
Abstract 

In children, the most commonly encountered type of leukemia is
acute lymphoblastic leukemia (ALL). An important source of morbidity
and mortality in ALL are viral infections. Even though allogeneic trans-
plantations, which are often applied also in ALL, carry a recognized risk
for viral infections, there are multiple factors that make ALL patients
susceptible to viral infections. The presence of those factors has an
influence in the type and severity of infections. Currently available treat-
ment options do not guarantee a positive outcome for every case of viral
infection in ALL, without significant side effects. Side effects can have
very serious consequences for the ALL patients, which include nephro-
toxicity. For this reason a number of strategies for personalized inter-
vention have been already clinically tested, and experimental approach-
es are being developed. Adoptive immunotherapy, which entails admin-
istration of ex vivo grown immune cells to a patient, is a promising
approach in general, and for transplant recipients in particular. The ex
vivo grown cells are aimed to strengthen the immune response to the
virus that has been identified in the patients’ blood and tissue samples.
Even though many patients with weakened immune system can benefit
from progress in novel approaches, a viral infection still poses a very sig-
nificant risk for many patients. Therefore, preventive measures and
supportive care are very important for ALL patients.

Introduction

According to the National Comprehensive Cancer Network (NCCN)
guidelines, which are a most valuable resource for cancer, acute
leukemia is considered a disease condition with high risk for infec-
tious complications. In children, the most commonly encountered type
of leukemia is acute lymphoblastic leukemia (ALL).1 ALL, in particular,
is the most prevalent type of neoplasia in pediatric cancer patients
undergoing chemotherapy, which develop acute respiratory viral infec-
tions.2 Even though allogeneic transplantations, which are often
applied also in ALL, carry a recognized risk for viral infections, there
are multiple factors that make ALL patients susceptible to viral infec-
tions.3 The presence of those factors has an influence in the type and
severity of infections.
The development of ALL as a disease itself has been attributed to a

lack of mobilization of the immune system, due to decreased exposure
to infectious agents.4 A weak immune surveillance would permit onset
of ALL, and in parallel be accompanied by a weak defense against viral
infections. Both susceptibilities (to ALL and viruses) can be attributed
to an impaired ability to induce increases in stimulants of the adaptive
immune response such as interferon gamma (IFNg) and interleukin-
12 (IL-12), and conversely increased capacity to secrete immunosup-
pressive hormones such as transforming growth factor-b and IL-10.5-7

Feedback regulation of transcription factors that control cytokine gene
expression is not intact in malignant disease.8,9 In fact, ALL is associ-
ated with evidence for a cytokine imbalance at diagnosis, for example
decreased steady state levels in IFNg and increased levels of IL-10.5,10,11

Disease progression of ALL further impairs function of the immune
system, as ALL is by definition an immunosuppressive disease that has
been notably linked to neutropenia.12 Additionally, most effective ther-
apeutic strategies for ALL are immunosuppressive.13 This includes
steroids, which have been linked to Varicella-Zoster virus (VZV) infec-
tions.14 Loss of humoral immunity in ALL is considered particularly
serious.15 After therapy, B- and T-lymphocytes need between six months
and one year to recover the full range of their activity. Furthermore,
therapeutically applied virus as part of the antileukemic scheme has
been reported as causative of a fatal infection, where a live attenuated
VZV vaccine was used as part of the therapeutic strategy.16

Also factors that concern individual patients, such as genetic alleles
that encode specific antigens can affect susceptibility to virus infec-
tion. For example the DEFB1 gene haplotype [encodes b-defensin-1
(hBD-1)] was associated with herpes viruses prevalence in the serum
of children with acute lymphoblastic leukemia.17 In particular, carriers
of the GCA haplotype were found to have a significantly higher rate of
antibodies against cytomegalovirus (CMV) and Herpes simplex virus
(HSV) in ALL children compared to controls (CMV: 68 vs 29%, P=0.006;
HSV: 56 vs 26%, P=0.04, respectively), while no association was found
for antibodies against Epstein-Barr virus (EBV) by GCA haplotype in
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case and controls (58 vs 40%, P=not significant).17 This suggests that
leukemic patients carrying untranslated variants of hBD-1 have a high-
er susceptibility to herpes virus infections than controls.17

Finally, in cases that need allogeneic transplantation, T-cells are
pharmaceutically depleted to prevent graft-versus-host disease
(GvHD).18 This depletion of lymphocytes removes an important barrier
against viral infections.19 As an association of human leucocyte anti-
gen class II polymorphic variant with incidence of precursor B-cell and
T-cell ALL was made, it would be interesting to learn if this has effects
on the susceptibility to viral infections.20

ALL patients may suffer from viral infections through reactivation of
a latent, preexisting virus due to the patients’ weakened immune sys-
tem (for example CMV), especially after the additional immunosup-
pressive regimen for allogeneic transplantations, or by infections that
occurred after onset of ALL, which include nosocomial infections.21,22

In viral infections where symptoms overlap, microbiological diagnosis
and contact preventive measures are crucial, and strict isolation for all
patients admitted on hospital ward during seasonal outbreaks of virus-
es that pose a severe risk to immunosuppressed patients is recom-
mended.23,24

All patients who meet the criteria for examination should be tested
for a precipitating infection, including culture of blood and urine,
depending on symptoms chest radiography, and screening for EBV, CMV,
parvovirus B19, human immunodeficiency virus (HIV), and human her-
pes virus-6 (HHV6).25 The nasopharyngeal aspirate can also give infor-
mation on the presence of virus in acute respiratory infections of pedi-
atric ALL patients.2 An example of sensitive method for diagnosis of
active viral infection, and also a reliable marker of successful clearance
of virus from the blood is real-time polymerase chain reaction (PCR), as
it is used to monitor for CMV.26 At least in the case of CMV it is consid-
ered a more reliable marker than antigen detection.26

Our search strategy included use of the data available in Pubmed,
Centers for Disease Control and Prevention (CDC; www.cdc.gov), the
registry of patient studies ClinicalTrials.gov, and NCCN (www.
nccn.org) for the terms that describe all viruses described herein, their
pathology, and intervention methods that include clinical, translational,
and experimental approaches.

Consequences of viral infection or reactivation

Types of viral infections that occur during ALL, especially after allo-
geneic transplantation, can have serious consequences, include aden-
ovirus (ADV), EBV, CMV, VZV, BK, HHV6, HSV, and influenza virus.18,27-29

Even though in healthy children most of these infections can be over-
come without serious consequences, in ALL patients they can cause seri-
ous morbidity and can even lead to a fatal outcome.
Many of the characterized virus types that are associated with fatal

outcome (VZV, CMV, HHV6, EBV, HSV), belong to the herpes virus fam-
ily, Herpesviridae. In particular, these herpes virus family members
(VZV, CMV, HHV6, EBV, HSV), are known to cause serious complica-
tions, and in some cases death of ALL patients. Most of these viruses
can be identified by large-scale multiplex PCR.27 It is very interesting
that at least two viruses that belong to this family have established the
capacity to interfere with the function of the immune system by pro-
ducing homologues of immune modulators of the host, notably the
cytokine IL-10. CMV and EBV generate polypeptides (cmvIL-10 and
ebvIL-10, correspondingly) that modulate the immune response
against virus and, experimentally even against the malignant cells.30

Specifically, viral IL-10 was shown experimentally to activate transcrip-
tion factor STAT3 and repress the cytokine tumor necrosis factor-a in
mammalian cell lines.31,32

Cytomegalovirus
CMV is a well-known risk for transplant recipients (e.g., resulting in

pneumonitis, or ventriculoencephalitis), which is monitored by PCR.33-
35 Patient CMV seropositivity with or without reactivation is the most
important prognostic factor for survival and treatment-related mortality
in stem cell transplantation from unrelated donors using pretransplant
in vivo T-cell depletion with anti-thymocyte globulin. By multivariate
analyses, CMV seropositivity remained the strongest independent neg-
ative factor for treatment-related mortality (relative risk: 5.3; confi-
dence interval: 1.9-14.6; P=0.002).36

Pathology of viral infections in ALL can be exacerbated by adrenal
insufficiency. Adrenal insufficiency due to suppression of the hypothala-
mic-pituitary-adrenal axis by the glucocorticoid (GC) treatment in ALL
may aggravate the effects of infections.37 Particularly after hematopoiet-
ic stem cell transplantation (HSCT), adrenal insufficiency may follow the
GC administration that is used to ameliorate GvHD.38 Although rare,
CMV infection itself has also been reported as a primary cause of adrenal
insufficiency, necessitating early diagnosis and treatment.39,40

Adenovirus
ADV infection of ALL patients during standard chemotherapy can

lead to hepatitis, which can be fatal.41,42 On the other hand, systemic
ADV infection has been noted after death from multiple organ failure,
in an ALL patient that had undergone allogeneic peripheral blood stem
cell transplantation.43 In general ADV infection is a frequent complica-
tion after stem cell transplantation from alternate donors in the pedi-
atric population.44 This makes it necessary to develop innovative treat-
ment modalities that can improve the prognosis of ADV-infected,
immunecompromised patients.45

Varicella-Zoster virus
VZV infection has been also reported in connection with a high-dose

glucocorticoid dexamethasone administration.46,47 VZV can be fatal both
by infection of the ALL patient, as well as after reactivation of a latent
VZV infection in the immunocompromised patient.47 Liver failure due to
VZV infection has been early recognized as a fatal complication in ALL.48

Herpes simplex virus
There have been reported deaths of transplant recipients from HSV

pneumonia in spite of the use of acyclovir and foscarnet, and in spite
of in vitro-sensitivity of HSV isolates from those pediatric ALL patients
to foscarnet.49 HSV was also documented by immunohistochemistry
and PCR, after autopsy of a 22-year old patient that died from multisys-
tem organ failure, while in remission after chemotherapy for ALL.50

Epstein-Barr virus
EBV, which can cause lethal infections also in ALL remission, may

cause hemophagocytic lymphohistiocytosis (HLH), a syndrome of
impaired immunity that presents an uncontrolled hyperinflammatory
response.25,51 EBV-linked fatal hemophagocytic syndrome can result to
bone marrow and hepatic failure.52

Comparison of IFNg, IL-10 and IL-6 may be useful for distinguishing
between bacterial sepsis, viral infections, and HLH. Using the criteria
IFNg >75 pg/mL, and IL-10 >60 pg/mL, sensitivity and specificity of diag-
nosing HLH is 98.9 and 93.0%, respectively.53 Apart from EBV, CMV,
HHV6, parvovirus B19, and HIV can cause HLH, however EBV is the most
consistently reported virus associated with HLH.25 EBV reactivation can
complicate presentation of other infections including CMV and HHV6.54

Human herpes virus-6
HHV6 is increasingly recognized as an important opportunistic

pathogen.55
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HHV6 can complicate the clinical presentation of other infections
including CMV, and is likely also inherited through the germline.56

Human immunodeficiency virus
HIV infection in patients with hematological malignancies, deter-

mined by the presence of anti-HIV antibodies has been reported. It was
mostly encountered in patients diagnosed with B-cell lineage derived
malignancies.57 Perinatally transmitted HIV has also been reported in
the case of a five-year old child with pre-B cell ALL. The child was suc-
cessfully treated with anti-retroviral agents.58 Currently a clinical trial
is recruiting HIV-positive hematologic cancer patients (NCT00968630).

Rhinovirus
In children, in general, rhinovirus infection has shown the potential

for a more severe clinical course than respiratory syncytial virus (RSV)
and influenza A/B infections.59 There is no widely used rhinovirus-tar-
geted treatment, however several agents including pleconaril, BTA-798,
and inhaled IFN-b 1a (SNG001), are being tested in the general patient
population with rhinovirus infections.60 Globulin-replacement therapy
is generally not helpful, because the infectious burden of rhinovirus in
HSCT recipients is mainly due to impairment of the T-cell mediated
immunity.61

Respiratory syncytial virus
The presence of RSV is not rare in nasopharyngeal aspirate and

blood samples of patients with neoplasia and acute respiratory infec-
tions.2 For RSV, which is monitored by real-time PCR, next to the
NCCN-recommended ribavirin, at least one possible option, both for
prophylaxis and also for persistent or serious RSV infection of pediatric
ALL patients, is Palivizumab, a humanized monoclonal antibody direct-
ed against the fusion protein of RSV.62,63 Resistance to palivizumab is
relatively rare but possible.64 Experimental treatments that include a
small interfering RNA are under development.65,66 It is important to
note that RSV is reportedly very common in pediatric autopsies of
patients with severe respiratory infectious diseases, and may be the
most common virus identified after deaths that have not been linked to
a pandemic.67,68

Parvovirus B19
Parvovirus B19 can kill a patient in the event that the resulting pneu-

monia does not respond to treatment.69,70 Apart from pneumonia, the
development of a B19-associated HLH is also possible.71

Influenza virus
Influenza virus, in particular the H1N1 type, is well known to become

lethal in patients that have compounding serious health problems.28

Norovirus
Norovirus (NV) can also be fatal in immunocompromised patients,

and this could pose a risk to ALL patients, especially after HSCT.72

Norovirus causes gastroenteritis, where elevated blood lactate was pro-
posed to assist in predicting mortality.73 While ribavirin, interferons,
and immunoglobulins might have some benefit to the patients, an
effective vaccine is urgently needed for this virus.73-75

Other viruses
Also reactivation of polyomaviruses BK and John Cunningham virus

is increasingly prevalent cause of morbidity and mortality in immuno-
compromised patients.76 Primary infection occurs during childhood
through respiratory or urino-oral transmission.77

Other viruses that posed a lethal threat to ALL patients in the past
such as the measles virus, are far less frequently encountered today;

among several reasons, due to progress in vaccine development, and
years of implementation of population-wide vaccination programs
(measles-mumps-rubella vaccine).15,78-80

Limits of established methods for treatment
of viral infection and prophylaxis against viral
reactivation in acute lymphoblastic leukemia
patients

As there is currently no drug that can be guaranteed to cure severe
viral infections in patients with compromised immune system, the opti-
mum choice of treatment is subject of ongoing discussion and improve-
ments. Two main sources of published guidelines can be mentioned
here, namely the non-profit NCCN and the public health institute CDC,
a federal agency under the Department of Health and Human Services
(one brief summary of recommended antivirals is provided in Table 1).

Neutropenia
For neutropenia, which is a contributing factor for infections during

chemotherapy, myeloid growth factors are recommended as primary
prophylaxis; in consideration of the burden of cost for healthcare for
febrile neutropenia and the prophylaxis, it is recommended to focus on
therapeutic benefit.81,82 In regard to treatment aimed at the virus, an
important fact is that often the antiviral agents used against a virus
that proved resistant to the first line drug, often carry a significant bur-
den of potential side effects.

Cidofovir and its alternatives
The choice, therefore, needs to take into account the ability of the

patient’s organism to tolerate specific toxic agents. For example, the
agent cidofovir has been gradually changing position in the NCCN top
choice list of agents used for CMV prophylaxis during the last two years,
mainly due to substantial nephrotoxicity. Currently the NCCN panel rec-
ommends valacyclovir or acyclovir as prophylaxis against CMV reactiva-
tion, and monitoring by PCR or antibody-based methods.22,83,84 In 2015
cidofovir is regarded as a third-line treatment option for CMV, while fos-
carnet is generally a more preferred option for acyclovir-resistant CMV
(foscarnet could be applicable even in neonates) due to less (but still sig-
nificant) potential nephrotoxicity.85 Monitoring of drug resistance to
ganciclovir, foscarnet and cidofovir is performed by genotyping.86-89

Hyperimmune anti-CMV globulins have been also used as a passive
form of immunization, for prophylaxis against CMV with some
success.35,90 Acyclovir, valacyclovir, and famciclovir are recommended
for prophylaxis against HSV reactivation, especially for transplant
recipients (both autologous and allogeneic) and for a long time period,
of over 30 days, recipients of allogeneic HSCT, in case of GvHD or of fre-
quent HSV reactivations before transplantation. However, patients who
already receive foscarnet or ganciclovir to prevent CMV reactivation do
not need additional administration of acyclovir.
ADV, and several other viruses are also treated with cidofovir, which

in those cases might be better tolerated than in CMV infections.91

Alternatively, treatment with a modified dosing regimen of cidofovir
was well tolerated and high-risk ADV infections resolved in seven pedi-
atric allogeneic hematopoietic progenitor cell transplant recipients.92

For HSCT patients that were seropositive for VZV before the trans-
plantation, the NCCN panel recommends prophylaxis with acyclovir for
at least 1 year after HSCT. This prophylaxis should be extended in cases
that immunosuppressive treatment is prolonged. Drugs used in prophy-
laxis against HSV are active also against VZV. In contrast, valacyclovir
and acyclovir have only weak activity against CMV, even though they
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have a good safety profile.22 Therefore, surveillance and preemptive
therapy with ganciclovir or foscarnet is still required for patients that
are seropositive for CMV. Another, less studied but potentially fatal her-
pes family member, which may prove sensitive to ganciclovir, foscarnet
or cidofovir is HHV7; can be detected by nested PCR and antibody-based
methods, including the enzyme-linked immunosorbent assay
(ELISA).93-95 It may cause mutually exclusive infections with HHV6,
and can lead to lethal encephalitis.
In the case of influenza virus, established prevention and treatment

methods have a good record also for ALL patients. Neuraminidase
inhibitors, for instance, improve outcome of patients with leukemia
and influenza; however, the best protection from pneumonia is offered
by preventive vaccination.96-98

Another virus that can become reactivated during immunosuppres-
sion is hepatitis B virus (HBV), for which lamivudine was recommend-
ed for prophylaxis, with the additional note for a need for extended use
in cases of prolonged immunosuppression of patients that are positive
for the HBV antigen; however resistance has been often noted, and
therefore it is recommended to use in combination with other drugs
such as adefovir.99,100 A far lower probability of resistance, exists for
tenofovir and entecavir and therefore either one of these two drugs can
be considered as an effective monotherapy.101,102 Conversely, tenofovir
and entecavir are not recommended to use in combination, unless a
very high viral load is present (NCCN prevention and treatment of can-
cer-related infections, version I, 2015). Detection of HBV can be made
by detection of antibody to hepatitis B core antigen, and by PCR-based
determination of serum HBV DNA level.103,104

Several drugs have been removed from the list of preferred agents
against virus-resistant disease, due to the lack of evidence for a cur-
ative substantial effect. In contrast, toxic drugs such as e.g., cidofovir
remain as important treatment options, especially for CMV, due to
numerous evidence-based studies that have demonstrated high anti-
viral activity.105,106 A lipid conjugate of cidofovir labeled CMX001
(brincidofovir) is increasingly used against DNA viruses (ADV, CMV,
polyoma, etc.).107,108 CMX001, is an orally bioavailable derivative of
cidofovir (hexadecyloxypropyl cidofovir), and recently completed a
phase II clinical trial for preemptive treatment of ADV (NCT
01241344).109

Advancing frontier of treatment

Currently available treatment options do not guarantee a positive
outcome for every case of viral infection in ALL, without significant
side effects. For this reason a number of strategies for personalized
intervention have been already clinically tested, and experimental
approaches are being developed to translate progress from basic and
preclinical research into specific treatment strategies (www.clinicaltri-
als.gov). Personalized intervention can be effective, however, to date
high cost prevents a wider application. Experimental approaches on the
other hand, may limit cost of treatment and improve outcome; they
need, however, to be proven in the clinical setting.
The need to improve antiviral treatment options has led to several
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Table 1. Currently recommended antiviral agents for patients with weakened immune system and high risk for viral infection or reac-
tivation.

Virus                 Treatment, alternative drugs                                                 Disease state (links: further information)
                         (CDC & NCCN recommended 1.2015)

HSV                         Acyclovir, famciclovir, valacyclovir                                                                  Active therapy, neutropenia, mucositis
                                                                                                                                                               https://www.nccn.org/store/login/login.aspx?ReturnURL=
                                                                                                                                                               http://www.nccn.org/professionals/physician_gls/pdf/infections.pdf
VZV                          Acyclovir, famciclovir, valacyclovir                                                                  Active therapy, neutropenia
                                                                                                                                                                      http://www.rch.org.au/clinicalguide/guideline_index/Chickenpox_varicella/
CMV                        Preemptive valganciclovir, ganciclovir                                                          Stem cell transplantation, treatment with alemtuzumab
                                                                                                                                                               http://www.mayoclinic.org/diseases-conditions/cmv/in-depth/
                                                                                                                                                               CON-20029514
CMV                        Second/third line foscarnet, cidofovir                                                          Resistant CMV (stem cell transplantation, treatment with alemtuzumab)
                                                                                                                                                               https://www.nccn.org/store/login/login.aspx?ReturnURL=
                                                                                                                                                               http://www.nccn.org/professionals/physician_gls/pdf/infections.pdf
HBV                         Entecavir, tenofovir, lamivudine, adefovir, telbivudine                             Resolved HBV infection, HBV antigens, transplantation, anti-CD20/or
                                                                                                                                                               CD52 therapy
                                                                                                                                                               http://www.cdc.gov/hepatitis/HBV/HBVfaq.htm#b12
HCV                         Ledipasvir/simeprevir and sofosbuvir, paritaprevir and ritonavir,         Transplantation, anti-CD20 therapy, corticosteroids
                                ombitasvir and dasabuvir                                                                                 http://www.hcvguidelines.org/full-report-view
HIV                          Integrase inhibitors, non-nucleoside reverse transcriptase                  Chemotherapy, targeted therapy
                                inhibitors                                                                                                             http://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-
                                                                                                                                                               guidelines/0
Influenza A/B         Oseltamivir, zanamivir                                                                                      Influenza outbreaks (subtype specific)
                                                                                                                                                               http://www.cdc.gov/flu/professionals/antivirals/antiviral-use-influenza.htm
RSV                          Ribavirin                                                                                                               Neutropenia, seasonal pattern
                                                                                                                                                               http://www.cdc.gov/rsv/clinical/description.html
Adenovirus            Cidofovir                                                                                                              Compromised immune system, seasonal pattern
                                                                                                                                                               http://www.cdc.gov/adenovirus/hcp/prevention-treatment.html
CDC, Centers for Disease Control and Prevention; NCCN, National Comprehensive Cancer Network; HSV, Herpes simplex virus; VZV, Varicella-Zoster virus; CMV, cytomegalovirus; HBV, hepatitis B virus; HCV, hepatitis C
virus; HIV, human immunodeficiency virus; RSV, respiratory syncytial virus.
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research lines. One important tool that has entered clinical testing and
is in constant preclinical refinement is the use of modified cells of the
patients’ immune system. This option seeks to maximize clearance of
the virus, while preserving function of the patients’ vital organs that
are sensitive to several antiviral as well as antineoplastic drugs.
Cidofovir, as we discussed above, is an effective drug that may have
serious side effects. 

Adoptive immunotherapy

Adoptive immunotherapy is a promising approach in general, and for
HSCT recipients in particular. A field where adoptive immunotherapy is
particularly important is the growing field of allogeneic cord blood
transplantation (CBT).110 Even though CBT has many advantages over
e.g., bone marrow transplantation, immune cells in the cord blood are
generally in a more immature developmental state than corresponding
cell types in the bone marrow or peripheral blood, which poses a signif-
icant risk for recipients with infection. Therefore, several approaches
are developed, which include antigen-specific T cells from cord blood,
redirecting cord blood T cells using chimeric antigen receptors, and
generating cord blood-derived natural killer cells and regulatory T
cells.18,110,111 Recently, cord blood-derived naïve T-cells were exposed to
modified antigen-presenting cells, and transduced with the CAR.CD19
retroviral vector, developing thereby a combination of antiviral and
antileukemic activity. Specifically these cells could cause lysis of viral
antigen–pulsed autologous phytohemagglutinin blasts, demonstrating
the capacity to target simultaneously CMV, EBV, and ADV.112

At least theoretically, antigen presentation could suffice to direct T-
cell responses, and there are multiple methods under development to
harness the function of dendritic cells (DC).113 The importance of anti-
gen-presenting cells was demonstrated with DCs transfected with plas-
mid DNAs encoding a range of immunodominant and subdominant
viral antigens from EBV, CMV, and ADV. These were used to activate T
cells that were subsequently expanded in culture. This method had
clinical feasibility, as was shown recently, and with an even broader
range of encoded antigens. Namely, rapidly generated single-culture
virus-specific T cells could recognize 12 antigens from five viruses
(EBV, ADV, CMV, BK, and HHV6) on a small patient cohort that had
received allogeneic transplants.114 The group at Baylor College of
Medicine had previously described a method by which it is possible to
rapidly generate a single preparation of polyclonal (CD4+ and CD8+) T
cells which are specific for seven viruses (EBV, CMV, ADV, BK, HHV6,
RSV, and influenza virus) frequently described as important risk factors
affecting prognosis post HSCT.115 These broadly virus specific T cells
are now been evaluated clinically (ClinicalTrials.gov Identifier
NCT01570283).
Still, there is significant room for improvement of methodology for

adoptive immunotherapy, which can allow more frequent use. One
approach is a combination of regulatory and virus-specific T-cells to
increase the efficiency of transferred cells.116 Another approach is
interferon-g capture of the T cells that are subsequently transferred to
the patient: ADV-directed T-cells that were isolated by IFN-g capture
(thereby enriched on the basis of their capacity for IFN-g secretion)
were infused to pediatric HSCT recipients that were also treated with
cidofovir.117 The infusions could clear viraemia; however not all
patients clear the infection and some patients die.109 Therefore it can
be concluded that reconstitution of a functional immune response is
not under all circumstances possible in HSCT recipients.117 In part, the
need to strengthen the immune system may be also indirectly met by
supportive treatment.118 In fact, supportive treatment may, to some
extent, facilitate recovery from viral infections that are potentially dan-
gerous.118-120

Agents that target more than one molecular
pathway

Finally, an emerging research concept is to assay for pharmaceutical
agents that counter viral infections and malignant disease simultane-
ously, using compounds that inhibit growth of the virus and malignant
cells at the same time.121,122 ALL is not an exception to this option: at
Johns Hopkins University an artemisinin-based derivative was devel-
oped with a selective toxicity against both ALL cells and CMV, reportedly
without to interfere with growth of non-malignant cells.123 Also chloro-
quine, which has chemosensitizing activity against some types of
malignancy, was shown to improve the cross-presentation of non-repli-
cating influenza virus in vitro and T cell responses in mice following a
single administration of inactivated virus.124,125

Conclusions

From the state-of-the-art in research against viral infections it can
be concluded that even though most patients with weakened immune
system can benefit from progress in antiviral agents, a viral infection
in this patient group still poses a very significant risk. Therefore, pre-
ventive measures are very important.
In the case of severely immunocompromised patients such as trans-

plant recipients, patient isolation in a total protective environment
could prove an effective means of protection.126 Direct person-to-per-
son contact including inhalation of respiratory secretions from an
affected individual is the primary cause of infections for most viruses.
Contact with contaminated surfaces carries also an important risk;
however the viability of a virus on contaminated surfaces varies, from
the resilient NV that can remain infectious even in small titers, and in
the presence of disinfectants, to the unstable RSV that only remains
viable for a few hours on hands or surfaces.127 Therefore well-trained
personnel, especially in hand decontamination, and patient isolation,
are factors that limit viral complications in patients with a severely
weakened immune system. 
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