected cells were exposed to TCN or PMA for four hours
and further examined by confocal immunofluorescence microscopy with anti-HA. (e) Merged picture
of HA-HuR and nuclei (Hoechst) in cells treated as described in (d) and with an increased resolution
compared to (d). Red: HA-HuR, Alexa fluor 647, blue: nuclei, Hoechst. One representative experiment
is shown (1 = 3). (f) Nuclear and cytoplasmic HA-HuR was localized in 600-900 cells for each treatment.
the proportion of cells with nuclear and cytoplasmic HA-HuR, respectively, to the total number of cells
counted, are shown (1 = 1).
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In the present study, a targeted approach was utilized to examine the role of HuR and ZFP36L1
in TCN-induced LDLR mRNA stabilization. These two proteins were considered to be likely candidates,
because (1) they have been reported to modulate LDLR mRNA stability in response to agents that
activate ERK and (2) the mechanisms underlying their regulatory effect on LDLR mRNA stability have
been partially resolved [9,13-15]. To explore the potential roles of HuR and ZFP36L1 in modulating
the TCN-induced LDLR mRNA stability, the impact of HuR- and ZFP36L1-specific siRNAs on the ability
of TCN to stabilize LDLR mRNA were examined. Although HuR has been identified as a stabilizing
protein for LDLR mRNA [9,13,14], Li et al., 2009, reported no modulation of LDLR mRNA level
upon its depletion in HepG2 [13]. At contrary, Yashiro et al. reported that HuR depleted HepG2
cells showed a prominent decrease in LDLR mRNA and a slightly less stable mRNA [14]. In this
report the knockdown efficiency of HuR was 70% and the effect on LDLR mRNA stability upon
HuR-depletion was less prominent than that reported by Yashiro et al. [14]. Differences between these
studies could be due to the different efficiency of HuR knockdown as the protein is ubiquitously
expressed and apparently stable [30]. However, TCN prominently reduced the expression and stability
of LDLR mRNA upon HuR-depletion. These data indicate a role for HuR as a mediator of the stabilizing
effect of TCN on LDLR mRNA. Although predominantly nuclear, HuR shuttles between the nucleus
and the cytoplasm. Cytoplasmic HuR have been reported to mediate the stabilization and increased
translation of bound mRNA upon stimulation by agents that induce its translocation from nuclei
to cytoplasm [27]. Interestingly, TCN prominently increased the level of HuR in the cytoplasm,
whereas co-treatment of the cells with the ERK-inhibitor U0126 reversed this effect, as judged from
immunoblotting (Figure 6b—c and Figures S4 and S5). Confocal immunofluorescence data confirmed
the biochemical fractionation data and strongly suggest that HuR translocate from the nucleus
to the cytoplasm upon TCN treatment in an ERK-dependent manner and protects LDLR mRNA from
the mRNA decay machinery (Figure 6d-f).

For the study of ZFP36L, attention was focused on ZFP36L1 isoform, because, although both
isoforms have been shown to control the stability of LDLR mRNA via the ERK pathway, only
the ERK-dependent phosphorylation of endogenous ZFP36L1 has been rigorously examined [15].
in this report, it was shown that depletion of ZFP36L1 enhanced LDLR protein (Figure la
and Figure 51) and mRNA expression twofold which was echoed by an increase in mRNA stability
(Figure 1b,c) and confirms ZFP36L1 as a LDLR mRNA-destabilizing protein in HepG2 cells [9,13-15].
ZFP36L1-depleted cells had however a similar increase in LDLR mRNA stability as compared to control
cells upon TCN-treatment (Figure 2). These observations could be explained by two equally plausible
scenarios: (A) ZFP36L1 is not involved in mediating the stabilizing effect of TCN on LDLR mRNA.
If this is the case, ZFP36L1-depleted cells treated with TCN should have increased LDLR mRNA
stability as compared to NT control cells, according to that seen in untreated ZFP36L1-depleted cells
or (B) TCN inhibits the LDLR mRNA-degrading activity of ZFP36L1, an event that would contribute
to the stabilization of LDLR mRNA by TCN. If this is the case, then it is expected, as we show, that
ZFP36L1 depletion would not affect TCN-induced LDLR mRNA stability as inactivation of ZFP36L1
by TCN precedes its knockdown by siRNA.

PMA has been shown to partially increase LDLR-mRNA stability through ERK-induced ZFP36L1
phosphorylation [15]. to further reveal the molecular mechanisms underlying ZFP36L1-induced
stabilization of LDLR mRNA by TCN, I took the advantage of utilizing PMA as a positive control.
to this end, TCN-treated cells were examined for the gel mobility behavior of ZFP36L1 as a proxy
for its phosphorylation status. Indeed, it was shown that TCN induced a gel mobility shift of ZFP36L1
due to phosphorylated forms of the protein which disappeared upon inhibiting ERK (Figure 3).
It has been shown that ERK induces phosphorylation of ZFP36L1 through its downstream target,
P90 ribosomal S6 kinase 1 (RSK1) [15]. Consistently, it was demonstrated that TCN-induced
phosphorylation of ZFP36L1 is dependent on RSK1 activity (Figure 4 and Figures S2 and S3). These
results, together with present data showing that TCN-mediated stabilization of LDLR mRNA, require
ERK and its downstream target RSK1, place ERK as the common denominator linking TCN to regulation
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of ZFP36L1 phosphorylation. ZFP36L1 has been shown to recruit the CCR4-NOT deadenylase complex
to LDLR 3’ UTR through interaction with CNOT7, which results in its mRNA degradation [15]. Adachi
etal. demonstrated that PMA increased LDLR mRNA stability through the phosphorylation of ZFP36L1
and its subsequent release from CNOT7 [15]. Therefore, three complementary co-immunoprecipitation
experiments were performed in order to examine whether TCN could modulate the interaction
between ZFP36L1 and CNOTY. Indeed, cells exposed to TCN had reduced interaction of ZFP36L1
and CNOT7, as shown by co-immunoprecipitation experiments presented in Figure 5a—c. Furthermore,
the inhibition of ERK with U0126 partially reversed the inhibitory effect of TCN on CNOT7 and ZFP36L1
interaction (Figure 5a—c). Taken together, these results indicate that TCN exerts an inhibitory effect
on the association of ZFP36L1 with CNOT7 in an ERK-dependent manner.

In conclusion, this report shows that the stabilizing effect of TCN is partially mediated
by the activation of HuR and inactivation of ZFP36L1. Approximately 30% of the TCN induction
on LDLR mRNA stability could be explained by these two proteins. An even more prominent effect
of HuR-depletion would be expected if the knockdown effect was more efficient. Other transacting
proteins are likely involved in the TCN-induced stabilization of LDLR mRNA and the complete picture
could only be elucidated through a more comprehensive study where screening of proteins that binds
to LDLR 3'UTR upon TCN treatment are identified and functionally analyzed with regards to their
ability to modulate LDLR mRNA stability.

4. Materials and Methods

The cells were treated with chemicals at the final concentration of 1 uM Triciribine
(TCN) (Selleckchem, Houston, TZ, USA), 100 ng/mL 12-O-Tetradecanoylphorbol-13-acetate (PMA)
(Sigma-Aldrich, Saint Louis, MO, USA), 10 uM RSK Inhibitor BI-D1870 (Selleck Chemicals LLC, Saint
Louis, MO, USA), 10 uM ERK-inhibitor U0126, and 5 ug/mL Actinomycin D (Act D). Paraformaldehyde,
saponin, and sodium orthovanadate (Na3zVO,) were all from Sigma-Aldrich (St. Louis, MO, USA).
Hoechst 33342 was from Invitrogen (ThermoFisher Scientific, MA, USA).

Antibodies against LDLR (#3839) (BioVision, Milpitas, CA, USA), (-actin (ab8227) (Abcam,
Cambridge, UK) Phospho-LKB1/STK11 (5428)(AF5636) (R&D Systems, Minneapolis, MN, USA),
GAPDH (G9295) Sigma-Aldrich, Saint Louis, MO, USA), HuR (ELAVL1)(sc-5261) and Lamin B (sc-6217)
(Santa Cruz Biotechnology, Dallas, TX, USA), ERK1/2 (#9102), pERK (#4370) and ZFP36L1/L2 (BRF1/2)
(#2119) (Cell Signaling, Beverly, MA, USA), anti-cnot7 (H00029883-A01), (Abnova, Taipei, Taiwan),
anti-FLAG (F7425) and anti-HA (#71-5500) (Thermo Fisher Scientific, Waltham, MA, USA).For confocal
immunoflouroscence microscopy primary anti-HA (1:100) (#71-5500), with secondary Alexa Fluor
647-conjugated anti-rabbit (715-546-150 Jackson ImmunoResearch, West Grove, PA, USA) (1:200), were
used, respectively.

4.1. Cell Culture and Treatments

HepG2 cells (European Collection of Cell Cultures, Salisbury, UK) were cultured on collagen-coated
culture vessel (BD Biosciences, San Jose, CA, USA) in HyClone Minimum Essential Medium
(GE Healthcare Life Sciences, Pittsburg, PA, USA) supplemented with 10% fetal bovine serum
(FBS) and 2 mM L-glutamine (Sigma-Aldrich, Saint Louis, MO, USA), 50 U/mL penicillin and 50 pg/mL
streptomycin (GE Healthcare Life Sciences, Pittsburg, PA, USA ), and non-essential amino acids
(Biowest, Nuaillé, France). All of the cells were cultured at 37 °C in an atmosphere with 5% CO,
and 95% humidity. All drugs were dissolved in DMSO and added to cell cultures, such that the final
concentration of DMSO was kept at 0.1% (v/v). Control cultures were treated with DMSO alone
at 0.1% (v/).

4.2. DNA Constructs

pcDNA-HA-HuR (ELAVL1), pcDNA4-HA-ZFP, and pcDNA4-FLAG-cnot7 were amplified from
HepG2 derived cDNA with the following primers containing restriction-sites marked in bold and italics.



Molecules 2020, 25, 4505 13 of 16

The plasmid constructs were cloned using pcDNA™4/TO Mammalian Expression Vector (Invitrogen)
(Table 1).

Table 1. Oligonucleotides used for PCR-amplification of DNA constructs.

Primer Name Sequence Incorporated Restriction Site
ELAVL1_5-EcoR 5- TACAGAATTCTACAATGTCTAATGGTTATGAAGACCAC -3 EcoRI
ELAVL1_3-Xho 5-TACTCTCGAGGCGAGTTATTTGTGGGACTTGTT-3 Xhol
ZFP36L1_5-Bam 5-TACAGGATCCtcGATGACCACCACCCTCGTG-3 BamHI
ZFP36L1_3-Xho 5-TACTCTCGAGTGGCTTAGTCATCTGAGATGGAAAG-3 Xhol
CNOT7_Bam * 5-TACAGGATCCTCCCTTGTGCCCTCACTATG-3 BamHI
CNOT7_Xho * 5-TACTCTCGAGAGCTTTCCCCACTCTCTGTC-3 Xhol
CNOT?7-del1040-1053-S 5’-GCGGTGGATCCTCCATGCCAGCGGCAAC-3’
CNOT?7-del1040-1053-AS 5/-GTTGCCGCTGGCATGGAGGATCCACCGC-3’
* Puts CNOTY7 out of frame. CNOT7-del1040-1053-S and CNOT?7-del1040-1053-AS primers (below) were used to put
CNOTY? in frame.

4.3. Short-Interfering Oligonucleotides (siRNA)

AllStars negative human siRNA or human ZFP36L1_5 (5104194204), human ELAVL1_1 (S100300139)
(Qiagen), or RPS6KA1 (RSK1) (5102223060) using Lipofectamine RNAIMAX (Thermo Fisher Scientific)
to cells at 70% confluency.

4.4. Transfections

The HepG2 cells were transfected with 312ng DNA/cm? cells at a 4.5:1 FuGENE HD transfection
reagent: DNA ratio according to the manufacturer’s instructions (Promega, Madison, WI, USA).
Transfection with empty vector served as control. Cells were treated with drugs at 16-24 h after
transfection. For immunoprecipitation assay, 100 mm dishes containing 12 mL warm FBS were
transfected with 4.6 ug HA-ZFP or FLAG-cnot7, with 42 puL. FuGene HD. for gene knockdown studies,
the HepG2 cells were transfected with 40 pmol gene-specific/10 cm? well and 12 ul RNAiMaX.

4.5. Western Blot Analysis

Upon harvesting medium was removed and cells washed in 1xPBS, and either harvested directly
in lysis buffer or after freezing to —20 °C. After protein concentration determination using Pierce
BCA protein assay (Thermo Fischer Scientific, Waltham, MA, USA), equal amounts of proteins were
resolved on a 4-20% SDS-PAGE, transferred to PDVF membrane (Bio-Rad, Hercules, CA, USA)
and then subjected to immunoblotting. After densitometric scanning of the immunoblots, the band
intensity of the protein of interest was normalized to that of GAPDH or 3-tubulin and plotted relative
to the control value (vehicle-treated cells).

4.6. Phosphorylation Assay

The cells were harvested by trypzination, resuspended in cold medium and sentrifuged for 6 min
at 1250x g. Pellets were resuspended in 100 uL cold reaction buffer 1xAP buffer (50 mM Tris, pH 7.5,
1 mM MgCl2, 1% Triton X-100, Protease inhibitors), incubated on ice for 30 min, vortexed at 1500 RPM
each tenth minutes, centrifuged at 15,000 g for 30 min at 4 °C. The supernatants were transferred
to new tubes and the protein concentration was determined with BCA. 25 ug of lysates were treated
with either 1xAP control buffer alone (C), 4.2 U CIAP in 1x Rx buffer (CIAP), or 25 U CIAP, 0.5
M NaF, 0.5 M beta-glycerophophate, 1 M NazgVOy and 0.5 M EDTA (CIAP + PI) in a total volume
of 20 pL. the samples were incubated 60 min at 37 °C, and then added SDS-loading buffer, denaturated,
fractionated on 10% SDS-PAGE gel, and immunoblotted with the indicated antibodies.
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4.7. Immunoprecipitation (IP)

The day after transfection, HepG2 cells were trypzinated and harvested in 800 uL co-IP buffer
(IM Tris, pH 7.5, 2.5 M NaCl, 1M MgCl2, 10% NP40, 0.5 M NaF, beta-glycerophosphate, and protease
inhibitors). the lysate was passed 15x through a 21-G needle, incubated on ice for 20-30 min, centrifuged
for 30 min at 4 °C, supernatants were transferred to new tubes and protein concentration measured.
for total lysate, 25 ug proteins were analyzed on a 4-20% SDS-PAGE. for IP assay, 600 ug lysate was
brought to 800 puL with co-IP buffer and 10 pg anti-FLAG (F7425) and incubated with rotation over
night at 4 °C. 80 uL Protein G Mag Sepharose (#28951379, GE) were incubated with the FLAG treated
lysates for 90 min at 4 °C, washed with 3x co-IP buffer. Lysate-beads were incubated with 30 puL
1xSDS at 95 °C for 15 min. The denaturated lysate were withdrawn from the beads and fractionated
on a 4-20% SDS-PAGE prior to immunoblotting.

4.8. Subcellular Fractionation

Biochemical cell fractionation of nuclei and cytoplasm was performed with NE-PER™ Nuclear
and Cytoplasmic Extraction Reagents according to the manufacturers protocol (Thermo Fisher Scientific,
Waltham, MA, USA).

4.9. Quantitative Real-Time PCR

The total RNA was isolated with the QIAamp RNA Isolation Kit (Qiagen, Hilden, Germany)
and converted to cDNA using the AffinityScript QPCR ¢cDNA Synthesis Kit (Agilent Technologies,
Santa Clara, CA, USA). the cDNA was then used as the template for quantitative real-time polymerase
chain reaction (qPCR) using Brilliant III Ultra-Fast QPCR Master Mix on Mx3005P QPCR system
(Agilent technologies, Santa Clara, CA, USA) and the following PrimeTime Predesigned qPCR Assays
(Integrated DNA Technologies, Coralville, IA, USA): human LDLR (Hs.PT.58.14599757), human GAPDH
(Hs.PT.39a.22214836), human ZFP36L1 (Hs.PT.56a.20479742), human ELAVL1 (Hs.PT.58.22593583),
and human RPS6KA1 (RSK1) (hsPT58.1350004). qPCRs were run in duplicate and GAPDH was used
as the normalizing gene. the 2722t method was used to calculate relative mRNA levels.

4.10. Analysis of HuR Expression by Confocal Immunofluorescence Microscopy

The samples were fixed in 10% paraformaldehyde followed by permeabilization using 0.1%
Saponin. pcDNA4/TO-HA-HuR transfected cells were then incubated with anti-HA (1:200) (#71-5500)
(Thermo Fisher Scientific, Waltham, MA, USA) overnight. Alexa Fluor 647-conjugated anti-rabbit
(1:200 dilution; 715-546-150), (Jackson Immuno Research, Cambridge, UK) was used for visualization.
Hoechst 33342 (Invitrogen) Thermo Fisher Scientific, Waltham, MA, USA) was used to stain DNA.
All of the pictures were taken with a Zeiss LSM 700 confocal system at the same magnitude (40x). Data
in Figure 6f refer to the localization of HA-HuR in nuclei or cytoplasms that was counted in between
600 to 800 cells for the different treatments. the localization of HA-HuR in each cell, either nuclear
or cytosolic, was determined.

4.11. Statistical Analysis

Experiments with inefficient knockdown efficiency of target gene (below 70%) or in which
the expected induction of LDLR mRNA by TCN (2—4 fold) failed, were dismissed from further
statistical analysis. The differences in gene expression between different treatments were calculated
with the mean of each treatment by unpaired, two-tailed Student’s t-test, and a p-value < 0.05 was
considered to be statistically significant. For mRNA stability calculations the differences in gene
expression between time zero and four hours after Act D was examined by paired, two-tailed Student’s
t-test, and a p value of <0.05 was considered as statistically significant. Experiments where LDLR
mRNA deviate more than 5% from the expected mRNA (0.2) level after Act D treatment in NT
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control cells, were dismissed from further statistical analysis. All of the experimental replicates refer
to biological replicates.

Supplementary Materials: The following are available online at Figure S1: the effect of ZFP36L1 and HuR on LDLR
protein expression in HepG2 cells with and without TCN, Figure S2: LDLR-induced protein expression by TCN
is abrogated by the RSK1-inhibitor BI-D1870, Figure S3: LDLR-induced protein expression by TCN is abrogated
in RSK1-siRNA treated HepG2 cells, Figure S4: TCN induces translocation of nuclear HuR to cytoplasm, Figure S5:
TCN induces translocation of nuclear HuR to cytoplasm in an ERK-dependent manner.
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