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Abstract: Funicone-like compounds are a homogeneous group of polyketides that, so far, have only
been reported as fungal secondary metabolites. In particular, species in the genus Talaromyces seem
to be the most typical producers of this group of secondary metabolites. The molecular structure of
funicone, the archetype of these products, is characterized by a γ-pyrone ring linked through a ketone
group to a α-resorcylic acid nucleus. This review provides an update on the current knowledge on
the chemistry of funicone-like compounds, with special emphasis on their classification, occurrence,
and diverse biological activities. In addition, their potential relevance as mycotoxins is discussed.

Keywords: fungal metabolites; natural products; Talaromyces; Penicillium; secondary metabolites; mycotoxins

Key Contribution: This review describes recent progress on the occurrence, detection, chemical
diversity, and bioactivities of the funicone-like compounds.

1. Introduction

Research on fungal secondary metabolites is mainly driven by remarks concerning
their bioactive properties, which can either be inherent to their role in biocenotic inter-
relations or their effects on human health, the latter depending on either their possible
accumulation in foodstuffs as mycotoxins, or eventual pharmaceutical relevance.

Funicones and structurally related compounds represent a homogeneous group of
fungal polyketides that were initially characterized as determinants of the antagonistic
abilities by the producers against other microorganisms, but were later found to possess
remarkable biological properties that have promoted their consideration as drug prospects.
Considering that these properties are partly based on observations concerning cytostatic
and antiproliferative effects on human cells, these products should be also evaluated with
reference to toxicological aspects related to possible contamination of foodstuffs by the
producing fungi.

In light of the novel knowledge developed in over a decade since the publication of a
previous review [1], this paper offers an update on the state of the art concerning occurrence,
bioactivities, structural, synthetic, and biosynthetic aspects of funicone-like compounds.

2. Structures and Chemical Properties

Funicone-like compounds include natural products characterized by a molecular
structure that is built on a γ-pyrone ring linked through a ketone group to a α-resorcylic
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acid nucleus. A total of 34 chemically defined compounds, which are referable to this basic
structural model, have been identified and characterized so far. Among them, 13 can be
considered true funicones because the typical moieties are present without alterations. The
other compounds, showing modifications on the α-resorcylic acid nucleus, on the γ-pyrone
ring, or on both moieties, are grouped in three subclasses, namely phthalide, furopyrone,
and pyridone types, depending on peculiar substructural variations (Table 1).

Table 1. List of funicone-like compounds gathered from the literature.

Code Name Formula Nominal Mass (U) Source

True Funicones

1 Funicone C19H18O8 374 [2–8]

2 Actofunicone C21H22O9 418 [9]

3 Deoxyfunicone C19H18O7 358 [5,7,9–14]

4 9,14-Epoxy-11-deoxyfunicone C19H18O8 374 [4]

5 9R,14S-Epoxy-11-deoxyfunicone C19H18O8 374 [14]

6 9S,14R-Epoxy-11-deoxyfunicone C19H18O8 374 [14]

7 3-O-Methyl-5,6-epoxyfunicone C20H20O9 404 [15]

8 6-Hydroxyl-deoxyfunicone C19H18O8 374 [8]

9 Isofunicone C19H18O8 374 [16]

10 3-O-Methylfunicone C20H20O8 388 [5,7,17–26]

11 Rapicone C17H16O7 332 [27]

12 Pinophilone A C19H18O8 374 [28]

13 Pinophilone B C19H18O8 374 [28]

Furopyrone type

14 Penifupyrone C19H18O8 374 [5,17,18]

Phthalide type

15 Vermistatin (=fijiensin) C18H16O6 328 [3,4,6,7,9,12,20,21,28–48]

16 Acetoxydihydrovermistatin C20H20O8 388 [6,33]

17 6-Demethylvermistatin C17H14O6 314 [8,21,28,40,49]

18 14,15-Dihydrovermistatin C18H18O6 330 [6,8,12,28,33,36,38,41,44–46]

19 2”-epihydroxydihydrovermistatin C18H18O7 346 [21,28]

20 Hydroxydihydrovermistatin C18H18O7 346 [6,33]

21 Hydroxyvermistatin C18H16O7 344 [7,21,28,34]

22 5′-O-methyldihydrovermistatin C19H20O7 360 [28]

23 Methoxyvermistatin C19H18O7 358 [6,7,21,28,34,40,42,50]

24 Neosarphenol A C18H16O6 344 [40]

25 Penisimplicissin C16H14O6 302 [3,6,20,21,28,33,44,45]

26 6-Demethylpenisimplicissin C15H12O6 288 [21,28]

27 5′-Hydroxypenisimplicissin C16H14O7 318 [21]

28 Pinophilone C C17H16O6 316 [28]

29 Pinophilone D C18H18O7 346 [28]

Pyridone type

30 Penicidone A C18H17NO5 327 [51]

31 Penicidone B C17H15NO5 313 [51]

32 Penicidone C C19H19NO6 357 [18,21,28,51]

33 Penicidone D C20H21NO7 387 [17,18,28]

34 Talarodone A C20H23NO8 405 [18]
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2.1. True Funicones

In temporal terms, funicone [benzoic acid, 2-[[5-hydroxy-4-oxo-6-(1E)-1-propenyl-
4H-pyran-3-yl]carbonyl]-3,5-dimethoxy, methyl ester] (1) is the founder of this group of
compounds, originally characterized from a culture of Penicillium funiculosum [2]. Subse-
quently, a structural isomer, namely isofunicone (9) [16], and several derivatives, which
differ from the parent compound by few substitutions, were identified (Figure 1). This
subclass also includes some epoxide derivatives (4–7) on the γ-pyrone ring, two of them
(5,6) isolated from co-cultures of a strain of Penicillium sp. with the actinomycete Strepto-
myces fradiae [14]. Pinophilones A and B (12 and 13) are the only funicone-like compounds
presenting a dihydrofuran fragment obtained from the cyclization of the hydroxyl group
on the γ-pyrone ring and the double bond on the propenyl chain [28].

Toxins 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

2.1. True Funicones 
In temporal terms, funicone [benzoic acid, 2-[[5-hydroxy-4-oxo-6-(1E)-1-propenyl-

4H-pyran-3-yl]carbonyl]-3,5-dimethoxy, methyl ester] (1) is the founder of this group of 
compounds, originally characterized from a culture of Penicillium funiculosum [2]. 
Subsequently, a structural isomer, namely isofunicone (9) [16], and several derivatives, 
which differ from the parent compound by few substitutions, were identified (Figure 1). 
This subclass also includes some epoxide derivatives (4–7) on the γ-pyrone ring, two of 
them (5,6) isolated from co-cultures of a strain of Penicillium sp. with the actinomycete 
Streptomyces fradiae [14]. Pinophilones A and B (12 and 13) are the only funicone-like 
compounds presenting a dihydrofuran fragment obtained from the cyclization of the 
hydroxyl group on the γ-pyrone ring and the double bond on the propenyl chain [28]. 

 
Figure 1. Structures of true funicones (1–13): funicone, actofunicone, deoxyfunicone, 9,14-epoxy-11-
deoxyfunicone, 9R,14S-epoxy-11-deoxyfunicone, 9S,14R-epoxy-11-deoxyfunicone, 3-O-methyl-5,6-
epoxyfunicone, 6-hydroxyl-deoxyfunicone, isofunicone, 3-O-methylfunicone, rapicone, 
pinophilone A, and pinophilone B. 

The rising interest of the scientific community in these substances has led to the 
development of approaches for their synthesis. In particular, deoxyfunicone (3), 3-O-
methylfunicone (10) [52], and rapicone (11) [53] were efficiently prepared by carbonylative 
Stille cross-coupling reactions between methyl 2-iodo-3,5-dimethoxybenzoate and 
functionalized γ-pyrone (Figure 2). 5-Stannane derivatives were prepared starting from 
commercially available kojic acid in four steps [52,53]. 

Figure 1. Structures of true funicones (1–13): funicone, actofunicone, deoxyfunicone, 9,14-epoxy-11-
deoxyfunicone, 9R,14S-epoxy-11-deoxyfunicone, 9S,14R-epoxy-11-deoxyfunicone, 3-O-methyl-5,6-
epoxyfunicone, 6-hydroxyl-deoxyfunicone, isofunicone, 3-O-methylfunicone, rapicone, pinophilone
A, and pinophilone B.

The rising interest of the scientific community in these substances has led to the
development of approaches for their synthesis. In particular, deoxyfunicone (3), 3-O-
methylfunicone (10) [52], and rapicone (11) [53] were efficiently prepared by carbonyla-
tive Stille cross-coupling reactions between methyl 2-iodo-3,5-dimethoxybenzoate and
functionalized γ-pyrone (Figure 2). 5-Stannane derivatives were prepared starting from
commercially available kojic acid in four steps [52,53].
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2.2. Furopyrone Type

Penifupyrone (14) is the only member of the furopyrone type carrying a 5H-furo[3,2-
b]pyran-7(6H)-one moiety instead of a γ-pyrone ring (Figure 3). It was isolated for the first
time from an endophytic strain of Talaromyces sp., along with funicone, deoxyfunicone, and
3-O-methylfunicone [5].
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2.3. Phthalide Type

The molecular structure of compounds in this subclass includes a 4,6-dimethoxyphthalide
moiety (Figure 4). Vermistatin (15) is the reference compound of this group, deriving its
name from a strain of Talaromyces flavus identified in anamorphic-stage Penicillium vermicula-
tum [47]. This metabolite was later isolated as a product of Pseudocercospora (=Mycosphaerella)
fijiensis and wrongly reported as a new compound with the name fijiensin [30]. This is
not surprising because the attribution of different names to the same chemical structure
represents a recurring nomenclatural issue in natural product research [54].

Based on the currently available data, vermistatin represents the most frequent
funicone-like compound, having been extracted as a product of at least 15 species. It
is frequently extracted along with some derivatives, such as hydroxy- (21) and methoxyver-
mistatin (22), 6-demethylvermistatin (17), 14,15-dihydrovermistatin (18), hydroxy- (20) and
acetoxy-dihydrovermistatin (16), and penisimplicissin (25) [6,7,21,28,33,34,45,49].

Neosarphenol (24) is an isomer of hydroxyvermistatin, which was named on the basis
of the producing fungus, Neosartorya glabra (currently reclassified as Aspergillus neoglaber),
rather than with reference to its chemical structure [40].

2.4. Pyridone Type

This series includes compounds containing a γ-pyridone moiety. The molecular
structures of penicidone A and B (30,31) are characterized by the presence of an α-resorcylic
acid moiety linked through a ketone group to a γ-pyridone, whereas penicidone C, D and
talarodone A (32–34) contain the typical 4,6-dimethoxyphthalide moiety of vermistatin
replacing the α-resorcylic acid nucleus (Figure 5). Nevertheless, Murakami et al. [18]
represented penicidone D (33) in γ-pyridol form, instead of γ-pyridone form.
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3. Fungal Sources

The data summarized in Table 2 show that the fungi reported as funicone producers
have been recovered from various substrates, often in association with plants or other
organisms, and in diverse environments, both terrestrial and marine. They are also quite
heterogeneous in taxonomic terms, as they belong to two Ascomycetes classes: the Doth-
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ideomycetes and Eurotiomycetes. Members in the first class are sparse, being ascribed
to five orders, with each of them represented by a single strain. Even considering the
approximate taxonomic identification of three strains, which were only identified at the
genus level, it is clear that funicone biosynthetic aptitudes occur among Dothideomycetes,
and might be more widespread than currently known. Conversely, the Eurotiomycetes
look to be much more abiding producers and taxonomically homogeneous, with about
31 strains belonging to three genera in two families. Again, some uncertainty in identifica-
tion is to be noted, deriving from the absence of adequate support by sequencing of valid
DNA markers, and by the provisional ascription to Penicillium sp. of some strains prior to
the formal separation of the biverticillate Penicillium species and their assignment to the
genus Talaromyces [55]. In this respect, the identification of strain IFM53375 as Penicillium
simplicissimum was considered unreliable by leading taxonomists of these fungi based on
a secondary metabolite profile more respondent to Talaromyces [55]. In another case, the
producing strain (AF1-2) was not identified at all [26]; however, the image provided by
the authors showing its bright yellow mycelium and the overlying green sporulation in
culture on agar medium unequivocally allows its ascription to Talaromyces. In any case,
species in the genus Talaromyces are the most typical producers of funicone-like compounds;
with reference to the recent affirmation of the horizontal gene transfer concept [56,57], it
cannot be excluded that the other fungal species may have occasionally acquired their
funicone-biosynthetic abilities through this intriguing biological mechanism.

Table 2. Fungal species/strains reported as producers of funicone-like compounds.

Species Source/Lifestyle/Substrate Location Compounds Ref.

Dothideomycetes, Pleosporales, Didymellaceae

Phoma sp. nov. LG0217 Endophytic in
Parkinsonia microphylla

Tucson
(Arizona, USA) 15, 18 [36]

Dothideomycetes, Botryosphaeriales, Phyllostictaceae

Guignardia sp. No. 4382 Endophytic in Kandelia candel Hong Kong (China) 17 [49]

Dothideomycetes, Mycosphaerellales, Mycosphaerellaceae

Pseudocercospora
(=Mycosphaerella)

fijiensis
Banana plant Honduras 15 [30]

Dothideomycetes, Capnodiales, Dissoconaceae

Ramichloridium
apiculatum NHL2956 Air in bakery Nagoya (Japan) 11 [27]

Dothideomycetes, Cladosporiales, Cladosporiaceae

Cladosporium sp. JS1-2 endophytic in Ceriops tagal Hainan (China) 15 [35]

Eurotiomycetes, Eurotiales, Aspergillaceae

Aspergillus neoglaber
(identified as

Neosartorya glabra)
CGMCC 32286

Unknown China 24 [40]

Aspergillus ruber
(identified as

Eurotium rubrum)
SH-823

Soft coral (Sarcophyton sp.) Xuwen (China) 15, 23 [42]

Penicillium citreonigrum
PAI 1/1 C

Sponge
(Pseudoceratina purpurea) Bali (Indonesia) 3, 15, 18 [12]

Penicillium glabrum
SF-7123 Sediment Ross Sea

(Antarctica) 3 [13]



Toxins 2022, 14, 466 7 of 16

Table 2. Cont.

Species Source/Lifestyle/Substrate Location Compounds Ref.

Penicillium
simplicissimum

IFM53375
Unknown Japan 1, 15, 16, 18,

20, 25 [6]

Penicillium sp. Endophytic in Riccardia multifida Maoer Mountain (China) 8, 17, 1 [8]

Penicillium sp. Unknown Japan 3 [10]

Penicillium sp. Unknown Japan 9 [16]

Penicillium sp. Ash Mount Pinotubo (Philippines) 3 [11]

Eurotiomycetes, Eurotiales, Trichocomaceae

Talaromyces flavus 15 [29]

Talaromyces flavus
CCM-F748 Slovakia 15 [47]

Talaromyces flavus
FKI-0076 Soil Hiroo (Japan) 2, 3, 15 [9]

Talaromyces flavus
IFM52668 Unknown Japan 1, 4, 15 [4]

Talaromyces pinophilus
F36CF Endophytic in Arbutus unedo Favignana Isle

(Italy) 10 [58]

Talaromyces pinophilus
H608 Mangrove sediment Xiamen (China) 1, 3, 10, 15,

21, 23 [7]

Talaromyces sp. IPV2
(identified as

Penicillium funiculosum)
Apple root Sondrio Province (Italy) 1 [2,59]

Talaromyces pinophilus
LT4, LT6

Soil from rhizosphere of Nicotiana
tabacum

Lecce Province
(Italy) 7, 10 [15,19]

Talaromyces pinophilus
SCAU037

Soil from rhizosphere of
Rhizophora stylosa Techeng Isle (China)

10, 12, 13,
15, 17, 18,
19, 21, 22,
23, 25, 26,

28, 29, 32, 33

[28]

Talaromyces pinophilus
ST2

Soil from rhizosphere of
Nicotiana tabacum Scafati (Italy) 10 [25]

Talaromyces
purpureogenus MHZ 111 Soil Mohe (China) 15, 18 [46]

Talaromyces ruber
(identified as

Penicillium rubrum)
Water Berkeley Pit lake (USA) 15, 18, 25 [45]

Talaromyces sp. ZHS32 Marine sediment Zhejiang (China) 15 [39]

Talaromyces sp. AF1-2
(unidentified in
original report)

Salt pan Australia 10 [26]

Talaromyces sp.
HM6-1-1 Seawater Dongshan Isle (China) 15, 18 [38]

Talaromyces sp.
HN29-3B1

(identified as
Penicillium sp.)

Endophytic in Cerbera manghas Hainan (China) 15, 17, 19, 21
23, 25, 26, 27 [21]

Talaromyces sp. HSZ-43
(identified as

Penicillium sp.)

Endophytic in
Trypterigium wilfordii Shanxi (China) 1, 3, 10, 14 [5]
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Table 2. Cont.

Species Source/Lifestyle/Substrate Location Compounds Ref.

Talaromyces sp.
IFB-E022

(identified as
Penicillium sp.)

Endophytic in Quercus variabilis Zijin Mountain (China) 30, 31, 32 [51]

Talaromyces sp.
XWS02F62

(identified as
Penicillium sp.)

Sponge (Callyspongia sp.) Xuwen County (China) 15, 18 [41]

Talaromyces thailandiasis
KPFC 3399 Soil Thailand 15, 20, 25 [33]

Talaromyces verruculosus
CMI294548 Unknown Pakistan 15 [31]

Recently, some independent studies have reported that production of funicone-like
compounds may occur in co-cultures of various microbial strains (Table 3). Again, the
Eurotiomycetes are more represented in these few studies, and can be thought to provide
the genetic base for biosynthesis, which is eventually stimulated by the co-cultured strain
in the course of an antibiotic struggle, as clearly demonstrated in the case of the pairing
between Talaromyces siamensis and Phomopsis sp. (Sordariomycetes, Diaporthaceae) [43]. In
two cases, the partner microbe was represented by Streptomyces strains (Actinomycetota),
which are well-known for their capacity to modulate the metabolic potential of fungi [60].

Table 3. Microbial species/strains reported as producers of funicone-like compounds in co-cultures.

Species 1 Species 2 Source/Substrate Location Compounds Ref.

Alternaria alternata
YX-25

Streptomyces exfoliatus
YX-32 mangrove mud Yunxiao (China) 15 [37]

Penicillium sp.
WC-29-5

Streptomyces fradiae
007

rhizosphere of Aegiceras
corniculatum/sediment

Hainan (China)
Jiaozhou Bay (China) 3, 5, 6, 15 [14]

Talaromyces pinophilus
17F4103

Paraphaeosphaeria sp.
17F4110 soil Miyazaki (Japan) 10, 14, 32,

33, 34 [18]

Talaromyces siamensis
FKA-61

Phomopsis sp.
FKA-62 soil Japan 15 [43]

4. Biosynthesis

The potential biosynthetic pathways of funicone-like compounds have been investi-
gated by two independent research groups [21,28]. Figure 6 shows a possible scheme for
each type of compound proposed in the previous section. Funicone-like compounds are
epta and octaketides, originating from units of acetate-mevalonate. The main structural
differences can be caused by the folding of the eptaketidic and octaketidic chains, which
produce structures with a methyl or a propenyl group, respectively, on the γ-pyrone ring.
The presence of an amino group in compounds belonging to the pyridone type suggests
a possible transamination process during the biosynthesis of γ-pyridone. The origin of
the phthalide type can be attributed to the lactonization of the carboxylic group in the
α-resorcylic ring, with the hydroxyl group produced through the reduction of the exocyclic
ketone group.

Subsequent functional modifications (e.g., reduction, epoxydation, hydroxylation,
methylation, and acetylation) are responsible for the ample structural variability observed
in the group of funicone-like compounds.
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5. Bioactivities

As previously introduced, the biological activity of funicones was initially evaluated
with reference to antibiotic properties, generally evidencing poor effects against bacteria and
yeasts, and more relevant activities against filamentous fungi. Subsequent investigations
on antiproliferative properties against human cells line have become prevalent, underlining
the potential of these compounds as antitumor drugs. Additional data have been gathered
on the antiviral and the insecticidal properties, and the inhibitory effects toward several
enzymes; moreover, some minor bioactivities have been described. The outcomes of this
wide-ranging investigational work, as assessed in quantitative terms, are summarized in
Table 4.

Table 4. Main bioactivities of funicone-like compounds.

Name (Code) Bioactivity Concentration Bioassay Ref.

Actofunicone (2) Reinforcement of
miconazole 3.7 µM Candida albicans (IC50) [9]

6-Demethylpenisimplicissin (26) Enzyme inhibitory 9.5 µM α-glucosidase (IC50) [21]

Deoxyfunicone (3)

Anticholesterol 10 µM Efflux from RAW264.7 [7]

Antiviral 4.6 µM HCV (IC50 on Huh-7.5.1) [61]

Cytotoxic 22.6 µM KB (IC50) [5]

Enzyme inhibitory
24.3 µM Protein tyrosine phosphate 1B (IC50) [13]

1.1–4.4 µM HIV-1-integrase (IC50) [11]
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Table 4. Cont.

Name (Code) Bioactivity Concentration Bioassay Ref.

Lipid inhibitory 10 µM

Accumulation in HepG2

[7]Downregulation of FAS, ACC, HMGR

Decrease in oxLDL in RAW264.7

NO inhibitory 10.6 µM
40.1 µM

LPS-stimulated BV2 (IC50)
LPS-stimulated RAW264.7 (IC50) [13]

PGE2 inhibitory 32.3 µM LPS-stimulated BV2 (IC50) [13]

Reinforcement of
miconazole 1.6 µM C. albicans (IC50) [9]

2”-epiHydroxydihydrovermistatin (19) Enzyme inhibitory 8 µM α-glucosidase (IC50) [21]

9,14-Epoxy-11-deoxyfunicone (4) Antifungal 0.53 µmol/disc Aspergillus niger [4]

9R,14S-Epoxy-11-deoxyfunicone (5) Cytotoxic 3.97 µM H1975 (IC50) [14]

9S,14R-Epoxy-11-deoxyfunicone (6) Cytotoxic 3.73 µM
5.73 µM

HL-60 (IC50)
H1975 (IC50) [14]

Funicone (1)

Anticholesterol 10 µM Efflux from RAW264.7 [7]

Antifungal 0.27 µmol/disc Aspergillus fumigatus [4]

Cytotoxic 13.2 µM KB (IC50) [5]

Lipid inhibitory 10 µM
Accumulation in HepG2

[7]
Downregulation of FAS, ACC, HMGR

Isofunicone (9) Pollen growth inhibitory 8.02 mM Camellia sinensis (84%) [16]

Hydroxyvermistatin (21)

Anticholesterol 10 µM

Efflux from RAW264.7

[7]Upregulation of PPARγ, LXRα, ABCG1

Decrease scavenger receptors CD36, SR-1

Enzyme inhibitory 20.3 µM α-glucosidase (IC50) [21]

Lipid inhibitory 10 µM

Accumulation in HepG2

[7]Decrease in FAS, ACC, HMGR

Decrease in oxLDL in RAW264.7

Methoxyvermistatin (23)

Anticholesterol 10 µM Decrease scavenger receptors CD36, SR-1 [7]

Cytotoxic 0.056 mM
0.042 mM

KB (IC50)
KBv200 (IC50) [34]

Enzymatic inhibitory 236 µM α-glucosidase (IC50) [42]

Lipid inhibitory 10 µM Decrease in oxLDL in RAW264.7 [7]

3-O-Methylfunicone (10)

Anticholesterol 10 µM Efflux from RAW264.7 [7]

Antifungal 0.27 mM
Rhizoctonia solani, Fusarium solani,

Cylindrocladium scoparium,
Alternaria alternata (IC100)

[19]

Antiviral
5 µM decreased mortality of MDBK infected

by BoHV-1 [62]

6.2 µM HCV (IC50 on Huh-7.5.1) [61]

Cytotoxic/
antiproliferative/

proapoptotic

35.3 µM KB (IC50) [5]

10 µM MDBK (IC50) [62]

63.8 µM
63.3 µM

HCT116 (LD50)
HeLa (LD50) [26]

0.16 mM
HEp-2; inhibition colony formation,

decrease neutral red uptake, inhibition
O2 consumption (IC50)

[24]

0.07 mM
HeLa (44%); promotion p21;

downregulation cyclin
D1/Cdk4 complex

[63]
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Table 4. Cont.

Name (Code) Bioactivity Concentration Bioassay Ref.

0.21 mM

MCF-7; downregulates αvβ5 integrin,
MMP-9 inhibitor, impairs microtubule

assemblage, inhibitor of survivin, hTERT
and Nanog-1 expression,
reduces mammospheres

[64,65]

0.21 mM A375M (IC85, 48 h) [66]

0.14 mM
NCI-H2452; decreases αvβ5 integrin,
MMP-2, VEGF, ERK1/2; synergism

with cisplatin
[67,68]

Enzyme Inhibitory

12.5 µM
50.1 µM
34.3 µM

DNA polymerase κ
DNA polymerase η
DNA polymerase ι

[26]

5 mM DNA polymerase κ and η [52]

Insecticidal 0.14 mM Acyrthosiphon pisum (26.2%) [23]

Lipid inhibitory 10 µM

Accumulation in HepG2

[7]Decrease in FAS, ACC, HMGR

Decrease in oxLDL in RAW264.7

Penicidone A (30) Cytotoxic

60.1 µM
54 µM

46.5 µM
41.5 µM

SW116 (IC50)
K562 (IC50)
KB (IC50)

HeLa (IC50)

[51]

Penicidone B (31) Cytotoxic

54.2 µM
21.1 µM
29.6 µM
35.1 µM

SW116 (IC50)
K562 (IC50)
KB (IC50)

HeLa (IC50)

[51]

Penicidone C (32) Cytotoxic

80.8 µM
54.3 µM
44.3 µM
54.7 µM

SW116 (IC50)
K562 (IC50)
KB (IC50)

HeLa (IC50)

[51]

Enzyme inhibitory 51.9 µM α-glucosidase (IC50) [28]

Penifupyrone (14) Cytotoxic 4.7 µM KB (IC50) [5]

Penisimplicissin (25)

Cytotoxic −6.70
−5.83

CCRF-CEM (log10 GI50)
HL-60 (log10 GI50) [45]

Enzyme inhibitory 0.66 mM
0.33 mM

IL-1β (IC100)
caspase 1 (IC100) [44]

Rapicone (11) Enzyme inhibitory 5 mM DNA polymerase κ [52]

Vermistatin (15)

Antibacterial 0.076 mM Staphylococcus aureus,
Bacillus cereus (MIC) [35]

Anticholesterol 10 µM
Efflux from RAW264.7

[7]
Decrease scavenger receptors CD36, SR-1

Cytotoxic
0.28 mM KB (IC50) [34]

33.9 µM B16 (IC50) [39]

Enzyme inhibitory
29.2 µM α-glucosidase (IC50) [21]

107.1 µM α-glucosidase (IC50) [42]

Insecticidal 0.46 mM Helicoverpa armigera (IC50) [35]

Lipid inhibitory 10 µM

accumulation in HepG2

[7]Decrease in FAS, ACC, HMGR

Decrease in oxLDL in RAW264.7

NO inhibitory 52.7 µM LPS-stimulated BV2 (IC50) [46]

Phytotoxic 3.1–6.1 mM Banana leaves [30]

Reinforcement of
miconazole 2.1 µM C. albicans (IC50) [9]
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6. Potential Role of Funicone-like Compounds as Mycotoxins

The applicative aspects of studies concerning fungal bioactive secondary metabolites
involve their accumulation in food products and ensuing possible impact on consumers’
health. Within the multitude of such compounds described so far, a very small number
have been considered mycotoxins, based on the results of toxicological studies that noted
their noxious effects on humans and animals [69]. This implies that a high number of com-
pounds yet to be examined for these aspects may represent a potentially underestimated
concern [70,71].

Funicones are one of the classes of fungal secondary metabolites for which very limited
assessments have been carried out in this regard so far. Most of the producing species are
not established pathogens of crops, with the exception of Pseudocercospora (=Mycosphaerella)
fijiensis, a vermistatin producer that is known as the agent of black sigatoka disease of
banana [72]. However, this is a leaf pathogen that is not known to spread to fruit, implying
that it is unlikely that bananas can be contaminated with vermistatin. Nevertheless, a
search for this compound in some fruit products carried out in Nigeria evidenced its
presence at low levels (0.30 µg kg−1) in pineapple and mixed juices [73]. This is not at
all surprising, as several Talaromyces spp. are commonly found in association with both
healthy and diseased pineapples, including T. purpureogenus, T. funiculosus, and T. flavus,
which may even survive pasteurization [74–77]. Conversely, a preliminary search carried
out in Italy on marketed pineapple juices yielded negative results with reference to the
eventual presence of 3-O-methylfunicone [78]. Recently, vermistatin was also detected in
the analysis of grains used as cattle and poultry feed in Kenya [79], indicating that it may
also occur as a cereal contaminant. Moreover, the finding of vermistatin as a product in
co-cultures of strains of Alternaria alternata and Streptomyces exfoliatus [37] deserves to be
further investigated, particularly in view of verifying the biosynthetic capacities by the first
species. It is known as a pathogen of many crops and a saprophyte able to proliferate in
several kinds of foodstuffs, with very important implications as a mycotoxin producer [80].

Considering the widespread endophytic occurrence of Talaromyces spp. [23,81], which
are the dominant producers of funicones, the possible release of these compounds in plant
products may arise during the postharvest phase, where the biosynthetic aptitudes can
be boosted along with the saprophytic development. Recent reports of these fungi as
postharvest pathogens concern T. albobiverticillius on pomegranate [82], T. rugulosus on
grapes [83], T. minioluteus on onion bulbs and quince, orange, and tomato fruit [84], and
both of the latter two species on pears [85]. Although none of these species are known
to produce funicones, it is quite possible that other Talaromyces spp. producers of these
compounds may affect fruit and other crop products, likewise documented for pineapple.
This conclusion is supported by the finding of T. funiculosus as an agent of fruit core rot of
peach [86].

Among the other funicone sources, Ramichloridium apiculatum, generally recorded as a
soil saprophyte and only known as a producer of rapicone [27], was reported as an agent of
sooty blotch and flyspeck of apples and pears in China [87], which may represent an indica-
tion for possible contamination of these fruits and their derived transformation products.

7. Conclusions

The present review provides an update on the recent developments concerning the
distribution, chemical diversity, bioactivity and implications of occurrence of funicone-like
compounds. The structures and properties of 34 funicone-like compounds extracted from
different fungal species were reviewed. In particular, species in the genus Talaromyces
seem to be the most typical producers of this group of secondary metabolites, soliciting
consideration in view of possible chemotaxonomic implications.

In addition to outlining the general anti-inflammatory, antifungal, antiviral, and
cytotoxic activities of these compounds, the available data indicate vermistatin as the most
credited candidate to be added to the list of mycotoxins currently considered as food
contaminants, with reference to its more common occurrence amongst the known funicone
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producers. The majority of these taxonomically heterogeneous fungi can perform its
biosynthesis, implying that its presence in crop products may be more than just occasional.
Whether this represents a threat or, conversely, can eventually be beneficial to consumers’
health based on the described bioactivities, deserves thorough further assessments.
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