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Abstract

Motivation: Determination of drug absorption is an important component of the drug discovery

and development process in that it plays a key role in the decision to promote drug candidates to

clinical trials. We have developed a method that, on the basis of an analysis of the dynamic distri-

bution of water molecules around a compound obtained by molecular dynamics simulations, can

compute a parameter-free value that correlates very well with the compound permeability meas-

ured using the human colon adenocarcinoma (Caco-2) cell line assay.

Results: The method has been tested on twenty-three neutral drugs for which a consistent set of

experimental data is available. We show here that our method reproduces the experimental data

better than other existing tools. Furthermore it provides a detailed view of the relationship between

the hydration and the permeability properties of molecules.

Contact: anna.tramontano@uniroma1.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of drug absorption is of critical importance in the devel-

opment of effective drugs. The path of a drug from the site of admin-

istration to its target cells or compartments implies the crossing of

several semipermeable cell membranes, therefore it is relevant to be

able to predict whether and to which extent a molecule can pass

through the cell membranes.

Passive permeation of drugs through the biological cell mem-

branes is obviously strongly dependent on the molecule physico-

chemical properties (Meanwell, 2011). It has been established that

the acid–base character of the molecule (which influences the charge

of the molecule at the specific pH), its lipophilicity (which affects its

partition between aqueous and lipid environments) and solubility

are the most relevant parameters to take into account. These param-

eters are well described by the molecule hydropathy profile (Siew

et al., 2012; Smith et al., 2010). A more lipophilic drug is more

likely to effectively cross the hydrophobic phospholipid bilayer. On

the other hand, extremely hydrophobic molecules, insoluble in

aqueous body fluids, might be poorly absorbed (Frenkel et al.,

2005). In summary, there should be an appropriate balance between

the hydrophobicity and hydrophilicity of a molecule (Ghuman et al.,

2005; Seelig et al., 1994; Waring, 2009).

From an experimental point of view, data on permeability can be

obtained by in situ and/or in vivo animal studies, but these are time

consuming and expensive experiments and therefore only performed

towards the end of the drug development process. Efforts have

therefore focused on the development of in vitro permeability assays

that can mimic the relevant characteristics of in vivo absorption.

Among these, there are the Parallel Artificial Membrane

Permeability Assay (PAMPA) (Avdeef et al., 2007), the human colon

adenocarcinoma (Caco-2) cell line assay (Artursson et al., 2001), the

Madin-Darby Canine Kidney (MDCK) cell assay (Irvine et al.,

1999), the rat duodenal immortalized cell line assay (2/4A1 cell)

(Tavelin et al., 2003), and the rat everted gut sac assay (Bohets

et al., 2001). All of them are routinely used for the preliminary as-

sessment of drug permeability. In particular, the Caco-2 cell is
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probably the most extensively characterized cell-based model and

the most popular both in the pharmaceutical industry and in aca-

demia (Balimane et al., 2006). It has been shown that this model can

effectively predict the human initial drug absorption (Artursson and

Karlsson, 1991) because it reflects the transport of the drug across a

cell membrane rather than the interaction of the drug with the lipid

bilayer (Hou et al., 2006).

The membrane permeability for a given compound is usually

estimated from its partition coefficient, logP, defined as the loga-

rithm of the relative concentration of the molecule when it partitions

between a two-phase system, usually water and octanol, where the

latter is assumed to have a lipophilicity comparable to that of a cell

membrane (Artursson et al., 2001; Seddon et al., 2009).

From the theoretical point of view, many computational

approaches have been developed to infer drug properties, such as

bioavailability, aqueous solubility, initial absorption, plasma-

protein binding and toxicity (van de Waterbeemd and Gifford,

2003). These are often related to features such as molecular size,

hydrophobicity, or number of hydrogen bonds established by the

compound with water molecules (since these bonds need to be bro-

ken to allow the molecule to pass the membrane) (Hou et al., 2004).

In general, permeability may be estimated in terms of the free en-

ergy barrier that the drug should overcome when crossing the mem-

brane, which is usually predicted from computationally intensive

molecular dynamics simulations of the translocation process

(Carpenter et al., 2014; Meng and Xu, 2013). Some methods com-

pute the Polar Surface Area (PSA) of the drug to predict its perme-

ability under the assumption that this parameter correlates with the

hydrogen-bonding pattern in the aqueous solvent of the molecule

and therefore with the energy cost of transferring the molecule from

the solvent to the membrane (Kelder et al., 1999; Stenberg et al.,

1999).

Other popular methods are the Quantitative Structure-Property

Relationship (QSAR) analysis (Yu and Adedoyin, 2003), Multiple

Linear Regression (MLR), Partial Least Square (PLS), Linear

Discriminant Analysis (LDA), Artificial Neutral Networks

(ANNs), Genetic Algorithms (Gas), Support Vector Machines

(SVMs) and the ‘Lipinski rule of five’ (Lipinski, 2000). In particu-

lar, the Lipinski’s rule takes into account different features to as-

sess whether a compound is likely to be cell membrane permeable

and easily absorbed by the body on the basis of the following crite-

ria: molecular weight of the compound lower than 500; logP lower

than 5; number of hydrogen bond donors (usually the number of

hydroxyl and amine groups in a drug molecule) lower than 5; num-

ber of groups that can accept hydrogen atoms to form hydrogen

bonds (estimated by the number of oxygen and nitrogen atoms)

lower than 10.

In this work we describe a new method based on an estimate of

the hydropathy and charge distribution of a compound deduced

from the distribution and orientation of the water molecules around

it. We have already successfully used a similar approach to estimate

the hydrophobicity of the twenty natural amino acids (Bonella et al.,

2014). Here we show that, when applied to a set of 23 drugs, neutral

at physiological pH, to compute their hydrophobicity and charge

distribution, the method can effectively predict their ability to cross

the plasma membrane.

Our dataset only includes neutral compounds since these are

well known to mainly use passive transport to cross the phospho-

lipid bilayer of the cell membrane (Neuhoff et al., 2003, 2005;

Seelig, 2007) and therefore their diffusion and permeability is essen-

tially related to their chemico-physical properties that is what our

method can infer.

2 Methods

We analyzed the hydration of small solutes by investigating the

changes in the structure of the dynamic hydrogen bond network

formed by the water molecules surrounding them as well as their

orientation as obtained by Molecular Dynamics (MD) simulations.

2.1 Molecular dynamics
All simulations were performed using NAMD 2.7b1 (Phillips et al.,

2005) and the CHARMM force field was used for the investigated

compounds (MacKerell et al., 1998). In each simulation a single sol-

ute molecule was located in a cubic simulation box (with imposed

periodic boundary conditions) filled with TIP4P rigid water mol-

ecules (Abascal and Vega, 2005). Each simulation contained a single

copy of the compound and the size of the box varied in a range of

56–62 Å depending on the compound considered. The topologies

and parameters for the small molecule compounds were obtained

via the SwissParam server (Zoete et al., 2011) [www.swissparam.ch]

that generates molecules topologies and parameters for small or-

ganic compounds in a functional form that is compatible with the

CHARMM force field.

The Particle Mesh Ewald (PME) method was used to calculate

the electrostatic interactions. Each simulation was run for 1.5 ns.

A 1 fs time step was used and the coordinates were retrieved every

0.5 ps. All simulations were performed at T ¼ 310 K, and the system

was thermostated using Langevin dynamics. The simulations were

performed also at constant pressure using a modified Nosé-Hoover

method in which Langevin dynamics is used to control fluctuations

in the barostat (Hoover, 1985). More details about the molecular

dynamics simulation parameters are available at: http://arianna.

med.uniroma1.it/neutraldrugs/.

2.2 Dataset
We used a sample set of structurally diverse, small molecular weight

drugs analyzed by Yazdanian et al. (1998) for which in vitro Caco-2

cell permeability data is available. We selected 23 neutral drugs at

pH 7.4 from this dataset.

The advantage of selecting this specific dataset is that the data

have been obtained in the same experimental conditions. To verify

how representative our dataset is, we collected data for 131 com-

pounds available in the literature for a total of 277 Caco-2 cell per-

meability values (different values have been obtained for a number

of these drugs in different experimental conditions) (Artursson,

1990; Artursson and Karlsson, 1991; Artursson and Magnusson,

1990; Augustijns et al., 1996; Aungst et al., 2000; Chong et al.,

1997; Collett et al., 1996; Gres et al., 1998; Haeberlin et al., 1993;

Hilgendorf et al., 2000; Hou et al., 2004; Hovgaard et al., 1995;

Lentz et al., 2000; Liang et al., 2000; Rubas et al., 1993; Ruiz-

Garcia et al., 2002; Saha and Kou, 2002; Schipper et al., 2001; Wu

et al., 2000; Yee 1997; Zhu et al., 2002) and compared both their

Caco2 experimental values (Supplementary Figure S1) and their

structural features.

To estimate the latter, we computed the structural dissimilarity

of our selected compounds and compared it with that of the 131

compounds. To this end, we used the ChemMine tool (Backman

et al., 2011) that takes into account parameters such as partition co-

efficient, rule-of-five, partial charges, fingerprint calculation and

more (for a detailed description of the features see ‘http://www.ra.

cs.uniuebingen.de/software/joelib/tutorial/descriptors/descriptors.

html’). We used these values to perform a clustering analysis, using

the ‘hclust’ function of R software package (Ihaka and Gentleman,
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1996) [http://www.R-project.org], the results of which are shown in

Supplementary Figure S2.

As it can be seen, the 23 compounds from the Yazdanian et al.

(1998) dataset, selected for the analysis, span quite uniformly about

85% of the available range both in terms of Caco2 values and of

structural features. Some regions of the feature space are less well

represented in our dataset (left most branch of the tree in

Supplementary Figure S2). These are all compounds with a rather

large molecular weight (above 500 Da). This might imply that our

method might behave differently for very large compounds (that in

any case are usually excluded a priori as leads because of their size).

All compound three-dimensional coordinates were downloaded

from the free public database ZINC (Irwin et al., 2012) [zinc.dockin-

g.org]. For this study the following small molecule compounds were

chosen: Griseofulvin, Aminopyrine, Piroxicam, Diazepam, Nevirapine,

Phenytoin, Testosterone, Progesterone, Clonidine, Corticosterone,

Estradiol, Hydrocortisone, Dexamethasone, Scopolamine, Zidovudine,

Urea, Uracil, Sucrose, Hydrochlorothiazide, Mannitol, Ganciclovir,

Acyclovir and Chlorothiazide (Table 2). Of importance, they cover

a wide range of permeability values (Pcaco-2), from 36.6�10�6 cm/s

to 0.19�10�6 cm/s and are as evenly distributed as possible (see

Table 2).

2.3 Data analysis
The results of the molecular dynamics simulations of each molecule

are used to evaluate the orientation of the water molecules in the

first and second hydration shell, being the first related to the hydro-

philic and the second to the hydrophobic characteristics of the com-

pound, respectively (see ref (Bonella et al., 2014) for details).

We represent each water molecule as a tetrahedron, where an

sp3-hybridized oxygen atom lies at the center and two hydrogen

atoms and two lone pair electrons point to the vertices. Each water

molecule can then form up to four hydrogen bonds with other water

molecules. According to this model of the water molecule, we can

define four Hydrogen Bond Vectors (HBVs) and one dipole vector

(Fig. 1). The HBVs are defined as the lines connecting the oxygen

atom and the vertices of the tetrahedron (in blue in the Fig. 1). The

dipole vector (in red in the Fig. 1) lies along the bisectrix of the angle

formed by the oxygen and the two hydrogen atoms.

We can define the angles related to hydrogen bond orientations

(hh1, hh2, hh3 and hh4) as those formed by the straight line linking

the solute atom with the oxygen atom of the nearest water molecule

and the hydrogen bond vector (for clarity, only one of the four

angles is represented in blue in Fig. 1). Similarly, we can define the

angle hd related to the orientation of the dipole vector as the angle

formed by the straight line connecting a solute atom (S in Fig. 1) to

the oxygen atom of the closest water molecule (in black) and the di-

pole vector of the molecule itself (in red). The different orientations

of the water molecules around a solute can be used to analyze the

compound hydrophilicity and hydrophobicity. In fact a water mol-

ecule in the vicinity of a hydrophobic solute positions one of the

faces of the tetrahedron toward the solute. On the other hand, for a

hydrophilic solute, a water molecule reorients to point toward the

compound with one of its vertices. We need to take the dipole vector

into account because the four vertices of the tetrahedron represent-

ing the waters are equivalent in our model and therefore it would be

impossible to distinguish between positive and negative partial

charges without considering hd.

At each step of the molecular dynamics simulation, we can meas-

ure the values of the five angles (hh1, hh2, hh3, hh4 and hd) and the

distance R (Å) between each water molecule and the nearest solute

atom and compute the probability of finding a water molecule with

a given orientation and around at a given distance from the solute

atoms.

The hydropathy and charge distribution properties are computed

from the conditional probability density of the waters in the appro-

priate intervals of the angles and distances described before. We can

build two three-dimensional histograms for each simulation; the

first reports the conditional probability density P(hhijR) (for i ¼ 1, 2,

3, 4), the second is the conditional probability density P(hdjR). R is

defined as the distance between each solute atom and the oxygen

atom of the nearest water molecule. The histogram distance and

angle bins were set to 0.05 Å and 1�, respectively (Bonella et al.,

2014).

2.4 Molecular descriptors
The analysis of the conditional probability density distributions

allows us to compute four indices, named Iy, In, Iþ and I�, obtained

by summing the intensity of the peaks in the appropriate angle and

distance range.

As described in more detail in our previous work (Bonella et al.,

2014), the distribution P(hhijR) permits to distinguish between the

hydrophilicity and hydrophobicity of a compound on the basis of

the probability values observed in the first and second hydration

shell, respectively. Intuitively, this is justified by the fact that a polar

solute will establish Coulomb interactions with the closest water

molecules and this situation will contribute to the peaks observed in

the first hydration shell of the hydrogen bond histogram, while a

hydrophobic (or apolar) solute will cause the waters to orient them-

selves as to maximize the number of hydrogen bonds with neighbor-

ing waters, forming a cage around the solute, and will contribute to

peaks in the second hydration shell in the hydrogen bond histogram.

The dipole probability density P(hd jR) in the first hydration shell

takes into account which of the vertices of the tetrahedron

Fig. 1. Definition of the angles used in the analysis. We connect each solute

atom (S in the figure) to the oxygen atom (red circle) of the closest water mol-

ecule and the same oxygen atom to each vertex of the water tetrahedron,

thus defining the four angles, hh1, hh2, hh3 and hh4 (for clarity only one, in

green, is shown in the figure). Hydrogen atoms are represented as dark grey

circles. We also define the dipole vector of the water molecule (red arrow)

and compute the angle hd between this vector and the line connecting the sol-

ute atom and the oxygen (in blue)
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representing the waters (all equivalent in our model) is oriented to-

wards the solute and therefore provides information about the elec-

tric charge (positive or negative) of the interacting solute atoms.

We define the compound hydrophilicity Iy and hydrophobicity

In as the sum of the hydrogen bond probability densities, computed

over the appropriate distance and angle range (Dh and DR) in the

first and second shell of hydration, respectively. The charge indices

Iþ and I� are defined as the sum, in the appropriate range, of the

probability densities in the first shell of the distribution related to di-

pole moment (see Fig. 2). For more details, see ref. (Babiaczyk et al.,

2010; Bonella et al., 2014).

As shown in Supplementary Figure S3a–c, the length of the

MD simulation (1.5 ns) is sufficient to ensure convergence of the

indices.

The scheme used to select the boundaries of the region (Dh and

DR) is based on Guassian fits. In particular, we performed a

Gaussian fit of the probability distribution for both the first and se-

cond hydration shell along the h axis (see Supplementary Fig. S4)

and determined the average and standard deviation of the Guassian

distributions for each of the compounds. The average of these values

is used to compute the volume of each peak. A similar approach has

been used to determine the range of integration along the R axis.

The analytical details of the scheme used to select the boundaries

of the region (Dh and DR) are described in the supporting informa-

tion. The scripts for running the simulations and perform the ana-

lysis are available at: http://arianna.med.uniroma1.it/neutraldrugs/.

2.5 Statistical analysis and comparison with other

methods
The program used to analyze the molecular dynamics trajectories

and to build the histograms was written in Fortran90. The R pack-

age (Ihaka and Gentleman, 1996) [http://www.R-project.org] was

used to analyze the histograms. The same package was used to cal-

culate the indices, perform the Gaussian fitting and the Multiple

Regression Analysis (MRA), compute the Pearson’s correlation coef-

ficient, (r) and perform the cross validation analysis. The clustering

analysis was performed using the Euclidean distance and via the

‘hclust’ function from the ‘Stats’ package of R (in particular, the

‘average’ method of the ‘hclust’ function was used).

We compared our results with those of several other methods. In

particular we computed, for each of the 23 compounds, the pre-

dicted permeability values according to the two methods described

in ref. (Fujiwara et al., 2002), based on a linear combination of mo-

lecular descriptors (Fuij_1), or including quadratic terms (Fuij_2).

We also compared our results with those obtained by a linear regres-

sion (Hou) and a multiple linear regression (Guangli and Yiyu,

2006) (Gua_1) method. Finally we also used for comparison the

Support Vector Machine based method (Gua_2) described in ref.

(Guangli and Yiyu, 2006)

3 Results

In silico permeability prediction is consistent with available pub-

lished data. We computed four indicators (Iy, In, Iþ and I�)

described in the Methods section for each of the drugs in our data-

set. As explained in detail in the Methods section, these indices are

derived from the conditional probability of finding a water molecule

with a given orientation around the solute atoms estimated from the

results of molecular dynamics simulations. In particular, the first

two (Iy and In) provide information about the hydrophilic and

hydrophobic properties of the compound and are computed from

the probability values of finding water molecules in the first and se-

cond hydration shells, respectively. Iþ and I� are related to the di-

pole orientation of the water molecules surrounding the analyzed

compound and therefore to the effect of its positive and negative

charges.

The values of the indices for the analyzed molecules are reported

in Supplementary Table S1. Three of these parameter-free indicators

(In, Iþ and I�) correlate remarkably well with the permeability data

while the Iy index shows a lower level of correlation.

We tested whether a combination of these indices can represent a

good proxy for estimating the permeability of a molecule. To this

end, we used a multiple linear regression algorithm as implemented

in the R function ‘lm’ (Ihaka and Gentleman, 1996) to find the

weights providing the best correlation with the Caco-2 experimental

data. The tool also provides the probability P-value of a computed

coefficient to be different from 0. We tested both linear and quad-

ratic terms in the regression. The best correlation is obtained by a

linear fit of the In and I� indices (P-value < 0.001), while Iy and Iþ
were found to contribute very little to the overall correlation

(P-value > 0.05). This is consistent with the values of their correl-

ation coefficients (see Table 1).

The regression model corresponding to the best fit is:

Ppred ¼ ða�InÞ þ ðb�I�Þ þ c (1)

where a ¼ 3.06 (P-value ¼ 4.7�10�7Þ; b ¼ 0.04 (P-value ¼
2.6�10�3) and c ¼ 3092 (P-value ¼ 4.0�10�7).

Fig. 2 Histograms of P(hhi jRÞ and P ðhd jR) for Diazepam. In both histograms

the cells highlighted in grey are used to calculate the sum of the conditional

probability densities at each given angle and distance. In the P(hhi jR) histo-

gram, the yellow arrows indicate the first and second component of the

hydrophilic index related to the two peaks in the first hydration shell. The

green arrows show the first and the second component of the hydrophobic

peaks that are localized in the second hydration shell. In the P(hd jR) histo-

gram, the blue arrow indicates the contribution of positive charge distribu-

tion. The pink arrow indicates the contribution of the negative charge

distribution
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In Table 1 we also report the correlation between each index and

the Caco-2 permeability values. As aspect the highest linear correl-

ation value is between In index (hydrophobic index) and Caco-2 per-

meability value because a more lipophilic drug is more likely to

effectively cross the hydrophobic phospholipid bilayer. More inter-

esting is the correlation linked to positive charge distribution index

Iþ. It can be observed that the index with the highest value of nega-

tive correlation is Iþ, indicating that most likely positive groups pre-

vent uptake of compounds more than negative ones (see also

Supplementary Fig. S5).

Table 2 reports the predicted Ppred permeability values obtain-

ing using Eq. (1) for all the drugs considered and shows that they

reproduce very well the experimental Caco-2 permeability values

(Pearson’s correlation coefficient, r ¼ 91%). We also performed a

cross validation analysis by repeatedly leaving out 20% of the com-

pounds (testing sets) and re-computing the coefficients of Eq. (1) on

the remaining ones (training sets) as described in the Methods sec-

tion. We iterated this procedure 10 000 times, randomly choosing

the training set at each step. The predicted average values (Ppred_CV)

obtained for each drug in the test set are reported in Table 2. Once

again, the correlation between prediction and experiment is very sat-

isfactory (88%) (Fig. 3).

The coefficients of Eq. (1) are also very stable. Their average

value and standard deviation obtained in the 10 000 cross valid-

ation runs are: a¼3.064 6 0.194, b¼0.043 6 0.005 and

c ¼ �3091.866 6 195.453.

The average difference between the predicted and experimental

values is 4.7�10�6 cm/s. It is relevant to mention here that the

threshold used to discriminate between low absorbance and high ab-

sorbance compounds is usually set to 8.0�10�6 cm/s (Castillo-

Garit, et al., 2008) and the data shown in Table 1 demonstrate that

only in two cases (Acyclovir and Zidovudine) our method would

significantly misclassify the compound.

In summary, Eq. (1) describes well the permeability properties of

neutral compounds. It is worth noticing that the Ppred value is well

balanced in the sense that it overestimates and underestimates the

experimental values in a similar number of cases (11 and 12

respectively).

We compared our results with those of several other methods (as

described in the Methods section) and the results are reported in

Table 3 and Supplementary Figure S6a–e. It can be appreciated that

the correlation between predicted and experimental values is higher

for our method. The average error is lower than all other tested

methods, but for the Gua_2 method (Guangli and Yiyu, 2006) that

shows a very similar value.

Table 1. Correlation between the values of the indices in our dataset

Iy In Iþ I�
Caco-2

Iy
1 �0.05 �0.39 0.89 0.28

In
1 0.76 0.33 0.85

Iþ
1 �0.76 �0.81

I�
1 0.59

Also the correlation value between each index and Caco-2 experimental

value is reported.

Fig. 3. Scatter plot correlating the predicted permeability values in the cross

validation (Ppred_CV) and their experimental Caco-2 values. For each com-

pound the average predicted value and the standard deviation are reported

Table 2. Experimental and predicted permeability values

Drug Pcaco-2 Ppred Ppred_CV

Griseofulvin 36.6 31.07 29.96 6 1.09

Aminopyrine 36.5 37.41 37.62 6 1.53

Piroxicam 35.6 24.52 23.46 6 0.65

Diazepam 33.4 29.87 29.26 6 1.03

Nevirapine 30.1 31.52 31.81 6 1.04

Phenytoin 26.7 24.53 24.27 6 0.75

Testosterone 24.9 21.89 21.64 6 0.63

Progesterone 23.7 29.20 30.78 6 1.12

Clonidine 21.8 21.94 21.90 6 2.33

Corticosterone 21.2 15.67 15.01 6 0.74

Estradiol 16.6 15.57 14.39 6 1.88

Hydrocortisone 14 10.55 10.17 6 0.81

Dexamethasone 12.2 10.51 10.33 6 0.81

Scopalamine 11.8 21.93 22.79 6 0.53

Zidovudine 6.9 13.61 14.12 6 0.66

Urea 4.56 4.64 4.67 6 0.98

Uracil 4.24 8.61 9.01 6 0.77

Sucrose 1.7 �2.35 �3.31 6 1.45

Hydrochlorothiazide 0.51 5.20 5.85 6 0.91

Mannitol 0.38 �8.10 �11.42 6 1.20

Ganciclovir 0.38 2.38 2.64 6 1.10

Acyclovir 0.25 9.33 10.16 6 0.65

Chlorothiazide 0.19 5.03 5.64 6 0.91

The first column reports the drug name, the second reports the experimen-

tal values, the third (Ppred) the values obtained using Eq. (1). The last column

reports the predicted values obtained in the cross validation test (Ppred_CV).
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4 Conclusion

We have shown here that an approach based on the simultaneous

analysis of molecule hydrophobicity and charge distribution has the

potential to accurately predict the passive plasma membrane perme-

ability of neutral drugs. This method may be useful for investigating

the mechanism of passive permeation of small neutral compounds

since it can easily provide information on the role that every single

atom plays on the hydration process.

Our Ppred indicator correlates very well with the experimentally

determined Caco-2 permeability values and performs better than

other available methods. Furthermore, it only requires the know-

ledge of the chemical structure of the compound. Given the cost and

impact of late stage failures in drug development we believe that the

relatively high computational cost of running the molecular dy-

namics simulations (an average of 48 hours on a 20 CPU server for

each molecule) is not necessarily a relevant drawback of the

approach.

As is the case also for several in vitro methods, our method can-

not estimate the permeability of drugs that use an active uptake sys-

tem. In these cases, additional techniques, such as docking the

compounds to efflux/influx protein models, should be explored.
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