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Abstract: In this paper, we summarize the results of using dynamic models borrowed from 
tracking theory in describing the time evolution of the state vector to have an estimate of 
the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is  
a special type inertial measurement unit (IMU) that uses only a set of accelerometers in 
inferring the angular motion. Using distributed accelerometers, we get an angular 
information vector (AIV) composed of angular acceleration and quadratic angular velocity 
terms. We use a Kalman filter approach to estimate the angular velocity vector since it is 
not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers 
measurements’ produce a biased AIV and hence the AIV bias parameters are estimated 
within an augmented state vector. Using dynamic models, the appended bias parameters of 
the AIV become observable and hence we can have unbiased angular motion estimate. 
Moreover, a good model is required to extract the maximum amount of information from 
the observation. Observability analysis is done to determine the conditions for having an 
observable state space model. For higher grades of accelerometers and under relatively 
higher sampling frequency, the error of accelerometer measurements is dominated by the 
noise error. Consequently, simulations are conducted on two models, one has bias 
parameters appended in the state space model and the other is a reduced model without 
bias parameters. 
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1. Introduction  

A conventional IMU is composed of three accelerometers and three gyroscopes mounted in  
a strap-down configuration. Accelerometers are sensors that measure acceleration and gyroscopes are 
sensors that measure the angular rate of rotation. Gyros are usually corrupted by various sources of 
errors such as bias instability, noise, scale factor errors… etc. For gyros, the bias instability is the 
dominant error because the inertial system often works as a standalone system. Therefore, inertial 
systems can be categorized in terms of gyro bias error [1]. It is shown in [1,2] that the biases of the 
gyros play an important role in causing drift in the position by an example of a biased gyro which 
causes an error in the position that grows with the cube of time. 

The use of distributed accelerometers as an alternative to conventional gyros to infer the angular 
motion has been a subject of intensive research. Unlike the standard IMU, the GF-IMU uses only 
accelerometers to infer the acceleration and the angular velocity. It is possible to get the Coriolis 
acceleration vector, which contains a direct expression of the angular velocity vector, through 
configurations contain rotating accelerometers. However, the focus of this work is on fixed 
accelerometer configurations because they are simpler to implement. There are several reasons to use 
accelerometers for inferring the angular motion. Generally, accelerometers are less costly, less heavy 
and less power consuming than comparable gyros, which have typically the disadvantage of complicated 
manufacturing techniques, high cost, high power consumption, high weight, large volume, and limited 
dynamic range [3]. A GF-IMU can be used to measure the angular velocities in crashworthiness, sports 
and motion analysis applications, which are characterized by large peak values of the angular velocity 
as listed in [4]. A survey of the GF-IMU literature and its research areas can be found in [5]. 

The rest of this paper is organized as follows: Section 2 gives a background about the angular 
motion estimation in a GF-IMU and describes the configuration used in this work. Section 3 lists the 
dynamic models which can be used for the Kalman filter process update. Section 4 gives a sensor error 
model with a review of the calibration procedure. Section 5 presents an extended Kalman filter (EKF) 
solution using a Singer model with appended bias parameters. Section 6 presents the observability 
analysis for the augmented state space model. Section 7 presents an EKF solution without appending 
bias parameters. Section 8 gives simulation results for the augmented model and Section 9 gives 
simulation results for the reduced model. Finally, Section 10 presents our conclusions. 

2. Angular Motion Estimation in a GF-IMU 

Using certain fixed GF-IMU configurations of accelerometers, we get an angular acceleration 
vector and quadratic terms of the angular velocity. Quadratic angular velocity terms do not have  
an accumulative error as in the case when the angular acceleration is integrated. Proper filter setup 
combining the angular acceleration and the quadratic terms can assist in the convergence to the right 
sign as the quadratic terms have undetermined sign solutions. The integration of the different types of 
data coming from the GF-IMU has been a subject of intensive research. In [5], an EKF solution using 
direct three state models based on Euler first order integration is given. The advantage of using such  
a model is that no assumption needs to be made about the dynamics of the motion and hence such  
a solution fits most scenarios. Reference [6] gives a nine state model which includes the angular 
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acceleration, the angular velocity and the translational acceleration vectors. The solution for that model 
uses an unscented Kalman filter (UKF) with constant angular acceleration and translational 
acceleration models and without appending the bias parameters. An EKF solution with measurement 
vector which uses three quadratic velocity terms measurements is given in [7] for a configuration of 
nine fixed accelerometers. However, that GF-IMU configuration produces three quadratic terms 
besides the angular acceleration vector. We use dynamic models to describe the evolution of the state 
space in time to have an estimate of the angular motion. Bias parameters can be appended to the state 
vector if their estimation is desired. Though the first order Euler integration model has a simple form, 
some of the bias parameters, which exist in most of the inertial sensors, will not be observable. Hence, 
it fits cases where white noise is corrupting accelerometers measurements. The importance of this 
research is that within a proper dynamic model, the drifting biases can be estimated and hence the 
quality of the estimated angular velocity is improved greatly. Moreover, any prior information about 
the motion can be applied in the model to get an improved performance of angular motion estimation. 

2.1. GF-IMU Fixed Accelerometers Configurations 

The configuration shown in Figure 1, has four rigidly accelerometer triads, symbolized as A, B, C 
and D. We focus on configurations consisting of twelve mono-axial accelerometers that follow the 
rules listed by Zappa [8].  

Figure 1. A configuration of multiple distributed tri-axial accelerometers. 

 

Mainly, we consider this configuration because a minimum of twelve accelerometers are needed to 
determine angular velocity magnitude and direction (algebraic sign cannot be determined uniquely). 
The most amount of the angular motion information, which is the AIV composed of the nine angular 
terms shown in Equations (1)–(3) can be extracted from this configuration. For more information about 
this special GF-IMU, we refer the reader to [5]. 
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3. Dynamic Models to Be Considered 

In general, a good model is important to extract the maximum amount of information from the 
observation. We will utilize the proper dynamic models in the angular motion estimation in the GF-IMU. 
We focus on the dynamic models used for maneuvering target tracking surveyed in [9]. Tracking 
theory dynamic models are used previously to model the angular acceleration evolution in time [10,11]. 
This work can be considered as a spatial motion extension to the planar motion case given in [11]. 
Assuming a certain type of motion the dynamic model can be formulated based on that assumption. 
The constant angular velocity model makes no use of the measured angular acceleration measurements 
so such a model is not a candidate for consideration in our work. Hence, we consider models in which 
the angular acceleration of the target is the descriptor of a target maneuver and modeled as a random 
process. Next, we describe the dynamic models that can be used for the Kalman filter process update.  

3.1. Wiener-Process Angular Acceleration Model  

This model assumes that the angular acceleration is a Wiener process, or more generally and 
precisely, the angular acceleration is a process with independent increments, which is not necessarily  
a Wiener process. This model is referred as a constant angular acceleration model (CAA) or a nearly 
constant angular acceleration model. It can be considered as a special case of a Gauss-Markov process. 
This model makes the angular acceleration a process with an increasing variance: 

( ) ( )t w tα =  (4)

The discrete-time form is given as: 

1 1k k kwα α − −= +  (5)

Since we have time uncorrelated noise, the corresponding state space representation of the Wiener 
sequence of angular acceleration vector combined with the angular velocity vector is given as: 

3 3 3 3 1 3 3
1

3 3 3 3 1 3 30
k k

k
k k

I tI tI
w

I I
ω ω
α α

× × − ×
−

× × − ×

Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (6)

3.2. First-Order Markov Model (Singer Angular Acceleration Model) 

This model was initially used for modeling linear acceleration [12] and was lately used for angular 
acceleration modeling, as given in [10]. It has much wider coverage than constant angular velocity or 
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constant angular acceleration models. The Singer model can be adjusted using the specifications of the 
accelerometers used. The Singer model assumes that the target acceleration is a zero-mean stationary 
first-order Markov process. The time evolution of the angular acceleration in continuous time is 
written as: 

wα β α= − +  (7)

where w is a zero-mean white noise and β is the reciprocal of the time constant (or reciprocal of 
correlation time). The discrete form of this process is given as: 

2
1 11t t

k k ke e uβ β
αα α σ− Δ − Δ

− −= + −  (8)

where ui is a sample generated from a Gaussian random number with a unit variance and σa is the 
steady-state variance. Since the correlation time 1/β is much larger than sampling time Δt, the 
following approximation is used: 

1te tβ β− Δ ≈ − Δ  (9)

Considering a first-order linearization for the exponential term in Equations (9), the process can be 
approximated as:  

( ) 1 11 2k k kt t uαα β α β σ− −= − Δ + Δ . (10)

The autocorrelation function Ψα is exponentially decaying and given as: 
2{ ( ) ( )}E t t e β τ

α αα τ α σ −Ψ = + =  (11)

The corresponding state space representation of the Wiener sequence angular acceleration model in 
3D motion including angular velocity vector is given as: 
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= Δ

 (12)

The variance is selected according to the ternary-uniform mixture as suggested in [10]. 

3.3. Other Models to Be Considered 

Angular jerk, which is the derivative of the angular acceleration, can be used in the same way as 
that of the angular acceleration based models. Using angular jerk based models increases the 
dimension of the state space vector which increases the computational load.  

4. Sensor Error Model and GF-IMU Calibration 

In this section, we give a simple error model of the accelerometer which considers the bias only. 
The section ends with a review of simple calibration procedure which fits the GF-IMU.  

4.1. The Accelerometer Error Model  

Each accelerometer measurement is assumed to be corrupted by a bias ba error component and  
a continuous white noise error component wacc. The white noise usually has the unit of g/√Hz, where g 
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is the gravity, or its equivalent derivatives. All accelerometers are assumed to have a common upper 
bound for the noise variance and bias instability. The discrete-time white noise depends on the square 
root of the sampling time. The accelerometer measurement is modeled as: 

a acca a b w t t= + + Δ Δ  (13)

The variance of the discrete-time noise component Rdisc. of each measurement of the acceleration is: 
2

. { }disc acc accR E w t R t= Δ = Δ  (14)
Every drifting accelerometer bias has the unit of g or its equivalent derivatives and is modeled as  

a random process driven by white noise. The previously described Markov model is used often to 
model the bias or we can use the following simple model of random walk: 

a bab w=  (15)

In discrete-time the random walk bias model is given as: 

1 , 1a k a k ba kb b w− −= +  (16)

4.2. The Measured AIV 

Using the accelerometer’s error model shown in Equation (13), we rewrite the measured AIV with 
inherited accelerometers’ errors based on Equations (1)–(3) as:  

1 1

2 2
9 9

x x

z z

b w

b w

ω ω

ω ω

= + +

= + +

 (17)

where b1…b9 represent the new bias parameters and w1…w9 represent the noise errors. 

4.3. Calibration and Initial Bias Estimation in a GF-IMU 

In our setup, we adjust the separation distance manually to be unique for the three distributed triads 
with common orientation for all triads. Every accelerometer triad needs to be calibrated for three types 
of errors which are misalignment, scale factor and bias errors. Examples for the accelerometer triad 
calibration procedures can be found in [13,14]. The scale factor and misalignment parameters are 
contained in a three-by-three matrix and in our example they are calibrated only one time since they 
vary little with temperature change. The adopted calibration procedure is described with detailed 
equations in [5]. Any remaining bias parameters in the accelerometers results in a biased AIV. Once 
the IMU is detected in reset position, the AIV will be due to accelerometers’ bias and hence its bias 
can be captured. Keeping the GF-IMU in a static position means all angular information terms should be 
almost zero because the quadratic terms due to Earth rotation are extremely small for small separation 
distance. Hence, we find the initial value for nine bias parameters in the AIV. In case of using the simple 
model without appending the bias parameters, the calibration process can compensate for the bias 
parameters in the AIV. 
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5. An EKF Solution Using the Singer Model with Appended Bias Parameters 

Though we have twelve accelerometers and this means we have twelve unknown bias parameters, 
we are interested in estimating the resulting nine bias parameters b1…b9 in the AIV given in  
Equation (17). The state vector is composed of the angular velocity vector, the angular acceleration 
vector and the nine bias parameters given as: 

[ ] [ ]1 2 3 4 5 6 7 8 9

,  ,

,  

2

2

T T TT T T T
x y z x y z

T T

x b b

b b b b b b b b b b b

α ω

α ω

ω α ω ω ω ω α ω ω ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦⎣ ⎦

= =
 (18)

4.4. Initialization 

The initial state vector can be set as: 

0 0ˆ { }x E x+ =  (19)

The initial estimation error covariance is given as:   =  (20)

4.5. Prediction 

Based on the previously described motion dynamic Equation (13) and the accelerometer bias 
Equation (16), we can write the discrete-time space model as: 
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 (21)

The process covariance is computed as: 

1 1 1 1 1   ,  { }T T
k k k k kQ G G E w w− − − − −= ∑ ∑ =  (22)

The a priori estimation error covariance is updated as: 

1 1 1 1
T

k k k k kP F P F Q− +
− − − −= +  (23)

The a priori state estimate is predicted as: 

 (24)

4.6. Measurement Update 

The measurement vector is composed of the angular acceleration vector and six quadratic terms of 
angular velocity combined with the nine bias parameters is given as: 

[ ]

2 2 2
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The measurement Jacobian matrix is computed as: 

2 3 1
3 3 3 3 3 3 3 6
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 (26)

The measurement error covariance matrix is computed as: 
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(27)

The Kalman gain is updated as documented in literature e.g., Simon [15]: 
1( )( )T T

k k k k k k kK P H H P H R− − −= +  (28)

The a posteriori state estimate is updated as:  , 0  (29)

The a posteriori estimation error covariance can be updated as: 

( )k k k k kP P K H P+ − −= −  (30)

5. Observability Analysis 

Using the dynamic model gives us the possibility to have all the bias parameters in the resulting 
angular terms observable under some conditions. In this section, we determine under which conditions 
is the state space observable. First, we remove the noise in this observability analysis which leaves us 
with the simpler homogeneous state-space system given in continuous-time as: 

3 3 3 3 3 9

12 3 12 3 12 9

( )  
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0 0
0 0 0

x f x Ax

y h x

I
A × × ×

× × ×

= =

=

⎡ ⎤
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⎣ ⎦

 
(31)

where A is based on the CAA model and h(x) is the measurement function as described previously.  
We follow the local observability test based on Lie derivatives [16] in a similar way to its use in [11] 
for the one-dimensional angular motion. We compute L, which denotes the set of all finite linear 
combinations of Lie derivatives of the measurement vector with respect to f(x) for various values of 
constant input. For the ith row scalar measurement hi of the measurement vector, the Lie derivative of 
a scalar measurement is defined as:  
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hL h f x
x

∂=
∂  (32)

The zero-order Lie derivative of the measurement is the measurement itself, i.e.: 
0 ( )f i iL h h=  (33)

Higher order Lie derivatives are computed as: 

( )k k
f i iL h h=  (34)

For our model, which has n states, the higher order Lie derivatives starting from the third derivative 
are entirely zero vectors as shown next: 
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The system is observable if the observability matrix O, which is defined next, has a rank equal to n:  
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(36)

where p is the number of measurements. In our case, we have nine measurements and fifteen states so 
the dimension of the observability matrix is 135 × 15. After removing the zero rows, we get the 
following reduced observability matrix containing the independent rows: 
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6. An EKF Solution Using the Singer Model without Appending Bias Parameters 

Without appending bias parameters, the state vector is reduced to the angular velocity and the 
angular acceleration vectors and it is given as: 

, ,
T T TT T

x y z x y zx ω α ω ω ω ω α ω ω ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦⎣ ⎦  (38)

The reduced state vector is clearly observable because the quadratic angular terms can solve for  
the angular velocity as shown in [8] and the angular acceleration terms are directly measurable so 
observability analysis in this case is not necessary. 

6.1. Initialization 

The initial state vector and initial estimation error covariance are assigned in a similar way as given 
in Equations (19) and (20). 

6.2. Prediction 

Based on the previously described dynamic model we can write the discrete-time space model as: 
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× × − ×
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= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

= Δ

 (39)

The a priori estimation error covariance and state estimate are predicted in a similar way to  
Equations (22) and (23). 

6.3. Measurement Update 

The AIV, which is composed of the angular acceleration vector and six quadratic terms of angular 
velocity, is given as: 

2 2 2
4 5 6 1 2 1 3 2 3 1 2 3

T

k kk
h x x x x x x x x x x x x v⎡ ⎤= +⎣ ⎦  (40)

The measurement Jacobian matrix is computed as: 
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6 3ˆ ˆ

1 2 3
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k T
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×= =

⎡ ⎤
⎡ ⎤∂ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 (41)

The Kalman gain, measurement error covariance matrix and the a posteriori state estimate are 
computed in a similar way to Equations (28)–(30). 

7. Simulation Results for the Augmented Model  

In this section, we give simulation results for a sinusoidal trajectory which is considered often  
in literature [7,10,11]. Moreover, such a trajectory satisfies the observability condition of a non-zero 
angular acceleration vector. 
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7.1. Trajectory Profile and Parameters Setting 

This scenario of motion is a two-dimensional harmonic angular oscillation. Three-dimensional 
harmonic angular oscillation is considered as a coning motion, however, the GF-IMU system responds 
better in this case because of having all the AIV terms as non-zero, which increases observability. The 
mathematical description of the angular motion is given as:  

( ) sin(2 )[1 1 0]T
mt ftω ω π=  (42)

( ) 2 cos(2 )[1 1 0]T
mt f ftα π ω π=  (43)

For a practical value of the accelerometer’s noise and bias levels, we consider the specifications of 
the accelerometers manufactured by Analog Devices. We want to have a portable IMU so we choose 
the separation distance to be 0.4 m. Duration time T of 20 s was enough to get stable results with 
sampling time of 0.01 s. 

The state vector is initialized properly around the true state with initial state error of 5% of the  
true value. The bias values were selected randomly from a distribution with one standard deviation  
of 2400 μg as shown in Table 1. Figures 2 and 3 show plots of the angular velocity and the angular 
acceleration profiles respectively. 

Table 1. Numerical values of the simulation parameters. 

Parameter 
(Unit) 

ωm 
(rad/s)

f 
(Hz)

wacc 
(g/√Hz)

bias 
(g) 

d
(m) 

Value 0.4112 0.5 200 μ 2400 μ 0.4 

Figure 2. Angular velocity trajectory profile. 
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Figure 3. Angular acceleration trajectory profile. 

 

7.2. Results and Analysis 

Errors in the estimated angular velocity and angular acceleration vectors are plotted in Figures 4 
and 5, respectively. 

Figure 4. Angular velocity vector estimation errors. 
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Figure 5. Angular acceleration vector estimation errors. 

 

Figure 6. Estimated and reference bias parameters in the AIV. 

 

Clearly, we see a good convergence to the true angular velocity and angular acceleration components. 
However, there is a small oscillation in the x and y components of the angular velocity and angular 
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acceleration. This is because we model the angular acceleration as a random process driven by white 
noise, while the true trajectory is a sinusoidal one. From simulations, the magnitude of this swing 
increases as the frequency of oscillation of the trajectory increases and vice versa if the trajectory’s 
frequency of oscillation decreases. Therefore, the CAA and the Markov models are not suitable for 
highly dynamic oscillations. The plots of estimation errors in the nine bias parameters are shown in 
Figure 6.  

The plots show the convergence of all estimated bias parameters in AIV to their exact value with 
small steady state error. Moreover, from extensive simulations we find that reducing the noise error 
level of accelerometers gives a smoother and a faster convergence of bias parameters. 

7.3. Effect of Improper Initialization 

It is well known that proper initialization of the state vector for the EKF, which implies 
linearization, is important to avoid filter divergence. However, the filter can tolerate a limited level of 
initialization error if the nonlinearity is not high. Since there is no a priori information available about 
bias parameters in AIV from calibration, we initialize the bias vector with zeros. Errors in the 
estimated angular velocity and angular acceleration vectors for the improper initialization case are 
plotted in Figures 7 and 8 respectively. Simulations show that the filter converges without problems 
but it takes longer time under the same values of bias stability which was used before.  

Figure 7. Angular velocity vector estimation errors for improper initialization. 
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Figure 8. Angular acceleration vector estimation errors for improper initialization. 

 

8. Simulation Results for Non-Augmented Model  

In this part of the simulations, we consider the same trajectory described previously, but with bias 
parameters non-appended to the state vector which means we simply ignored them. For this reduced 
model, we can find the criteria for ignoring bias parameters based on accelerometers specifications of 
bias and noise errors given in Table 2. 

Table 2. Accelerometer Categories. 

Performance Parameter Consumer Automotive Tactical Navigation
Noise Floor VRW (µg/√Hz) 2000 1000 100–400 5–10 
Bias Stability (µg) 2400 1200 50–500 5–10 

At relatively high sampling rates (e.g., 0.01 s or more), the magnitude of the error due to white 
noise is about 10 times the magnitude of error due to remaining bias for a tactical grade accelerometer. 
Consequently, for this sampling rate, the noise error dominates the bias error in this accelerometer 
category and for this scenario the EKF model works without a big difference from the one without bias. 
Hence, ignoring the bias and approximating the error as white noise error model can be justified 
considering that the Kalman filter will tolerate such a small remaining bias error. 

8.1. Trajectory Profile and Parameter Setting 

We repeat the previously used trajectory profile with the same settings except for the noise and bias 
levels which are set to wacc. = 100 µg/√Hz and the bias selected randomly from distribution with one 
standard deviation of 100 μg. The chosen accelerometer specifications satisfy the criteria that the error 
is dominated by white noise error at the selected sampling rate of 0.01 s.  
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8.2. Results and Analysis 

First, the execution time for this model was much smaller than that of the previous model, which 
has bias parameters appended, because we have a much simpler state model. Using a reduced model 
implies reducing computational load remarkably. The plots of errors in the estimated angular velocity 
and the estimated angular accelerations are shown in Figures 9 and 10, respectively. From both figures, 
we see a fast convergence to the true profile of angular velocity and angular acceleration. Again, we 
see a small oscillation in the x and y components of the angular velocity and the angular acceleration, 
which was explained previously in Subsection  8.2. 

Figure 9. Angular velocity vector estimation errors for the reduced model. 

 

Figure 10. Angular acceleration vector estimation errors for the reduced model. 

 



Sensors 2012, 12 5326 
 

 

To see the effect of ignoring higher bias values in the AIV, we repeated the simulation with the 
same parameter values as used in subsection  8.1 and created a plot of the estimated angular velocity 
vector. Such values of parameters do not meet the criteria that accelerometer’s error is dominated by 
white noise error and hence this results in a biased estimate of the angular velocity vector as shown in 
Figure 11.  

Figure 11. Angular velocity vector estimation errors for the reduced model with large AIV bias values. 

 

9. Conclusions 

We have presented a novel solution for estimating the spatial angular motion and bias parameters in 
a GF-IMU utilizing the dynamic models. The integration scheme is performed using an EKF. 
Observability analysis for the augmented model shows that the state space model is observable 
whenever the angular acceleration vector has non-zero magnitude. Simulation results shows that the 
filter can estimate the angular motion and bias parameters in the AIV for proper and improper 
initialization. Moreover in case of using tactical grade accelerometers or better, the error is dominated by 
noise error and hence the model can possibly be reduced to include only angular motion terms without 
degrading performance. Further research can be done to estimate the remaining bias parameters in the 
accelerometers. 
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