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The key processes in biological and chemical systems are described by networks of

chemical reactions. Frommolecular biology to biotechnology applications, computational

models of reaction networks are used extensively to elucidate their non-linear dynamics.

The model dynamics are crucially dependent on the parameter values which are often

estimated from observations. Over the past decade, the interest in parameter and state

estimation in models of (bio-) chemical reaction networks (BRNs) grew considerably. The

related inference problems are also encountered in many other tasks including model

calibration, discrimination, identifiability, and checking, and optimum experiment design,

sensitivity analysis, and bifurcation analysis. The aim of this review paper is to examine

the developments in literature to understand what BRN models are commonly used,

and for what inference tasks and inference methods. The initial collection of about 700

documents concerning estimation problems in BRNs excluding books and textbooks in

computational biology and chemistry were screened to select over 270 research papers

and 20 graduate research theses. The paper selection was facilitated by text mining

scripts to automate the search for relevant keywords and terms. The outcomes are

presented in tables revealing the levels of interest in different inference tasks andmethods

for given models in the literature as well as the research trends are uncovered. Our

findings indicate that many combinations of models, tasks and methods are still relatively

unexplored, and there are many new research opportunities to explore combinations that

have not been considered—perhaps for good reasons. The most common models of

BRNs in literature involve differential equations, Markov processes, mass action kinetics,

and state space representations whereas the most common tasks are the parameter

inference and model identification. The most common methods in literature are Bayesian

analysis, Monte Carlo sampling strategies, and model fitting to data using evolutionary

algorithms. The new research problems which cannot be directly deduced from the text

mining data are also discussed.

Keywords: automation, Bayesian analysis, biochemical reaction network, estimation, inference, modeling, survey,

text mining

1. INTRODUCTION

Biological systems are presently subject to extensive research efforts to ultimately control the
underlying biological processes. The challenge is the level of complexity of these systems with
intricate dependencies on the internal and external conditions. Biological systems are inherently
non-linear, dynamic as well as stochastic. Their responses to input perturbations are often
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difficult to predict as they may respond differently to the same
inputs. Moreover, biological phenomena must be considered at
different spatio-temporal scales, from single molecules to gene-
scale reaction networks.

Many biological systems can be conveniently represented as
biological circuits (Zamora-Sillero et al., 2011), or as networks
of biochemical reactions (Ashyraliyev et al., 2009). Common
examples of biological systems which can be described as
BRNs are: metabolic networks, signal transduction networks,
gene regulatory networks (GRNs), and more generally, the
networks of biochemical pathways.Moreover, BRNs share similar
characteristics with evolutionary and prey-predatory networks
in population biology, and disease spreading networks in
epidemiology. Synthetic bio-reactors and other types of chemical
reactors used in industrial production are other examples of
BRNs (Ali et al., 2015).

Qualitative as well as quantitative observations of biological
systems are necessary to elucidate their functional and structural
properties. Despite the advent of high throughput experiments,
the biological phenomena are often only partially observed. Since
the internal system state cannot be fully nor directly observed,
it must be inferred from the measurements. Such inferences
are possible due to the dependency of observations on the
internal states and parameter values (Fröhlich et al., 2017).
Single molecule techniques are promising for advancing the cell
biology as they enable more focused observations, however, their
resolution and dimensionality is still limited.

The observations in experiments are often distorted and noisy,
and involve some form of averaging. Extended models can be
assumed for the measurements involving distortion (Ruttor and
Opper, 2009). The measurement noise may not be additive nor
Gaussian, and its variance may be dependent on the values
of other parameters. The parameter values may differ for in
vitro and in vivo experiments (Famili et al., 2005). In systems
comprising chemical reactions, the parameters of interest are
usually initial and instantaneous concentrations, reaction rates

Abbreviations: ABC, approximate Bayesian computation, artificial bee colony;
ABM, agent based model; AR, alternating regression; CCA, canonical correlation
analysis; CDIS, conditional density importance sampling; CGA, continuous
genetic algorithm; CLE, chemical Langevin equation; CME, chemical master
equation; CRO, chemical reaction optimization; CS, compressive sensing;
CTMC, continuous time Markov chain; CTMP, continuous time Markov
process; DE, differential evolution; DLR, deep learning; EKF, extended Kalman
filter; EM, expectation-maximization; EP, expectation propagation; FA, firefly
algorithm; FDM, finite differences method; GLR, generalized linear regression;
GLR, generalized linear regression; GP, genetic programming; HDL, hardware
description language; KF, Kalman filter; LFM, linear fractional model; LNA, linear
noise approximation; LS, least squares; MAP, maximum a posterior; MC, Monte
Carlo; MCEM, MC expectation-maximization; MCMC, MC Markov Chain; MES,
maximum entropy sampling; ML, maximum likelihood; MLR, machine learning;
MM, method of moments; MMSE, minimum mean square error; NLP, non-
linear programming, natural language processing; NLR, narrative literature review;
NLSQ, non-linear least squares; ODE, ordinary differential equation; PDF, portable
document format, probability density function; PMC, population Monte Carlo;
PSO, particle swarm optimization; QE, quasi-equilibrium; QSS, quasi-steady
state; RDME, reaction-diffusion master equation; RRE, reaction rate equation;
SA, simulated annealing; SMC, sequential Monte Carlo; SMCMC, sequential
Markov chain Monte Carlo; SS, scatter search; SSE, sum of squared errors, system
size expansion; SLR, systematic literature review; TLR, transfer learning; UKF,
unscented Kalman filter.

and possibly other kinetic constants including the diffusion
and drift coefficients. The molecular concentrations can be
usually measured directly whereas the other parameters must
be inferred from measurements (Fröhlich et al., 2017). The
parameter inferences as well as measurements can be performed
sequentially (online) or in batches (off-line) (Arnold et al., 2014).

In BRNs, the number of chemical species is usually much
smaller than the number of chemical reactions. In some cases,
it may be useful to estimate the number of reactions between
consecutive measurements (Reinker et al., 2006). The structural
identifiability of a chemical reaction system is affected by which
reactions are occurring.

The observations at possibly non-equidistant time instances
represent longitudinal data which can be used to create
or validate mathematical models. The rate of discrete time
observations is important (Fearnhead et al., 2014), since more
frequent observations can be costly, and affect the observed
biological processes. Processing the large volumes of data is
also computationally demanding. The observations and their
processing can be merged to create so-called observers in
order to replace the high-cost sensors in chemical reactors
(Rapaport and Dochain, 2005). Observers can be classified as
explanatory or predictive to describe the existing or future data,
respectively (Ali et al., 2015). Observers can process discretized
and delayed measurements, and yield the interval measurements
of quantities with a variable observation gain (Vargas et al., 2014).
The average state observers of large-scale systems are defined
in Sadamoto et al. (2017).

The dynamics of biological processes can be elucidated from
their mathematical models. The importance of modeling in
biology is discussed in Chevaliera and Samadb (2011), and
general modeling strategies are described in Banga and Canto
(2008). The research problems in biology dictate what physical
and chemical processes must be included in the models. It is
usually more efficient to only collect the observations which are
necessary to formulate and test a biological hypothesis than to
perform extensive, time consuming and expensive laboratory
experiments. Such a strategy is referred to as a forward modeling
(Reinker et al., 2006). On the other hand, finding the parameter
values to reproduce the observations can be enhanced by the
experiment design, and it is known as a reverse modeling
(Hagen et al., 2013). The differences between forward and reverse
modeling strategies are explained in Ashyraliyev et al. (2009).

The models of biological systems are dependent on the in
vivo or in vitro experiments considered. BRNs can be modeled
as deterministic input-output non-linear transformations
which can be sometimes locally linearized at a given time
scale and resolution. The models can be modified using
additional transformations to facilitate their analysis. Apart from
deterministic models, there are also stochastic, event-driven and
probabilistic models of BRNs. When the number of species is
large, the stochastic models converge to deterministic models
(Rempala, 2012). The same model used multiple times can
represent a biological population (Woodcock et al., 2011).

Biological models need to be unbiased in order to avoid
systematic errors. Since they are usually evaluated many
times, they need to be computationally fast, and at the right
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level of coarse grain description. For instance, microscopic
stochastic models may be computationally expensive whereas
a deterministic macroscopic description, such as population-
average modeling may not be sufficiently accurate due to a low
level of resolution.

Development of large-scale kinetic systems is one of the
key tasks in contemporary computational biology (Penas et al.,
2017). The corresponding models can be multidimensional
and have 100’s or even 1000’s of parameters, and constraints
while the initial conditions are not known. The models can
be hierarchical or nested, and have parts interconnected by
multiple feedback loops (Rodriguez-Fernandez et al., 2013).
The parameter estimation for large-scale reaction networks is
considered in Remlia et al. (2017).

The model analysis can yield the transient responses of a
biological system, and to obtain the behavior at steady state
or in equilibrium (Atitey et al., 2018a). It may be also useful
to explore complex multi-dimensional parameter spaces. The
viable parameter values of many models of biological systems
form only a small fraction of the overall parameter space (Atitey
et al., 2019), so identifying this sub-volume by simple sampling
is rather inefficient (Zamora-Sillero et al., 2011). The model
analysis is further complicated by the size of the state space,
the number of unknown parameters, the analytical intractability,
and various numerical problems. Evaluation of the observation
errors can both facilitate as well as validate the model analysis
(Bouraoui et al., 2015).

The majority of analytical and numerical methods can be
used universally for models with different structures. The
efficiency of model analysis can be considered in the statistical
or computational sense. In the statistical sense, the analysis
needs to be robust against the uncertainty in model structure
and the parameter values estimated from noisy and limited
observations. The computational efficiency can be achieved by
developing the algorithms which are prone to massively parallel
implementations (Nobile et al., 2012).

In this review paper, we are primarily concerned with the
parameter inference in biological and chemical systems described
by various models of BRNs. We use the terms inference and
estimation interchangeably. In the literature, the parameter
inference is also referred to as an inverse problem (Engl
et al., 2009), point estimation, model calibration and model
identification. The key objective of the parameter inference is to
minimize a suitably defined estimation error while suppressing
the effects of measurement errors (Sadamoto et al., 2017). More
recently, machine learning methods are becoming popular as
an alternative to learn not only the model parameters, but also
to learn the model features from the labeled and unlabeled
observations (Sun et al., 2012; Schnoerr et al., 2017).

The parameter inference is affected by many factors. For
instance, different models experience a different degree of
structural identifiability. Provided that different parameter values
or different inputs generate the same dynamic response, such
as the statistics of synthesized molecules, the model parameters
cannot be identified, or can only be partially identified. In some
cases, the structural identifiability can be overcome by changing
the modeling strategy (Yenkie et al., 2016). The structural
identifiability is a necessary but not sufficient condition for the

overall model identifiability (Gábor et al., 2017). A relationship
between the identifiability and observability is discussed in
Baker et al. (2011). The practical identifiability (also known
as a posterior identifiability) assesses whether there is enough
data to suppress the measurement noises. It may be beneficial
to test the identifiability of the parameters of interest prior to
attempting their inference. For instance, the parameters may
not be identifiable at a given time scale, or the data may not
have sufficient dimensionality (variability) or volume. The lack of
suitable data makes the inference problem to be ill conditioned. A
crucial issue is then how well the parameters need to be known in
order to answer a given biological question. However, in all cases,
it is important to validate the obtained estimates.

Sensitivity analysis can complement as well as support the
parameter estimation (Saltelli et al., 2004; Fröhlich et al., 2016).
In particular, the parameters can be ranked in the order of
their importance, from the most easy to the most difficult to
estimate. The parameters can be screened using a small amount
of observations to select those which are identifiable prior to their
inference from a full set of data. Other tasks in sensitivity analysis
include prioritizing the parameters, testing their independence,
and fixing or identifying the important regions of their values.
A survey of methods used for the sensitivity analysis in BRNs
is provided in Saltelli et al. (2005). The sensitivity profiles
of 180 biological models were compared and analyzed in
Erguler and Stumpf (2011).

In the rest of this paper, our main objective is to survey the
models and methods which have been used in the literature
to perform the parameter and state inferences in BRNs. After
explaining our methodology in Section 2, different modeling
strategies for BRNs are outlined in Section 3. It is followed by
a survey of the estimation methods for BRNs and the related
computational tasks in Section 4. Since the performance and
effectiveness of estimation methods is crucially dependent on
the specific models adopted, in Section 5, we explore what
methods are used in literature for given models, and also,
what estimation methods are used in given tasks. This enables
us to uncover the possible future research directions in sub-
section 5.1. We also mention several inference techniques which
are used in other fields, but which can likely be assumed
for BRNs.

Our contributions are 3-fold, and they are structured as the
following surveys:

1. Models and modeling strategies of BRNs;
2. Parameter estimation methods, strategies and related tasks for

models of BRNs;
3. Combinations of models and parameter estimation methods

and tasks for BRNs.

The first version of this review appeared online as
Loskot et al. (2019).

2. METHODOLOGY

It is important to define first the scope of our comprehensive
review in order to understand its aims and constraints. In
particular, there are at least 14 types of literature reviews

Frontiers in Genetics | www.frontiersin.org 3 June 2019 | Volume 10 | Article 549

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Loskot et al. Models and Methods for Inferences in BRNs

which differ in their purpose, methodology, and limitations
(Grant and Booth, 2009). For example, the literature review
can be systematic (SLR) to a various degree (Tranfield et al.,
2003). The purpose of SLR is to answer an a priori formulated
question or hypothesis using a clearly defined procedure of
searching and examining the literature, so that it can be
reproduced by others. The SLRs are particularly suitable for the
evidence (data) based research fields as in biology and medicine
(Grant and Booth, 2009).

However, the main purpose of our review is to present a
comprehensive and critical overview of the models and methods
which have been popular in literature to perform different
inference tasks in BRNs. Such a review is known as the
traditional or narrative literature review (NLR) (Onwuegbuzie
and Frels, 2016). The outcome of NLR is state-of-the art of
current knowledge, and identifying knowledge gaps, patterns,
and emerging trends which can guide future research. The
present review is comprehensive in the sense of striving to collect
and categorize as many models and methods for inferences in
BRNs as possible in order to provide a reference for further
research on this topic. It leaves out the requirement for the review
to be systematic and reproducible. We also cannot guarantee
that all important and relevant papers in the field were identified
or considered.

Our review resumed by collecting a relatively large number
of representative and otherwise relevant papers. The papers were
first identified using various keyword searches in Google. The
subsequent more refined searches were performed in Google
Scholar which also provides information on the citing papers,
and contains the collections of papers by individual authors. Our
intention was to specifically consider the papers on inference
problems in BRNs; there are many other papers which are
concerned with methods and strategies for general dynamic
systems. We have also considered a number of graduate research
theses which are publicly accessible online. The theses were
evaluated separately from the papers. Moreover, we decided
to exclude electronic books and textbooks from our study as
their coverage is normally rather broad, and their contents
processing would require to identify and extract chapters into
separate files.

Almost 700 electronic documents in the portable document
format (PDF) were collected from various sources using
the following search keywords and their combinations:
biochemical, network, model, inference, estimation, parameters,
and identification. The initially collected papers were manually
evaluated whether they are sufficiently relevant to the purpose
of our study. For example, many papers involving parameter
estimation in general dynamic systems were discarded unless
they were deemed to have some other value for our review.While
evaluating the papers, we were updating 2 lists of keywords.
The first list contains keywords representing the models of
BRNs, such as state-space, differential equation, Markov chain,
and similar. The second keyword list describes the inference
methods, for example, Bayesian, MCMC, least squares, and
other. The keywords were used to perform more focused
searches for additional papers, and to screen and classify the
already collected papers. In the end, we assumed 25 BRN

FIGURE 1 | A workflow for processing the PDF files to automate the

production of the BIBTEX reference file, and the LATEX tables with statistical data.

models and 23 inference methods, and also defined the 5
inference-related tasks: estimation, inference, identifiability,
observability, reachability, experiment design, bifurcation analysis,
and sensitivity analysis.

All PDF documents were converted into ordinary text files
to enable text mining of their contents. The text files were
scanned to find occurrences of the keywords from the 2 lists
defined above using the regular expressions representing textual
patterns. The papers containing sufficiently large number of
keywords were kept whereas the papers that did not pass the
test were manually checked before being discarded. It allowed
us to quickly reduce the number of papers from 700 to <300.
There is a trade-off between the strictness (i.e., reliability) of
the automated paper selection and possibility to automatically
discard some papers, and how many of the remaining papers
have to be checked manually. We observed that a small
number of occurrences of a keyword usually indicates that the
keyword appeared mainly within the references of the paper.
A high-level view of our paper selection process is depicted
in Figure 1.

As the number of published papers is increasing exponentially,
there is clearly a need to develop new tools to facilitate
more automated paper selection and pre-screening (Loskot,
2018). In order to automate many text processing tasks and
enable evaluation of the 100’s of papers in our study, we took
advantage of the text processing capabilities readily available on
the Linux operating systems. In particular, all PDF files were
first converted to ordinary text files with the ascii encoding
of characters (UTF-8) and the transliterated special characters
in the foreign alphabets. The conversion was done using the
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standard pdftotext utility version 0.62 which is based on the
open source Poppler library developed for rendering the PDF
files. The PDF conversion is not and does not have to be 100%
accurate. For example, the words containing characters which
are not recognized can be omitted. Moreover, some words are
occasionally split into several parts which can be detected using
a dictionary. However, such undesirable cases can be largely
neglected for our purposes. It is also useful to remove the end-
of-line characters from within the paragraphs, and to merge parts
of the paragraphs which were split by displayed equations or by
page breaks in order to improve the searches for more complex
text patterns.

The scripts to automate many text processing tasks were
programmed in the BASH interpreter version 4.4 running
in a Linux terminal. The scripts use extensively standard
Linux tools including grep, sed, and awk programmable text
filters. In particular, the scripts were used to automatically
identify and count relevant papers, generate LaTeX tables
to visualize the results, facilitate semi-automated creation of
bibliographic entries in the master BibTeX file, and to obtain
URL links for citing papers in Google Scholar (Table S3). The
keyword searches can assume multiple terms combined in
sophisticated hierarchical expressions with AND-OR operators,
include conditions on the number of occurrences, and sort the
results as required.

However, the adopted procedure and the tools we developed
for identifying and selecting the most relevant papers have some
limitations. In particular, the paper selection and text mining
in our study is restricted to keyword searches using regular
expressions. A certain level of manual processing is still required,
although it is likely that this can be reduced with future versions
of the tools. A fully automated paper analysis with minimum
human interventions would require the use of natural language
processing (NLP). The NLP libraries are already available in
many programming languages, but it is outside the scope of the
present paper.

Furthermore, our study is mostly concerned with inferences
of parameters and states whereas the inferences of network
structures (i.e., which chemical reactions are occurring) is
omitted. Our classification of models and methods have been
developed to facilitate the analysis of trends and patterns in the
literature. For instance, some models and methods considered
in the next sections may be related, or a special case of one
another. However, for the purpose of our study, the models and
methods are presented as they appear in the cited references.
In addition, although we generally distinguish between the
deterministic and stochastic inference methods, we do not make
such strict distinction between the deterministic and stochastic
models. It should be also noted that many references can be
cited in multiple contexts, i.e., for several models or methods
considered. In many cases, the papers are chosen as illustrative
examples for a given model or method, so they are likely many
other important references which could be cited. Finally, more
complete information how the papers cited in this review are
related to the assumed models and methods is given in the
Supplementary Tables.

3. REVIEW OF MODELING STRATEGIES
FOR BRNS

Mathematical models describe dependencies of observations on
the model parameters. A general procedure for constructing
mathematical models of biological systems is described in Chou
and Voit (2009). The bio-reactors are mathematically described
in Vargas et al. (2014), Ali et al. (2015), and Farza et al. (2016). The
model building is an iterative process which is often combined
with the optimum experiment design (Rodriguez-Fernandez
et al., 2006b). The model structure affects the selection as well
as the performance of parameter estimators. The structural
identifiability and validity of multiple models together with the
parameter sensitivity was considered in Jaqaman and Danuser
(2006). The parameter estimation can be performed together
with the discrimination among several competing models, for
instance, when the model structure is only partially known.
The model structure and the parameter values to achieve the
desired dynamics can be obtained by the means of statistical
inference (Barnes et al., 2011). The synthesis of parameter
values for BRNs is also considered in Češka et al. (2017).
The probabilistic model checking can be used to facilitate the
robustness analysis of stochastic biochemical models (Česka
et al., 2014). The model checking is investigated in a number of
references including Palmisano (2010), Brim et al. (2013), Česka
et al. (2014), Mizera et al. (2014), Hussain et al. (2015), Mancini
et al. (2015), Češka et al. (2017), and Milios et al. (2018). An
iterative, feedback dependent modularization of models with the
parameters identificationwas devised in Lang and Stelling (2016).
A selection among several hierarchical models assuming Akaike
information was studied in Rodriguez-Fernandez et al. (2013).

Modeling strategies of BRNs often involve the kinetics of
chemical reactants which are described by the law of mass
action or by the rate law (Schnoerr et al., 2017). Both these
laws model the dependency of chemical reaction rates on the
species concentrations. The reaction kinetics can be considered
at steady state or in the transition to steady state, although the
steady state may not be always achieved. There are also other
kinetic models, such as the Michaelis-Menten kinetics for the
enzyme-substrate reactions (Rumschinski et al., 2010), the Hill
kinetics for cooperative ligand binding to macromolecules (Fey
and Bullinger, 2010), the kinetics for logistic growth models in
GRNs (Ghusinga et al., 2017), the kinetics for the birth-death
processes (Daigle et al., 2012), and the stochastic Lotka-Volterra
kinetics which are associated with the prey-predatory networks
(Boys et al., 2008).

Single molecule stochastic models describe BRNs qualitatively
by generating the probabilistic trajectories of species counts.
A BRN can be modeled as a sequence of reactions occurring
at random time instances (Amrein and Künsch, 2012). The
stochastic kinetics mathematically correspond to a Markov jump
process with the random state transitions between the species
counts (Andreychenko et al., 2012). Alternatively, the time
sequence of chemical reactions can be viewed as a hiddenMarkov
process (Reinker et al., 2006). The Markov jump processes can
be simulated exactly using the classical Gillespie algorithm, so
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that the competing reactions are selected assuming a Poisson
process with the intensity proportional to the species counts
(Golightly et al., 2012; Kügler, 2012), although, in general, the
intensity can be an arbitrary function of the species counts. The
random occurrences of reactions can be also described using the
hazard function (Boys et al., 2008). Non-homogeneous Poisson
processes can be simulated by the thinning algorithm of Lewis
and Shedler (Sherlock et al., 2014).

The number of species in BRN and their molecule counts
can be large, so the state space of the corresponding continuous
time Markov chain (CTMC) model is huge (Angius and
Horváth, 2011). The large state space can be truncated by
considering only the states significantly contributing to the
parameter likelihood (Singh and Hahn, 2005). The parameter
likelihoods can be updated iteratively assuming the increments
and decrements of the species counts (Lecca et al., 2009). The
probabilistic state space representations of BRNs as dynamic
systems were considered in Andreychenko et al. (2011), Gupta
and Rawlings (2014), McGoff et al. (2015), and Schnoerr et al.
(2017). An augmented state space representation of BRN derived
from the ordinary differential equations (ODEs) is obtained in
Baker et al. (2013).

More generally, mechanistic models of BRNs are obtained by
assuming that biological systems are built up from the actual
or perceived components which are governed by the physical
laws (Hasenauer, 2013; Pullen and Morris, 2014; White et al.,
2016; Fröhlich et al., 2017). It is a different strategy to empirical
models which are reverse-engineered from observations (Geffen
et al., 2008; Bronstein et al., 2015; Dattner, 2015). The black-
box modeling can be assumed with some limitations when there
is little knowledge about the underlying biological processes
(Chou and Voit, 2009).

Many models containing multiple unknown parameters are
often poorly constrained. Even though such models may be
still fully identifiable, they are usually ill-conditioned, and often
referred to as being sloppy (Toni and Stumpf, 2010; Erguler
and Stumpf, 2011; White et al., 2016). The parameter estimation
and experimental design for sloppy models are investigated in
Mannakee et al. (2016) where it is shown that the dynamic
properties of sloppy models usually depend only on several
key parameters with the remaining parameters being largely
unimportant. A sequence of hierarchical models with increasing
complexity was proposed in White et al. (2016) to overcome the
complexity and sloppiness of conventional models.

3.1. Modeling BRNs by Differential
Equations
The time evolution of states with the probabilistic transitions is
described by a chemical master equation (CME) (Andreychenko
et al., 2011; Weber and Frey, 2017). The CME is a set of
coupled first-order ODEs or partial differential equations (PDEs)
(Fearnhead et al., 2014; Penas et al., 2017; Teijeiro et al., 2017)
representing a continuous time approximation and describing
the BRN quantitatively. The ODE model of a BRN can be
also derived as a low-order moment approximation of the
CME (Bogomolov et al., 2015). For the models with stochastic

differential equations (SDEs), it is often difficult to find the
transition probabilities (Karimi and Mcauley, 2013; Fearnhead
et al., 2014; Sherlock et al., 2014). The PDE approximation can
be obtained assuming a Taylor expansion of the CME (Schnoerr
et al., 2017). The error bounds for the numerically obtained
stationary distributions of the CME are obtained in Kuntz et al.
(2017). The CME for a hierarchical BRN consisting of the
dependent and independent sub-networks is solved analytically
in Reis et al. (2018). A path integral form of the ODEs has
been considered in Liu and Gunawan (2014) and Weber and
Frey (2017). The BRN models with memory described by the
delay differential equations (DDEs) are investigated in Zhan et al.
(2014). Themixed-effect models assumemultiple instances of the
SDE based models to evaluate statistical variations between and
within these models (Whitaker et al., 2017).

A comprehensive tutorial on the ODE modeling of biological
systems is provided in Gratie et al. (2013). The ODE models
can be solved numerically via discretization. For instance, the
finite differences method (FDM) can be used to obtain difference
equations (Fröhlich et al., 2016). However, the algorithms for
numerically solving the deterministic ODE models or simulating
the models with SDEs may not be easily parallelizable, and they
may have problems with numerical stability. The ODE models
are said to be stiff, if they are difficult to solve or simulate, for
example, if they comprise multiple processes at largely different
time scales (Sun et al., 2012; Cazzaniga et al., 2015; Kulikov
and Kulikova, 2017). Alternatively, the BRN structure can be
derived from its ODE representation (Fages et al., 2015). A
similar strategy is assumed in Plesa et al. (2017) where the BRN is
inferred from the deterministic ODE representation of the time
series data.

A survey of methods for solving the CME of gene expression
circuits is provided in Veerman et al. (2018). These methods
involve propagators, time-scale separation, and the generating
functions (Schnoerr et al., 2017). For instance, the time-scale
separation can be used to robustly decompose the CME into a
hierarchy of models (Radulescu et al., 2012). A reduced stochastic
description of BRNs exploiting the time-scale separation is
studied in Thomas et al. (2012).

If the deterministic ODEs cannot be solved analytically,
one can use Langevin and Fokker-Planck equations as the
stochastic diffusion approximations of the CME (Hasenauer,
2013; Schnoerr et al., 2017). The Fokker-Planck equation can
be solved to obtain a deterministic time evolution of the system
state distribution (Kügler, 2012; Liao et al., 2015; Schnoerr et al.,
2017). The deterministic and stochastic diffusion approximations
of stochastic kinetics are reviewed in Mozgunov et al. (2018).
The chemical Langevin equation (CLE) is a SDE consisting of
a deterministic part describing the slow macroscopic changes,
and a stochastic part representing the fast microscopic changes
which are dependent on the size of the deterministic part
(Golightly et al., 2012; Cseke et al., 2016; Dey et al., 2018).
In the limit, as the deterministic part increases, the random
fluctuations can be neglected, and the deterministic kinetics
described by the Langevin equation becomes the reaction rate
equation (RRE) (Bronstein et al., 2015; Fröhlich et al., 2016;
Loos et al., 2016).

Frontiers in Genetics | www.frontiersin.org 6 June 2019 | Volume 10 | Article 549

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Loskot et al. Models and Methods for Inferences in BRNs

3.2. Modeling BRNs by Approximations
A popular strategy to obtain computationally efficient models is
to assume approximations, such as meta-heuristics and meta-
modeling (Sun et al., 2012; Cedersund et al., 2016). The quasi-
steady state (QSS) and quasi-equilibrium (QE) approximations
of BRNs are investigated in Radulescu et al. (2012). The
modifications of QSS models are investigated in Wong et al.
(2015). It is also common to approximate the system dynamics
assuming continuous ODEs or SDEs (Fearnhead et al., 2014).
The SDE model is preferred when the number of molecules is
small, since the deterministic ODE model may be inaccurate
(Gillespie and Golightly, 2012). It is generally difficult to
quantify the approximation errors in the diffusion-based models.
The forward-reverse stochastic diffusion with the deterministic
approximation of propensities by the observed data was
considered in Bayer et al. (2016).

The mass action kinetics can be used to obtain a deterministic
approximation of CME. The corresponding deterministic ODEs
can accurately describe the system dynamics, provided that the
molecule counts of all the species are sufficiently large (Sherlock
et al., 2014; Yenkie et al., 2016). Other CME approximations
assume the finite state projections, the system size expansion,
and the moment closure methods (Chevaliera and Samadb,
2011; Schnoerr et al., 2017). These methods are attractive,
since they are easy to implement and efficient computationally.
They do not require the complete statistical description, and
they achieve good accuracy if the species appear in large copy
numbers (Schnoerr et al., 2017). The moment closure methods
leading to the coupled ODEs can approach the CME solution
with a low computational complexity (Bogomolov et al., 2015;
Fröhlich et al., 2016; Schilling et al., 2016). Specifically, the
n-th moment of the population size depends on its (n + 1)
moment, and to close the model, the (n + 1)-th moment is
approximated by a function of the lower moments (Ruess et al.,
2011; Ghusinga et al., 2017). Only the first several moments
can be used to approximate the deterministic solution of CME
(Schnoerr et al., 2017). The limitations of the moment closure
methods are analyzed in Bronstein and Koeppl (2018). A
multivariate moment closure method is developed in Lakatos
et al. (2015) to describe the non-linear dynamics of stochastic
kinetics. The general moment expansion method for stochastic
kinetics is derived in Ale et al. (2013). The approximations
of the state probabilities by their statistical moments can be
used to conduct efficient simulations of stochastic kinetics
(Andreychenko et al., 2015).

The leading term of the CME approximation in the system
size expansion (SSE) method corresponds to a linear noise
approximation (LNA). It is the first order Taylor expansion of
the deterministic CME with a stochastic component where the
transition probabilities are additive Gaussian noises. Other terms
of the Taylor expansion can be included in order to improve
the modeling accuracy (Fröhlich et al., 2016). In Sherlock et al.
(2014), the LNA is used to approximate the fast chemical
reactions as a continuous time Markov process (CTMP) whereas
the slow reactions are represented as a Markov jump process
with the time-varying hazards. There are other variants of the
LNA, such as a restarting LNAmodel (Fearnhead et al., 2014), the

LNA with time integrated observations (Folia and Rattray, 2018),
and the LNA with time-scale separation (Thomas et al., 2012).
The LNA for the reaction-diffusion master equation (RDME) is
computed in Lötstedt (2018). The impact of parameter values on
the stochastic fluctuations in a LNA of BRN is investigated in
Pahle et al. (2012).

The so-called S-system model is a set of decoupled non-linear
ODEs in the form of product of power-law functions (Chou et al.,
2006; Meskin et al., 2011; Liu et al., 2012; Iwata et al., 2014). Such
models are justified by assuming a multivariate linearization in
the logarithmic coordinates. These models provide a good trade-
off between the flexibility and accuracy, and offer other properties
which are particularly suitable for modeling complex non-linear
systems. The S-system models with additional constraints are
assumed in Sun et al. (2012). The S-systemmodeling of biological
pathways is investigated in Mansouri et al. (2015). The S-system
model with weighted kinetic orders is obtained in Liu and
Wang (2008a). The Bayesian inference for S-system models is
investigated in Mansouri et al. (2014).

Polynomial models of biological systems are investigated in
Kuepfer et al. (2007), Vrettas et al. (2011), Fey and Bullinger
(2010), and Dattner (2015). Rational models as fractions of
polynomial functions are examined in Fey and Bullinger
(2010), Eisenberg and Hayashi (2014), and Villaverde et al.
(2016). The methods for validating polynomial and rational
models of BRNs are studied in Rumschinski et al. (2010).
The eigenvalues are used in Hori et al. (2013) to obtain
a low order linear approximation of the time series data.
More generally, the models with differential-algebraic equations
(DAEs) are considered in Ashyraliyev et al. (2009), Michalik
et al. (2009), Rodriguez-Fernandez et al. (2013), and Deng and
Tian (2014). These models have different characteristics than the
ODE based models, and they are also more difficult to solve.
The review of autoregressive models for parameter inferences
including the stability and causality issues is presented in
Michailidis and dAlchéBuc (2013).

3.3. Other Models of BRNs
There are many other types of BRN models considered in the
literature. The birth-death process is a special case of the CTMP
having only two states (Daigle et al., 2012; Paul, 2014; Zechner,
2014). It is closely related to a telegraph process (Veerman et al.,
2018). A computationally efficient tensor representation of BRNs
to facilitate the parameter estimation and sensitivity analysis is
devised in Liao et al. (2015). Other computational models for
a qualitative description of interactions and behavioral logic in
BRNs involve the Petri nets (Mazur, 2012; Sun et al., 2012;
Schnoerr et al., 2017), the probabilistic Boolean networks (Liu
et al., 2012; Mazur, 2012; Mizera et al., 2014), the continuous
time recurrent neural networks (Berrones et al., 2016), and the
agent based models (ABMs) (Hussain et al., 2015). The hardware
description language (HDL) originally devised to describe the
logic of electronic circuits is adopted in Rosati et al. (2018)
to model spatially-dependent biological systems with the PDEs.
The multi-parameter space was mapped onto a 1D manifold in
Zimmer et al. (2014).
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TABLE 1 | An overview of the main modeling strategies for BRNs.

Strategy Motivation and key papers

Physical laws Reaction rates in dynamic equilibrium are functions of reactant concentrations

• Kinetic rate laws Joshia et al., 2006; Chou and Voit, 2009; Engl et al., 2009; Baker et al., 2011; Villaverde et al., 2012; Voit, 2013

• Mass action kinetics Angius and Horváth, 2011; Lindera and Rempala, 2015; Wong et al., 2015; Smith and Grima, 2018

• Mechanistic models Chou and Voit, 2009; Pullen and Morris, 2014; von Stosch et al., 2014; White et al., 2016

Random processes Probabilistic behavioral description of chemical reactions

• Markov process Andrieu et al., 2010; Goutsias and Jenkinson, 2013; Septier and Peters, 2016; Weber and Frey, 2017

• Poisson process Daigle et al., 2012; Weber and Frey, 2017; Bronstein and Koeppl, 2018; Reis et al., 2018

• Birth-death process Wang et al., 2010; Daigle et al., 2012; Mikelson and Khammash, 2016; Weber and Frey, 2017

• Telegraph process Weber and Frey, 2017; Veerman et al., 2018

Mathematical models Adopted models for dynamic systems

• Quasi-state models Radulescu et al., 2012; Srivastava, 2012; Thomas et al., 2012; Wong et al., 2015; Liao, 2017; Schnoerr et al., 2017

• State space representation Andrieu et al., 2010; Andreychenko et al., 2011; Brim et al., 2013; Weber and Frey, 2017

• ODEs, PDEs, SDEs, DDEs J. O. Ramsay and Cao, 2007; Jia et al., 2011; Liu and Gunawan, 2014; Fages et al., 2015; Teijeiro et al., 2017; Weber

and Frey, 2017

• Path integral form of ODEs Weber and Frey, 2017

• Rational model Sun et al., 2012; Vanlier et al., 2013; Hussain et al., 2015; Villaverde et al., 2016

• Differential algebraic eqns. J. O. Ramsay and Cao, 2007; Ashyraliyev et al., 2009; Michalik et al., 2009; Deng and Tian, 2014

• Tensor representation Liao et al., 2015; Wong et al., 2015; Smith and Grima, 2018

• S-system model Kutalik et al., 2007; Chou and Voit, 2009; Meskin et al., 2011; Liu et al., 2012; Voit, 2013

• Polynomial model Vrettas et al., 2011; Češka et al., 2017; Kuntz et al., 2017; Weber and Frey, 2017

• Manifold map Radulescu et al., 2012; Mannakee et al., 2016; Septier and Peters, 2016; White et al., 2016

Interaction models Qualitative modeling of chemical interactions

• Petri nets Chou and Voit, 2009; Liu et al., 2012; Voit, 2013

• Boolean networks Chou and Voit, 2009; Emmert-Streib et al., 2012

• Neural networks Goutsias and Jenkinson, 2013; von Stosch et al., 2014; Ali et al., 2015; Camacho et al., 2018

• Agent based models Carmi et al., 2013; Goutsias and Jenkinson, 2013; Hussain et al., 2015; Jagiella et al., 2017

CME based models Stochastic and deterministic approximations of CME

• Langevin equation Thomas et al., 2012; Goutsias and Jenkinson, 2013; Septier and Peters, 2016; Schnoerr et al., 2017; Weber and Frey,

2017; Smith and Grima, 2018

• Fokker-Planck equation Liao et al., 2015; Schnoerr et al., 2017; Weber and Frey, 2017

• Reaction rate equation Koeppl et al., 2012; Liu and Gunawan, 2014; Lindera and Rempala, 2015; Loos et al., 2016

• Moment closure Ruess et al., 2011; Andreychenko et al., 2015; Lakatos et al., 2015; Schilling et al., 2016; Schnoerr et al., 2017;

Bronstein and Koeppl, 2018

• Linear noise approximation Golightly et al., 2012, 2015; Thomas et al., 2012; Fearnhead et al., 2014; Schnoerr et al., 2017; Whitaker et al., 2017

• System size expansion Fröhlich et al., 2016; Schnoerr et al., 2017

The hybrid models generally combine different modeling
strategies in order to mitigate various drawbacks of specific
strategies (Mikeev and Wolf, 2012; Sherlock et al., 2014; Babtie
and Stumpf, 2017). For example, a hybrid model can assume
deterministic description of large species populations with the
stochastic variations of small populations (Mikeev and Wolf,
2012). The hybrid model consisting of the parametric and
non-parametric sub-models can offer some advantages over
mechanistic models (von Stosch et al., 2014).

The modeling strategies discussed in this section are
summarized in Table 1. The models are loosely categorized
as physical laws, random processes, mathematical models,
interaction models and the CME based models. These models

are mostly quantitative except the interaction based models
which are qualitative. Note that the model properties, such as
sloppiness, and the model structures which may be hierarchical,
modular or sequential are not distinguished in Table 1.

In order to assess the level of interest in different BRN models
in literature, Table S1 presents the number of occurrences for
the 25 selected modeling strategies in all references cited in this
review. The summary of Table S1 is reproduced in Table 2 with
the inserted bar graph, and further visualized as a word cloud
in Figure 2. We observe that differential equations are the most
commonly assumed models of BRNs in the literature. About half
of the papers cited consider the Markov chain models or their
variants, since these models naturally and accurately represent
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TABLE 2 | The coverage of modeling strategies for BRNs.
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FIGURE 2 | A word cloud visualizing the levels of interest in different models of BRNs.

the time sequences of randomly occurring reactions in BRNs.
The state space representations are assumed in over one third of
the cited papers. Other more common models of BRNs include
the mass action kinetics, mechanistic models, and the models
involving polynomial functions.

Another viewpoint on BRN models in literature is to consider
the publication years of papers. Table 3 shows the number of
papers for a given modeling strategy in a given year starting from
the year 2005. The dot values in tables represent zero counts to
improve the readability. We can observe that the interest in some
modeling strategies remain stable over the whole decade, for
example, for themodels involving state space representations and
the models involving differential equations. The number of cited
papers is the largest in years 2013 and 2014. The paper counts in

Table 3 indicate that the interest in computational modeling of
BRNs has been increasing steadily over the past decade.

4. REVIEW OF PARAMETER ESTIMATION
STRATEGIES FOR BRNS

The parameter estimation or inference appears in many other
computational problems including model identification (Banga
and Canto, 2008), model calibration (Zechner et al., 2011),
model discrimination (Kuepfer et al., 2007), model identifiability
(Geffen et al., 2008), model checking (Hussain et al., 2015),
sensitivity analysis (Erguler and Stumpf, 2011), optimum
experiment design (Ruess and Lygeros, 2015), bifurcation
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TABLE 3 | The number of papers concerning models of BRNs in given years.
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2005 3 3 1 2 2 . . 4 5 . 2 . . . . . . . . 1 2 . . . .

2006 2 4 2 2 . . . 2 3 4 1 . 1 3 . . . 2 . . . . . . .

2007 . 4 1 3 2 . . 2 6 1 1 . 2 4 2 . . 1 1 1 . . . . .

2008 1 4 2 2 1 . . 6 6 1 1 . 2 2 1 . . 2 . . . 1 . . .

2009 4 7 2 5 1 . . 6 11 1 2 1 4 2 2 2 2 2 3 1 1 . . 1 .

2010 7 11 5 12 3 1 . 8 13 6 2 . 4 5 5 1 1 2 5 7 2 1 . 2 .

2011 5 4 5 11 4 . . 10 13 2 . . 3 4 1 . . 2 2 4 2 2 2 2 .

2012 6 11 6 22 11 3 . 15 20 6 4 1 5 6 3 2 3 6 7 9 6 1 4 9 .

2013 7 9 12 16 8 3 . 17 26 9 3 1 7 12 4 2 . 3 7 6 2 2 4 4 .

2014 8 13 14 33 11 4 . 26 33 7 4 2 5 14 2 1 3 7 6 7 5 5 10 9 .

2015 7 10 8 15 5 2 . 20 24 5 1 2 3 10 4 2 1 1 3 4 4 . 6 5 .

2016 4 8 13 20 5 2 . 14 23 4 1 2 3 11 5 1 2 5 7 6 3 3 7 8 2

2017 4 8 8 14 11 6 1 12 18 7 4 8 . 10 7 1 1 4 4 6 5 2 8 5 2

2018 4 8 4 11 8 1 1 7 14 5 . 3 . 5 . 1 . 1 2 4 3 2 4 5 .

analysis (Engl et al., 2009), reachability analysis (Tenazinha and
Vinga, 2011), causality analysis (Carmi et al., 2013), stability
analysis (Dochain, 2003), network inference (Smet and Marchal,
2010), and network control (Venayak et al., 2018). A chemical
reaction optimization (CRO) can be used to maximize the
production of a bio-reactor (Abdullah et al., 2013b). The surveys
of parameter estimation methods for chemical reaction systems
can be found, for example, in Chou and Voit (2009), Gupta
(2013), Baker et al. (2015), andMcGoff et al. (2015). Other review
papers on parameter estimation in BRNs and dynamic systems
are listed in Table 4.

A survey of tasks concerning modeling and system
identification is provided in Chou and Voit (2009). The
model identifiability determines which parameters can be
estimated from observations (Villaverde et al., 2016). It is
inspired by the concept of system observability and known as
a structural identifiability. It is useful to consider the structural
identifiability prior to estimating the parameters. There is
also a practical identifiability which accounts for the quality and
quantity of observations, i.e., whether it is possible to obtain good
parameter estimates from noisy and limited data. The theory

and tools for the model identifiability and other closely related
concepts, such as the sensitivity to parameter perturbations,
the observability, the distinguishability and the optimum
experiment design are reviewed in Villaverde and Barreiro
(2016). The models which are not identifiable can be modified
or simplified to make them identifiable (Baker et al., 2015;
Villaverde and Barreiro, 2016; Villaverde et al., 2016). The model
identifiability is formulated as the model observability in Geffen
et al. (2008) by replacing traditional analytical approaches which
often require model simplifications with other deterministic
empirical methods.

The changes in the structural and practical identifiability
of models when new knowledge and data become available is
studied in Babtie and Stumpf (2017). The global observability
and detectability of reaction systems was studied in Moreno and
Denis (2005). The parameter identifiability of the power law
models is investigated in Srinath and Gunawan (2010) and of
the linear dynamic models in Li and Vu (2013). The parameter
dependencies are considered in Li and Vu (2015) to determine
the structural and practical identifiability. The intrinsic noise in
the species counts can be exploited to overcome the structural
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TABLE 4 | The review papers on the parameter estimation in BRNs and other dynamic systems.

Reference Focus

Banga and Canto, 2008 Model calibration using global optimization methods supported by maximum information experiment design

Chou and Voit, 2009 Very comprehensive survey of available optimization methods for parameter estimation and model-free and model-based

structure identification from data

Ashyraliyev et al., 2009 A priori and a posteriori model identifiability and survey of parameter space search strategies

Smet and Marchal, 2010 Methods for under-determined inferences of BRNs from data

Tenazinha and Vinga, 2011 Integrated models of BRNs reflecting availability of omics data assuming chemical organization theory, flux-balance analysis,

logical discrete modeling, Petri nets, kinetic models, stochastic models, and hybrid models

Daigle et al., 2012 Survey of maximum-likelihood based methods

Emmert-Streib et al., 2012 Systematic and conceptual overview of methods for inferring gene regulatory networks from gene expression data; survey of

strategies to compare performance of inference methods

Sun et al., 2012 Survey of metaheuristic methods applied to reliability and identifiability of biochemical model parameters including optimum

experiment design

Goutsias and Jenkinson, 2013 Comprehensive review of analytical methods for evaluating dynamics of Markov reaction networks

Kuwahara et al., 2013 Scalable framework for parameter estimation in genetic circuits assuming mean time evolution of gene products

Voit, 2013 Review of biological system models and methods for their analysis as well as design

Baker et al., 2015 General framework to deal with non-identifiable parameters in BRNs using constrained parameter estimation

McGoff et al., 2015 Mathematical survey of statistical methods for parameter inference in general non-linear dynamical systems

Drovandi et al., 2016 Survey of approximate Bayesian computation methods

Kurt et al., 2016 Review of 27 estimators of association scores of data from gene networks

Weiss et al., 2016 Survey of transfer learning methods

Schnoerr et al., 2017 A comprehensive survey of deterministic and stochastic models of BRNs followed by introduction to Bayesian parameter

inference from data

Camacho et al., 2018 Application of machine learning techniques to computational problems in biological networks

Smith and Grima, 2018 Review of spatial stochastic kinetics including reaction-diffusion master equation and models involving Brownian dynamics

Koblents et al., 2019 Bayesian inference methods with stochastic kinetic models

non-identifiability within a deterministic framework as shown in
Zimmer et al. (2014).

In general, many different parameter estimation methods
have been devised in literature for BRNs and dynamic systems.
However, many of these methods are often modifications of a
few fundamental estimation strategies which are adopted for the
specific models and the availability and quality of measurements.
All parameter estimation problems lead to the minimization or
maximization of some fitness function. Deriving the optimum
value analytically is rarely possible whereas a numerical search
for the optimum in high-dimensional parameter spaces can be
ill-conditioned when the fitness function is multi-modal. The
numerical strategies normally experience a trade-off between the
efficiency and robustness. If there is a large flat surface about the
minimum, the obtained solution cannot be trusted (Rodriguez-
Fernandez et al., 2006a; Srinivas and Rangaiah, 2007). Moreover,
the optimum values can change over an order of magnitude
under different implicit or explicit constraints which is often the
case for biological systems. The numerical algorithms for non-
convex optimization problems need to be stable as well as provide
the convergence guarantees. Other important aspects to consider
include scalability, computational efficiency, numerical stability
and robustness. All methods need to be also statistically validated.

The measurements can be produced from different
heterogeneous sources (omics data), and from heterogeneous
populations (Zechner et al., 2011). In literature, the deterministic

methods appear to be assumed much more often than the
stochastic methods (Daigle et al., 2012). The parameter
estimation in deterministic models is often carried out by
fitting the model to the data. The parameter uncertainty
analysis can be used to assess how well the model explains
the experimental data (Vanlier et al., 2013). The stochastic
models require more sophisticated strategies to perform
parameter estimation (Zimmer and Sahle, 2012), such as
the multiple-shooting methods (Zimmer, 2016). Moreover,
since the mean approximation of SDEs may differ from the
solution obtained for deterministic ODEs, the parameter
estimation assuming stochastic rather than deterministic models
is preferable when some of the species counts are relatively small
(Andreychenko et al., 2012).

The parameter estimations in the transient and at steady
state are quite different (Ko et al., 2009). At steady state, small
perturbations are sufficient to observe the system responses
whereas at the transient state, the experiment design for
model identification is more complicated. A fast transient
response after the external perturbation limits the information
content in measurements (Zechner et al., 2012). The sensitivity
analysis can be used to improve the computational efficiency
of parameter estimation (Fröhlich et al., 2017). The parameter
value boundaries can be estimated by sampling (Fey and
Bullinger, 2010). The confidence and credible intervals can
be obtained also for the stiff and sloppy models assuming

Frontiers in Genetics | www.frontiersin.org 11 June 2019 | Volume 10 | Article 549

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Loskot et al. Models and Methods for Inferences in BRNs

the inferability, sensitivity and sloppiness (Erguler and Stumpf,
2011). Furthermore, the observer design may be different for
systems with and without inputs (Singh and Hahn, 2005).

The scalability of parameter estimation can be resolved by
decoupling the rate equations and by assuming the mean-
time evolution of the species counts (Kuwahara et al., 2013).
However, exploring large parameter spaces can be complicated,
if the estimation problems are ill-conditioned and multi-modal
(Liu and Wang, 2009). The state-dependent Markov jump
processes are difficult to estimate at large scale, especially
when these processes are faster than the rate of observations
(Fearnhead et al., 2014).

The model parameters can be mutually dependent (Fey
et al., 2008). The parameter dependencies can be measured by
correlations and other higher order moments. The parameter
estimation can be facilitated by grouping the parameters, and
then identifying which are uncorrelated (Gábor et al., 2017).
The parameter estimation in groups can provide robustness
against the noisy and incomplete data (Jia et al., 2011). Only
the parameters which are consistent with the measured data can
be selected and jointly estimated (Hasenauer et al., 2010). The
parameter clustering can also improve the model tractability and
identifiability, since the changes in some parameters could be
compensated by changes in other parameters (Nienaltowski et al.,
2015). The groupings of parameters to elucidate the dynamics
of genetic circuits are assumed in Atitey et al. (2019). The
parameters can be assumed hierarchically to gradually estimate
their values starting from a suitably defined minimum set
(Shacham and Brauner, 2014). A hybrid hierarchical parameter
estimation method which is prone to parallel implementation is
devised in He et al. (2004).

An incremental parameter estimation usually requires data
smoothing which can create the estimation biases (Liu and
Gunawan, 2014). Such biases can be mitigated by estimating
the independent parameters before the dependent ones. The
parameter inference can be paired with the hypothesis testing
and model selection (Rodriguez-Fernandez et al., 2013). The
joint model and parameter identification with incremental one-
at-a-time parameter estimation and model building is performed
in Gennemark and Wedelin (2007). The unobserved states,
latent variables and other parameters in BRNs can be estimated
jointly by sequentially processing the measurements (Zimmer
and Sahle, 2012; Arnold et al., 2014), by using the sliding window
observers (Liu et al., 2006), and by other numerical methods
(Karnaukhov et al., 2007). The estimation of kinetic rates in
BRNs is transformed into a problem of the state estimation in
Fey and Bullinger (2010). The parameter estimation and the state
reconstruction are linked via the extended models in Busetto and
Buhmann (2009). The unobservable sub-spaces can be excluded,
and only the model parts which are identified reliably can
be considered (Singh and Hahn, 2005). Another strategy is to
reconstruct the states prior to estimating the parameters (Fey
et al., 2008). The unknown parameters which are not of interest
can be margninalized (Bronstein et al., 2015).

Themodel overfitting leads to a poor generalization capability.
In order to avoid the overfitting and to constrain the model
complexity, a penalty can be assumed to minimize the number

of estimated model parameters. The overfitting can be resolved
by the model reduction techniques (Srivastava, 2012; Sadamoto
et al., 2017). For instance, only essential chemical reactions can
be considered in BRN model (Zamora-Sillero et al., 2011). A
simplified modeling with the reduced number of parameters and
the parameter subset selection is used in Eghtesadi and Mcauley
(2014) to avoid overfitting the noisy data. On the other hand, the
under-determined models may yield several or infinitely many
solutions of fitting the data. In such cases, the models are not
identifiable, and the data fitting can be performed subject to
additional constraints. There are also cases where the measured
data can be fit well by several models. However, the model with
the best fit to the data may not necessarily provide a satisfactory
biological explanation (Slezak et al., 2010).

The information theoretic metrics can be used to infer the
structure of BRNs (Villaverde et al., 2014), and to perform
the identifiability analysis of parameters (Nienaltowski et al.,
2015). Akaike information is used to assess the quality of
statistical models given observations, so the best model can be
selected (Guillén-Gosálbez et al., 2013; Pullen and Morris, 2014).
The simultaneous estimation of parameters and the structure
of BRN formulated as a mixed binary dynamic optimization
problem with Akaike information is assumed in Guillén-
Gosálbez et al. (2013) to trade-off the estimation accuracy and the
evaluation complexity. Fisher information is the mean amount of
information gained from the observed data. It is often used when
estimating the non-random parameters, for instance, using the
maximum likelihood (ML) (Rodriguez-Fernandez et al., 2006b;
Kyriakopoulos and Wolf, 2015). Fisher information can be
exploited to perform the sensitivity, robustness and identifiability
of parameters. It is especially useful when the measurements
and parameters are correlated (Komorowski et al., 2011). Fisher
information is also used to improve the parameter estimation
(Transtrum and Qiu, 2012), to design the optimum experiments
(Kyriakopoulos and Wolf, 2015; Zimmer, 2016), and to select
the subsets of identifiable parameters (Eisenberg and Hayashi,
2014). Mutual information can be used as a similarity measure. It
statistically outperforms correlations in the canonical correlation
analysis (CCA) (Nienaltowski et al., 2015). Other uses of mutual
information are outlined in Mazur (2012), and for the parameter
estimation in Emmert-Streib et al. (2012).

The cross-entropy methods can be combined with stochastic
simulations (Revell and Zuliani, 2018), and used to improve
the computational efficiency of the parameter estimation (Daigle
et al., 2012). The maximum entropy sampling (MES) methods
for the experiment design and for the parameter estimation are
discussed in Mazur and Kaderali (2013). The maximum entropy
principle to reconstruct the probability distributions is described
in Schnoerr et al. (2017). The relative entropy rate is assumed
in Pantazis et al. (2013) to perform the sensitivity analysis
of BRNs. The Kantorovich distance between two probability
measures is used in Koeppl et al. (2010) to estimate the BRN
model parameters.

The sum of squared errors (SSE) is often assumed to define the
regression estimators (Chou et al., 2006), to evaluate the goodness
of fit, and to assess the quality of estimators (Nim et al., 2013;
Iwata et al., 2014; Kimura et al., 2015). The SSE acronym should
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TABLE 5 | The selected research theses concerning the parameter estimation and related problems in BRNs.

Thesis Main research focus

Dargatz, 2010 Bayesian inference for biochemical models involving diffusion

Mu, 2010 Rate and state estimation in S-system and linear fractional model (LFM)

Palmisano, 2010 Software tools for modeling and parameter estimation in BRNs

Mazur, 2012 Inference via stochastic sampling and Bayesian learning framework

Srivastava, 2012 Stochastic simulations of BRNs combined with likelihood based parameter estimation, confidence intervals, sensitivity analysis

Gupta, 2013 Parameter estimation in deterministic and stochastic BRNs, inference with model reduction, mostly MCMC methods

Hasenauer, 2013 Bayesian estimation and uncertainty analysis of population heterogeneity and proliferation dynamics

Linder, 2013 Penalized LS algorithm and diffusion and linear noise approximations and algebraic statistical models

Flassig, 2014 Model identification for large scale gene regulatory networks

Liu, 2014 Approximate Bayesian inference methods and sensitivity analysis

Moritz, 2014 Structural identification and parameter estimation for modular and layered type of modes

Paul, 2014 Analysis of MCMC based methods

Ruess, 2014 Optimum estimation and experiment design assuming ML and Bayesian inference and Fisher information

Schenkendorf, 2014 Quantification of parameter uncertainty, optimal experiment design for parameter estimation and model selection

Smadbeck, 2014 Moment closure methods, model reduction, stability and spectral analysis of BRNs

Zechner, 2014 Inference from heterogeneous snapshot and time-lapse data

Schnoerr, 2016 Langevin equation, moment closure approximations, representations of stochastic RDME

Galagali, 2016 Bayesian and non-Bayesian inference in BRNs, adaptive MCMC methods, network-aware inference, inference for approximated BRNs

Hussain, 2016 Sequential probability ratio test, Bayesian model checking, automated and formal verification, parameter discovery

Lakatos, 2017 Multivariate moment closure and reachability analysis

Liao, 2017 Tensor representation and analysis of BRNs

not be confused with the system size expansion (SSE) which is
a modeling strategy discussed previously (Fröhlich et al., 2016;
Schnoerr et al., 2017).

Furthermore, the graduate research theses usually contain
more or less comprehensive and up to date surveys of the relevant
literature. The theses which are concerned with the parameter
estimation in BRNs are summarized in Table 5. We can observe
that the largest number of the research theses involving the
parameter estimation problems in BRNs were produced in 2014.

In the rest of this section, we will survey specific methods for
the parameter estimation in BRNs. These methods are organized
in the following four subsections: Bayesian methods, Monte
Carlo methods, other statistical methods including Kalman
filtering, and the model fitting methods.

4.1. Bayesian Methods
The fundamental premise of the Bayesian estimation methods
is that the prior probabilities or distributions of parameters
are known. The objective is then to evaluate the posterior
distributions for the parameters of interest. It is often sufficient
to find the maximum value of the posterior distribution as
the maximum a posterior (MAP) estimate. The value of this
maximum can be also used to select among several competing
models (Andreychenko et al., 2012) and to design the optimum
experiments (Mazur, 2012). The model checking via the time-
bounded path properties is represented as the Bayesian inference
problem in Milios et al. (2018). The conjugate priors are often
assumed in biological models to perform the Bayesian inferences
(Boys et al., 2008; Mazur, 2012; Murakami, 2014; Galagali, 2016).

The Bayesian inference for the low copy counts can be improved
by separating the intrinsic and extrinsic noises (Koeppl et al.,
2012). The Bayesian analysis is facilitated by separating the
slow and fast reactions in Sherlock et al. (2014). The Bayesian
inference strategies for biological models involving diffusion
processes are investigated in Dargatz (2010).

In many cases, determining the exact posterior distribution in
the Bayesian analysis is analytically intractable. The approximate
Bayesian computation (ABC) is a computational strategy for
estimating the posterior distribution or the likelihood function
(Tanevski et al., 2010). The survey of ABC approaches is provided
in Drovandi et al. (2016). The basic idea is to find the parameter
values which can generate the same statistics as the observed
data. The ABC can be performed sequentially, and used for the
sensitivity analysis (Liu, 2014). The parameter estimation and the
model selection using the ABC framework is studied in Liepe
et al. (2014) and Murakami (2014). The non-identifiability of
parameters due to the flat-shaped posterior can be resolved by
the ABC approach as shown in Murakami (2014). The efficient
generation of summary statistics for the ABC is presented in
Fearnhead and Prangle (2012). The piece-wise ABC to estimate
the posterior density for Markov models is proposed in White
et al. (2015). The parallel implementations of the ABC and SMC
methods are introduced in Jagiella et al. (2017).

The expectation-maximization (EM) is a popular
implementation of the MAP estimators where there are
some other unobserved or unknown parameters (Daigle et al.,
2012; Karimi and Mcauley, 2014a; Bayer et al., 2016). The EM
can be combined with the Monte Carlo (MC) sampling, and
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such methods are known as the MC expectation-maximization
(MCEM) (Angius and Horváth, 2011). The computationally
efficient method for obtaining the ML estimates by the MCEM
with a modified cross-entropy method (MCEM2) is developed
in Daigle et al. (2012). The approximate EM algorithm is devised
in Karimi and Mcauley (2013) which is robust against the
unknown initial estimates, and which is useful for the online
state estimation during the process monitoring.

Another parameter estimation strategy having the same
structure as the EM is known as the variational Bayesian
inference (Vrettas et al., 2011; Weber and Frey, 2017). It is
more general than the EM method, and it exploits the analytical
approximations of the posterior density to obtain the parameter
estimates and their likelihoods. The analytical approximations
are usually computationally faster than the sampling based
methods, but the approximation methods are still less well-
understood (Blei et al., 2017). For instance, the posterior density
is approximated by radial basis functions (RBFs) in Fröhlich
et al. (2014) to reduce the number of model evaluations.
The variational inference with stochastic approximations for
Gaussian mixture models and massive data is considered in Blei
et al. (2017). The variational approximate inference with the
continuous time constraints is investigated in Cseke et al. (2016).

TheML estimation is a popular parameter estimation strategy,
provided that the likelihoods of the observed data can be
computed efficiently for the givenmodel. The survey ofML based
methods for the parameter estimation in BRNs is provided in
Daigle et al. (2012). The likelihood function can be approximated
analytically using the Laplace and the B-spline approximations
(Karimi and Mcauley, 2014b), or numerically by assuming the
derivatives (Mikeev and Wolf, 2012). The likelihood function
is obtained by simulations in Tian et al. (2007). The moment
closure is used for the fast approximations of the parameter
likelihoods in Milner et al. (2013). Stochastic simulations can
be avoided by approximating the transition distributions by the
Gaussian distribution in the parameter likelihood calculations
(Zimmer and Sahle, 2015). In Chen et al. (2017), the transition
probabilities are used in the ML calculations to devise the new
estimation algorithmwhich can improve the variational Bayesian
inference. The ML estimation combined with regularization to
penalize the complexity is investigated in Jang et al. (2016).
The ML estimation for BRN models with the concentration
increments and decrements is studied in Lecca et al. (2009).

4.2. Monte Carlo Methods
The motivation behind the MC methods is to represent the
probabilities and density functions as the relative frequencies
of samples or particles in order to overcome mathematical
intractability of the Bayesian inference. However, even the
sampling methods can be computationally overwhelming due
to frequent model evaluations. The Markov chain Monte Carlo
(MCMC) methods are the most often used sampling strategies to
generate conditional trajectories of the system states. TheMCMC
sampling having good mixing properties requires a carefully
chosen proposal distribution and also a good selection of the
initial samples in order to avoid the sample degeneracy and
instability problems. The most well-known sampling MCMC

procedures are the Metropolis and the Metropolis-Hastings
algorithms (Golightly andWilkinson, 2011; Zamora-Sillero et al.,
2011; Mazur, 2012; Galagali, 2016). An overview of the particle
filtering and the MCMC methods for the spatial objects tracking
is presented in Mihaylova et al. (2014). The MCMC methods
for causality reasoning are introduced in Carmi et al. (2013).
The design of proposal distributions for the MCMC and the
SMC methods assuming a large number of correlated variables
is studied in Andrieu et al. (2010).

Since the convergence rate of the MCMC sampling can be
rather slow for heavy tail distributions, the factorization and
approximations of the posterior can be used to improve the
performance (Fröhlich et al., 2014). The MCMC methods can
be made adaptive to improve their convergence properties as
shown in Mazur (2012); Müller et al. (2012); Hasenauer (2013);
Galagali (2016). The interpolation of the observed data via the
MCMC sampling is assumed in Golightly and Wilkinson (2005)
to jointly estimate the unobserved states and reaction rates.
The MCMC sampling can be combined with the importance
sampling to reduce the computational complexity and simulation
times (Golightly et al., 2015). The conditional density importance
sampling (CDIS) is introduced in Gupta and Rawlings (2014) as
an alternative to the MCMC parameter estimation.

A strategy for dealing with high-dimensional sampling
problems is to combine the particle filters with the MCMC
methods to obtain the sequential MCMC (SMCMC) algorithms
(Septier and Peters, 2016). The MCMC methods for high-
dimensional systems are compared in Septier and Peters (2016).
The population MC (PMC) sampling framework to perform the
Bayesian inference in high-dimensional models is developed in
Koblents and Míguez (2011).

The Bayesian inference via the MC sampling utilizing the
stochastic gradient descent is studied in Wang et al. (2010).
The parameter likelihoods are calculated by combining the MC
global sampling with the locally optimum gradient methods
in Kimura et al. (2015). The nested Bayesian sampling is
used in Pullen and Morris (2014) to compute the marginal
likelihoods, and to compare or rank several competing models.
The MCMC sampling for the mixed-effects SDE models is
considered in Whitaker et al. (2017). In order to overcome
the ill-conditioned least squares (LS) data fitting and the
associated numerical instability problems, the bootstrapped MC
procedure based on the diffusion and the LNA was proposed in
Lindera and Rempala (2015).

The sequential MC (SMC) methods represent the posterior
distribution by a set of samples referred to as particles (Gordon
et al., 1993; Doucet et al., 2001; Tanevski et al., 2010; Yang
et al., 2014), so these methods are also known as particle
filters (Gordon et al., 1993; Doucet et al., 2001; Lillacci and
Khammash, 2012; Golightly et al., 2015). The particle filters
assume specific types of random processes to identify the
posterior while bounding the computational complexity for
the models with large number of parameters (Mikelson and
Khammash, 2016). The particle filters are shown to be more
robust than the LS data fitting, if the data statistics are exploited
(Lillacci and Khammash, 2012). The SMC methods for the joint
estimation of states and parameters are developed in Nemeth
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et al. (2014). The degeneracy phenomenon commonly occurring
in particle filters can be mitigated by more efficient sampling
strategies (Golightly and Kypraios, 2017). A parallelization of
the SMC computations is devised in Mihaylova et al. (2012).
More efficient generation and processing of particles to improve
the computational efficiency of particle filters is investigated in
Golightly et al. (2019). The computationally efficient particle
MCMC (pMCMC) method is devised in Koblents and Míguez
(2014) and Koblents et al. (2019). The pMCMC method can
be combined with the diffusion approximation (Golightly and
Wilkinson, 2011), and further refined to improve its scalability
(Golightly and Kypraios, 2017). The proposal distribution for
the Bayesian analysis is obtained using the pMCMC sampling
in Sherlock et al. (2014). The proposal samples for calculating
the marginal likelihoods are obtained for the CLE and the LNA
approximations in Golightly et al. (2015).

4.3. Other Statistical Methods
The key assumption for using the standard Kalman filter is the
linearity of measurements. The Kalman filter is used with the
CME approximation and the noise covariance estimation in Dey
et al. (2018) while allowing for the dependency of the noise
statistics on the states and parameter values. The Kalman filter
is used to obtain the initial guess of the parameter values for
the subsequent parameter estimation by data fitting in Lillacci
and Khammash (2010). The Kalman filter can be merged with
the particle filters to perform the inferences in stochastic (Vrettas
et al., 2011) as well as deterministic systems (Arnold et al., 2014).
The Kalman filter for the time integrated observations is assumed
in Folia and Rattray (2018).

Since the BRNs are generally highly non-linear, the extended
and unscented Kalman filters (EKFs and UKFs) must be assumed
(Baker et al., 2011). The EKF was modified for stiff ODEs in
Kulikov and Kulikova (2015a) and Kulikov and Kulikova (2017).
The joint estimation of parameters and states by the EKF is
investigated in Sun et al. (2008) and Ji and Brown (2009). The
EKF is combined with the moment closure methods in Ruess
et al. (2011), and it is modified for the parameter estimation in
the S-system models in Meskin et al. (2011). A hybrid method
combining the EKF and the particle swarm optimization (PSO)
for the joint estimation of parameters and states is developed
in Zeng et al. (2012). A modified EKF to penalize the modeling
uncertainty due to linearization errors is proposed in Xiong
and Zhou (2013) which improves the estimation accuracy. The
square-root UKF achieves good numerical stability, and it can
also assume the state constraints (Baker et al., 2013, 2015).
For infrequent sampling and sparse observations, the UKF and
the cubature Kalman filter outperform the EKF (Kulikov and
Kulikova, 2015b, 2017).

The classical bootstrapping with data replication and
resampling to enable the repeated estimations is described
in Vanlier et al. (2013). The bootstrapping can be also used
to obtain the confidence intervals of the parameter estimates
(Joshia et al., 2006; Srivastavaa and Rawlingsb, 2014), and to
improve the computational efficiency in recomputed model
trajectories (Lindera and Rempala, 2015). The bootstrap filter can
outperform the EKF (Gordon et al., 1993).

There are also many other less commonly used inference
strategies which have not been mentioned so far. For instance,
the Gaussian smoothing to compensate for the missing and noisy
data is used in Sun et al. (2012). The parameter estimation
assuming a non-linear ODE model combined with the data
smoothing was investigated in J. O. Ramsay and Cao (2007). The
inference of the state distribution via the optimized histograms
and statistical fitting is performed in Atitey et al. (2018b). A
formal verification and the sequential probability ratio test for
the parameter estimation are considered in Hussain (2016).
The moment closure modeling is combined with stochastic
simulations for the parameter estimation in Bogomolov et al.
(2015). A generalized method of moments incorporating the
empirical sample moments is performed in Kügler (2012);
Lück and Wolf (2016) whereas the moment based methods for
the parameter estimation and the optimum experiment design
are considered in Ruess and Lygeros (2015). The expectation
propagation (EP) for the approximate Bayesian inference is
studied in Cseke et al. (2016). The Lyapunov exponent can be
used to infer the level of predictability of the dynamic systems
including BRNs (Barnes et al., 2011; McGoff et al., 2015).

4.4. Model Fitting Methods
The parameter estimation by fitting the measured data appears to
be by far themost commonly usedmethod in literature. Themain
reason is that, unlike other estimation strategies, the data fitting
problem is relatively easy to formulate with minimum knowledge
and assumptions. It is possible to consider multiple fitness
functions. Various continuous and discrete fitness functions are
explored in Deng and Tian (2014). The fitness function can be
derived from the likelihood function (Rodriguez-Fernandez et al.,
2006a), or the approximated likelihood function (Srivastavaa and
Rawlingsb, 2014).

Even though the derivative free methods are easier to
implement, the gradient based methods have faster albeit only
local convergence. For instance, the gradient based optimization
with sensitivity analysis assuming finite differences is investigated
in Loos et al. (2016). The derivative free methods are necessary
for the combinatorial and the integer constrained problems
(Cedersund et al., 2016; Gábor et al., 2017).

The challenge is to develop numerically efficient methods
to solve high-dimensional problems with possibly many
constraints. The observations are interpolated with the spline
functions in Nim et al. (2013), so that the derivatives can be
used to estimate the production and consumption of molecules
in BRNs. It decomposes a high-dimensional problem into the
product of low-dimensional factors. The fitness function is
interpolated with the spline functions in Zhan and Yeung (2011).

The data fitting is generally more computationally demanding
for stochastic than for deterministic models, but the former is
more likely to find a global solution (Rodriguez-Fernandez et al.,
2006b). Since many practical optimization problems are non-
convex, the global optimization methods are generally preferred.
They can be implemented as multi-start or multi-shooting
local methods, or by selecting a subset of parameters to be
estimated. The sensitivity to initial values can be reduced by
trackingmultiple solutions.Many of thesemethods can be readily
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TABLE 6 | Common evolutionary algorithms for the parameter estimation in BRNs and dynamic systems.

Algorithm Motivation and selected papers

Genetic algorithms (GAs) Largest class of EAs, inspired by evolution and natural selection, often near optimum solution

Matsubara et al., 2006; Tian et al., 2007; Besozzi et al., 2009; Chou and Voit, 2009; Liu et al., 2012; Sun et al., 2012

Genetic programming (GP) Evolution of computer programs toward improving their fitness to solve a given task

Chou and Voit, 2009; Sun et al., 2012; Nobile et al., 2013

Evolutionary programming (EP) Parameters of computer program evolve toward improving its fitness to solve a given task

Baker et al., 2010; Sun et al., 2012; Revell and Zuliani, 2018

Simulated annealing (SA) Probabilistic search combining sampling with random but controlled acceptance of candidate solutions

Ashyraliyev et al., 2009; Chou and Voit, 2009; Dai and Lai, 2010; Sun et al., 2012; Hussain et al., 2015; Cedersund et al., 2016

Differential evolution (DE) Derivative free method, linearly combining randomly selected candidate solutions to obtain iterative improvements

Srinivas and Rangaiah, 2007; Liu and Wang, 2009; Chong et al., 2012, 2014; Sun et al., 2012; Teijeiro et al., 2017

Scatter search (SS) Often combined with tabu search, it is local search with temporarily accepting worse solutions and avoiding already visited regions

Rodriguez-Fernandez et al., 2006a; Villaverde et al., 2012; Cedersund et al., 2016; Penas et al., 2017; Remlia et al., 2017

Particle swarm optimiz. (PSO) Derivative free method, moving particles (i.e., samples or candidate solutions) toward better solution

Besozzi et al., 2009; Abdullah et al., 2013c; Sun et al., 2014; Cazzaniga et al., 2015; Nobile et al., 2016; Tangherloni et al., 2016

parallelized to overcome the computational burden (Mancini
et al., 2015; Teijeiro et al., 2017). The parallel implementations
of data fitting algorithms including Spark, MapReduce, and MPI
messaging are considered in Teijeiro et al. (2017). Recently, the
implementations exploiting the affordable graphical processing
units (GPUs) have become popular (Nobile et al., 2012). The
computational complexity of global methods can be mitigated by
the incremental identification strategies (Michalik et al., 2009).
The global methods also require to properly set the search
parameters which can be done via multiple initial exploratory
runs (Penas et al., 2017). Another global search strategy assumes
a model transformation followed by the non-uniform sampling
(Kleinstein et al., 2006). There are also hybrid strategies switching
between the global and local searches (Rodriguez-Fernandez
et al., 2006a,b; Ashyraliyev et al., 2009).

The majority of data fitting methods are rooted in the simple
LS regression, or assume the non-linear least squares (NLSQ)
(Baker et al., 2011). The alternating regression (AR) reformulates
the non-linear fitting as an iterative linear regression problem
(Chou et al., 2006). The non-linear regression is converted into a
non-linear programming problem which is solved by the random
drift PSO in Sun et al. (2014). The asymptotic properties of the
LS estimation were evaluated in Rempala (2012). The iterative
linear LS for systems described by a ratio of linear functions is
considered in Tian et al. (2010).

The regularization is a strategy to deal with the ill-conditioned
optimization problems due to insufficient or noisy data (Gábor
and Banga, 2014; Gábor et al., 2017). The regularization
introduces additional constraints to penalize the complexity, or it
uses prior knowledge to constrain the parameter values to trade-
off the estimator bias with its variance in order to avoid themodel
overfitting (Liu et al., 2012; Kravaris et al., 2013; Jang et al., 2016).
Alternatively, the perturbation method has been developed for
fitting the data in Shiang (2009).

The evolutionary algorithms (EAs) are the most frequently
used methods for solving the high-dimensional constrained

optimization problems. They do not require any particular
assumptions, and they are not limited by the dimensionality of
the problem. The EAs adopt various heuristic strategies to find
the optimum assuming the population of candidate solutions
which are iteratively improved by reproduction, mutation,
crossover or recombination, selection and other operations until
the fitness or loss function reaches the desired value. The specific
EAs commonly used in literature for the identification of BRNs
and other dynamic systems are summarized in Table 6. Several
EAs and the PSO methods are compared in Nobile et al. (2018b).
Different EAs are compared with other deterministic search
methods in Mendes and Kell (1998).

The cuckoo search utilizes random sub-populations which
can be discarded to improve the solution (Rakhshania et al.,
2016). The optimization programs include non-linear simplex
method (Cazzaniga et al., 2015), non-linear programming (NLP)
(Moles et al., 2003; Zhan and Yeung, 2011; Sun et al., 2012;
Rodriguez-Fernandez et al., 2013), semi-definite programming
(Kuepfer et al., 2007; Rumschinski et al., 2010), and quadratic
programming (Gupta, 2013). The Nelder-Mead method (also
known as the downhill simplex method) maintains a simplex of
the test points which evolve until the data fit is found (Abdullah
et al., 2013a). The quantifier elimination (QE) is used to simplify
the constrained optimization problems (Anai et al., 2006). Other
examples of the nature inspired algorithms include the firefly
algorithm (FA) (Abdullah et al., 2013a,b) and the artificial bee
colony (ABC) algorithm (Chong et al., 2014). Neural networks
are becoming popular especially due to multi-layer deep learning
methods. Other tasks encountered in traditional neural networks
involve training, overfitting, smoothing, and the mean value
approximations (Matsubara et al., 2006; Chou and Voit, 2009; Ali
et al., 2015; Berrones et al., 2016). The parallel implementation of
the scatter search for large-scale systems is devised in Villaverde
et al. (2012) and Penas et al. (2017).

The benefits of individual optimization methods can be
utilized by adaptively combining different algorithms. For
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TABLE 7 | The coverage of the parameter estimation methods for BRNs.

Tasks Measures Bayesian methods Monte Carlo Kalman filter Model fitting XLR
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FIGURE 3 | A word cloud visualizing the levels of interest in different parameter estimation methods and tasks for models of BRNs.

instance, the DE is combined with the tabu search in Srinath and
Gunawan (2010), and another hybrid DE method is considered
in Liu and Wang (2008b). The genetic programming and the
PSO are combined in Nobile et al. (2013), the multi-swarm
PSO is considered in Nobile et al. (2012), and the fuzzy logic
based PSO is developed in Nobile et al. (2015), Nobile et al.
(2016), and Nobile et al. (2018a). The regularization, pruning
and the continuous genetic algorithm (CGA) are combined in
Liu et al. (2012).

Machine learning (MLR) methods can be very effective
provided that there is enough training data drawn from some
fixed distribution (Pan and Yang, 2010). If there are not enough
labeled data, or the generating distribution changes in time, it

may be better to employ transfer learning (TLR) methods which
exploit data from multiple domains (Pan and Yang, 2010; Weiss
et al., 2016; Azab et al., 2018). A primer on the MLR and the deep
learning (DLR) methods for biological networks is provided in
Camacho et al. (2018).

The survey of 5 estimation tasks and 23 estimation methods
for BRNs identified in the references listed at the end of this
paper is provided in Table S2. This table is summarized in
Table 7 for convenience, and the corresponding word cloud
is shown in Figure 3. Other tasks related to the parameter
estimation which are commonly used in literature are the model
identifiability, the parameter observability, and the reachability
analysis. The information theoretic measures are assumed
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relatively often as an alternative to the probabilistic measures
to define the rigorous inference problems. The parameter
identification by model fitting appears to be the most common
strategy in literature. The Bayesian analysis which accounts
for the prior distribution of parameters is often performed
numerically by adopting the MCMC and other statistical
i sampling methods.

In order to visualize a timeline of interest in different
parameter estimation methods, Table 8 contains the numbers
of cited papers concerning the specific estimation methods and
tasks in given years. As for the methods in Table 3, we can
observe that the general interest appears to have peaked in 2014,
although the considerable interest has remained strong over
the past decade. This indicates that the parameter estimation
strategies are closely related to the modeling strategies as
discussed previously.

5. CHOICES OF MODELS AND METHODS
FOR INFERENCES IN BRNS

We now evaluate what BRN models are preferred with the
different parameter estimation strategies, and also explore
what parameter estimation methods are assumed in different
parameter estimation tasks. The models and the estimation tasks
and methods are the same as those considered in Tables 2, 7,
respectively.

Table 9 shows the number of papers concerning given BRN
models and given estimation strategies. The paper counts were
adjusted to exclude papers which were deemed to onlymarginally
consider a given combination of the BRN model and the
estimation task or method. In particular, the papers containing
<5 occurrences of the search keywords for either a given
model, task or method were excluded. We can observe that
the parameter inference tasks have been considered for all the
BRN models, however, some models have been investigated
much more than the others. The most popular models for the
parameter inferences and other related tasks are the models
involving differential equations, Markov processes, and state
space representations. The second most popular group of models
considered for the parameter estimation include the S-system
and polynomial models, and the moment closure and the
LNA models.

The sensitivity analysis using the information theoretic
measures and evaluation of the confidence and credible intervals
have been considered for most BRN models. The sensitivity
analysis has somewhat similar use of models as the parameter
inference, except the level of interest in the former is about
ten times smaller. Moreover, the sensitivity analysis is often
combined with the bifurcation analysis, so the latter may not be
referred to explicitly in many papers. The optimum experiment
design has been assumed for several models, but there seems to be
no clear model preference. The sum of squares measure is likely
quite underestimated inTable 9, since it is often assumed without
being explicitly referred to.

The probabilistic MAP and ML measures have been
assumed for all model types. In many cases, the corresponding

inference tasks involve the prior and posterior distributions
and probabilities, and the parameter likelihoods. The variational
Bayesian and the ABCmethods are mostly used with the Markov
processes, since this is where they were originally developed for
whereas the Markov processes can be derived from differential
equations. The EM method is mostly used with the differential
equations. The MC based sampling methods including particle
filters are important for practical implementation of the Bayesian
inference strategies. However, these methods seem to be rarely
used with less popular BRN models. Similar comments can be
made about the Kalman filtering, the LS regression, and most
of the data fitting methods considered. The PSO method has
been mainly considered with the models involving differential
equations, and to some extent also with several other models.
There are several BRN models which are not assumed with other
inference algorithms, such as neural networks.

The statistical learning methods including MLR, DLR and
TLR are still used sporadically compared to the other methods
discussed so far. Consequently, it is still difficult to identify which
BRN models in literature are preferred for statistical learning.
The statistical learning requires enough training data as well
as some level of time invariance in order to find generalized
descriptions of systems, and to make predictions from the data.
However, as the interest in applications of the MLR techniques
continues to grow, and the efficiency of learning from data
improves, it will also affect suitability of the MLR techniques for
use with the different BRN models.

Another interesting viewpoint is to evaluate what inference
methods are used for different inference tasks. The numbers of
papers for given combinations of the inference tasks and the
inference methods are provided in Table 10. With one exception,
there is at least one paper for each such combination, however,
the level of interest varies considerably. In particular, the largest
number of papers for all the inference tasks considered assume
the Bayesian analysis and the methods for the model fitting to
data. On the other hand, the sum of squared errors, the UKF, and
the PSO methods are generally the least assumed. As discussed
previously, the sum of squared errors is used often, but rarely
mentioned explicitly whereas the UKF and the PSO methods are
usually rather difficult to implement.

Assuming Table 10, we can compare the levels of interest for
two or more methods and the given inference task. For example,
the EM and the MCMC methods are used equally often for
the sensitivity analysis whereas the MCMC method is preferred
over the EM method for the identifiability task. The LS and the
regression methods seem to be always preferred over Kalman
filtering due to its implementation complexity. Interestingly, the
MLR methods appear to be considered more often than the
ABC, the variational Bayesian inference, the UKF, and the PSO
methods, but comparably often to the EKF.

5.1. Future Research Directions
Tables 9, 10 together with the data in Tables 2, 7 can be used
as guidelines to define new research problems which have not
been sufficiently investigated in literature. We can separate
the models, tasks and methods into the groups according to
their levels of interest. Due to sparsity of data in Table 9, it
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TABLE 8 | The number of papers concerning the estimation tasks and methods for BRNs in given years.
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TABLE 9 | The adjusted number of papers concerning given estimation methods and given BRN models.
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is easier to enumerate the problems which have already been
well-investigated in the literature. Such cases are highlighted in
Table 9, and they include:

• The identification and inference tasks with the Markov
processes, state space representations, differential equations,
polynomial function, S-system, Langevin and Fokker-Planck
equations, and the CME approximation models;

• Most of the inference methods with the Markov processes,
state space representations, and the differential equation
models;

• Some inference methods assuming the Poisson process, S-
system, polynomial function, Langevin equation, and the CME
approximation models;

• The Bayesian methods with the MAP and ML inferences with
most of the models considered;

• The LS regression and the optimization programming mainly
with the Markov processes, state space representations,
differential equations, S-system and the polynomial models;
and

• The search methods with the Markov processes, state
space representations, differential equations, and the CME
approximation models.

The bifurcation analysis appears to be the least considered task
for all models. However, in many papers, the bifurcation analysis
may not be referred to explicitly as it is performed as part of
the sensitivity analysis. Similar comments can be made about
the sum of squared errors. From Table 9, we observe that also
machine learning methods have been considered sporadically
and only for some BRN models to solve the inference problems.
Comparing machine learning methods with the conventional
methods of statistical inference may be one of the most
interesting research avenues in near future. It is likely that
machine learning is more beneficial for some models, depending
on the availability of observations and training data. In addition,
we can observe from Table 10 that the optimum experiment
design did not receive as much attention in literature as other
inference tasks.

There are likely other research opportunities which are not
immediately apparent from the tables in previous sections. For
instance, the minimum mean square error (MMSE) estimator
is only discussed in the reference (Koeppl et al., 2012). Since
the estimation errors may have different distributions depending
on the BRN model considered, the generalized linear regression
(GLR) can be assumed as a simple to implement, universal and
yet powerful statistical learning technique. The GLR method
has not been investigated for the inferences in BRNs. It is
also useful to estimate other quantities in addition to inferring
the parameter values. For example, the distributions of species
counts are estimated in Atitey et al. (2018b). Knowledge of
the parameter distributions greatly affects the available choices
of estimators and their performance. Another unexplored
strategy is the compressive sensing (CS) which exploits the
sparsity in parameter spaces. Among machine learning methods,
the transfer learning has not been used for inferences in
BRNs in order to exploit the increasing production of omics
data (Weiss et al., 2016).
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Furthermore, the vast majority of inference problems in
literature assume the well-stirred models of BRNs with the
reactions dependent solely on the species concentrations,
but not on the species spatial distributions. Assuming the
spatially resolved models of BRNs with the diffusion and other
phenomena of the molecular transport through complex fluids
is much more realistic. Such models are usually described by the
RDME (Lötstedt, 2018). Moreover, in many BRNs, the reaction
rates are time varying. The inferences of time varying parameters
in BRN models have not been explicitly considered in literature.

Most inference problems in literature assume simple models
of measurements, such as obtaining the noisy concentrations
of species at discrete time instances. In order to increase
the sensitivity of measurements, the observations are
often accumulated in time (Folia and Rattray, 2018). The
transformations, such as the time integration of measurements
must be incorporated into the BRN models when devising
the interference strategies. Since the measurements may affect
the biological processes, the number and duration of the
measurements should be minimized in space and in time.
In addition, the measurement noise is often (but not always)
assumed to be independent of the species concentrations and
Gaussian distributed. In realistic in vivo and in vitro experiments,
the measurement noises are correlated in time and with other
measurements, and also dependent on the reaction rates and
the species concentrations. It would be very useful to report
the statistical properties of measurements from the different
laboratory experiments. Having such statistical description of
measurements can considerably improve the efficiency and
accuracy of the inference methods in BRNs.

More generally, the performance of various inference
strategies is greatly dependent on the structure, parameter values
and the initial state of the BRN considered. These aspects were
consideredmostly to optimize the data fittingmethods, but much
less for the other inference methods. There is a trade-off in
mechanistically employing the universal inference methods, and
adopting these methods to specific scenarios of the BRNs. The
latter approach may improve the performance and efficiency of
the parameter inference at the cost of increased implementation
complexity. More research is needed to jointly explore the
model simplification strategies and the parameter estimation
strategies as in Eghtesadi and Mcauley (2014). However, it is
always important to test and validate all the inference algorithms
devised. In some papers, the inference algorithms are tested
on multiple data sets, but a general methodology for testing
and validating the inference algorithms for BRNs have not been
presented in literature.

Many papers on the inferences in BRNs are concerned with
the implementation aspects rather than the concepts. It would
be useful to separate the inference concepts and strategies form
their implementation. For example, the Bayesian inference can
be implemented using the stochastic sampling, the ABC, the
variational inference, the EM and several other methods.

Finally, let’s not forget that the ultimate goal of performing the
statistical inferences in BRNs is to improve our understanding of
the in vivo and in vitro biological systems and phenomena. It is
primarily dependent on having the sufficiently accuratemodels of

these systems including knowing the values of their parameters.
As the experimental techniques improve, the new data from
the experiments will likely stimulate the developments of new
biological models, and thus, there will also be the need for new
inference methods and strategies.

6. CONCLUSIONS

The aim of this review paper was to explore how various inference
tasks and methods are used with different models of BRNs. The
key concepts of modeling and the parameter inferences for BRNs
were discussed. The dependency between tasks, methods and
models were captured in tables containing the paper counts.
More detailed information is provided in Supplementary Tables

including the links for selected papers to their citations in
Google Scholar.

The common models and inference tasks and methods for
BRNs were identified by text mining the cited references. The text
mining was partly automated using text processing scripts. Such
automation is indispensable when dealing with a large number
of references as is the case in this paper. For convenience, the
identified models and methods were presented under several
loosely defined categories. The most common models of BRNs
in literature are the mass action kinetics, Markov processes, state
space representations, and differential equations. Somewhat less
common, but still popular models include the kinetic rate law,
mechanistic models, Poisson processes, polynomial and rational
functions, the S-system model, the Langevin equation, and the
CME based approximation models.

Several previously published review papers concerning
the inferences in BRNs were listed. The relevant graduate
research theses from the past decade were also outlined,
since they tend to contain comprehensive literature surveys
and tutorial style explanations. We observed that the most
common inference tasks are concerned with the model
identifiability, the parameter inference and the sensitivity
analysis. The most common inference methods are the
Bayesian analysis using the MAP and ML estimators, the MC
sampling techniques, the LS regression, and the evolutionary
algorithms for data fitting including the optimization
programming, the simulated annealing, and the scatter and
other searches.

In the last part of the paper, the levels of interest in different
inference tasks andmethods for given BRNmodels were assessed.
This allowed us to identify the inference problems for BRNs
which were less explored in the literature previously. Our study
revealed that the interest in the inference problems in BRNs
peaked in 2014. This may indicate that development of the
traditional statistical methods has saturated, and the current
focus is more on their efficient implementation, especially to
process the massive amounts of data. The new developments
will likely be driven by the machine learning methods and
the continuing progress experimental techniques. The results
presented in this review can be used to develop a coherent theory
comprising the models and methods for the statistical inferences
in BRNs.
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