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Abstract

Background: Predicting drug-disease interactions (DDIs) is time-consuming and expensive. Improving the accuracy
of prediction results is necessary, and it is crucial to develop a novel computing technology to predict new DDIs.
The existing methods mostly use the construction of heterogeneous networks to predict new DDIs. However, the
number of known interacting drug-disease pairs is small, so there will be many errors in this heterogeneous
network that will interfere with the final results.

Results: A novel method, known as the dual-network L2,1-collaborative matrix factorization, is proposed to predict
novel DDIs. The Gaussian interaction profile kernels and L2,1-norm are introduced in our method to achieve better
results than other advanced methods. The network similarities of drugs and diseases with their chemical and
semantic similarities are combined in this method.

Conclusions: Cross validation is used to evaluate our method, and simulation experiments are used to predict new
interactions using two different datasets. Finally, our prediction accuracy is better than other existing methods. This
proves that our method is feasible and effective.
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Background
On average, it takes over a dozen years and approximately
1.8 billion dollars to develop a drug [1]. In addition, most
drugs have strong side effects or undesirable effects on
patients, so these drugs cannot be placed on the market.
Therefore, many pharmaceutical companies resort to
repositioning of existing drugs on the market [2]. Many
known drugs can be found to have new effects for differ-
ent diseases. In medicine, drug repurposing has two
advantages. One advantage is that known drugs have
already been approved by the US FDA (Food and Drug
Administration) [3]. In other words, these drugs are safe
to use. Another advantage is that the side effects of these
drugs are known to medical scientists, so these side effects
can be better controlled to achieve the desired therapeutic
effect. Drug repurposing can help accelerate and facilitate

the research and development process in the drug discov-
ery pipeline [4].
The most important factor for drug repositioning is

online biological databases. Many public databases, such
as KEGG [5], STITCH [6], OMIM [7], DrugBank [8] and
ChEMBL [9] store large amounts of information related
to drugs and diseases. These databases contain detailed
information such as a drug’s chemical structure, side
effects, and genomic sequences [10].
In general, the goal of drug repositioning is to discover

novel drug-disease interactions (DDIs) using existing
drugs. Because a drug is often not specific for one disease,
most drugs can treat a variety of diseases. Recently, more
methods have been proposed for drug repositioning, such
as machine learning [11], text mining [12], network ana-
lysis [13] and many other effective methods due to the
increasing depth of research [14, 15]. Of course, we can
also use the opposition-based learning particle swarm
optimization to predict interactions, such as SNP-SNP
interactions [16]. For instance, Gottlieb et al. proposed a
computational method to discover potential drug
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indications by constructing drug-drug and disease-disease
similarity classification features [17]. Then, the predicted
score of the novel DDIs can be calculated by a logistic re-
gression classifier. Napolitano et al. calculated drug simi-
larities using combined drug datasets [18]. They proposed
a multi-class SVM (Support Vector Machine) classifier to
predict some novel DDIs. Moreover, some researchers use
network-based models for drug repositioning. The advan-
tage of this network model is that it can fully consider the
large-scale generation of high-throughput data to build
complex biological information interaction networks.
Wang et al. proposed a method called TL-HGBI to infer
novel treatments for diseases [19]. These authors con-
structed a heterogeneous network and integrated datasets
about drugs, diseases and drug targets. Another
network-based prioritization method called DrugNet was
proposed by Martinez et al. [20]. This method can predict
not only novel drugs but also novel treatments for
diseases. Similar to the TL-HGBI method, the DrugNet
method uses a heterogeneous network to predict novel
DDIs using information about drugs, diseases, and targets.
Luo et al. developed a computational method to predict
novel interactions of known drugs [21]. Furthermore,
comprehensive similarity measures and Bi-Random Walk
(MBiRW) algorithm have been applied to this method. In
addition, Luo et al. continued to propose a drug reposi-
tioning recommendation system (DRRS) to predict new
DDIs by integrating data sources for drugs and dis-
eases [14]. A heterogeneous drug-disease interaction
network can be constructed by integrating drug-drug,
disease-disease and drug-disease networks. Moreover,
a large drug-disease adjacency matrix can replace the het-
erogeneous network, including drug pairs, disease pairs,
known drug-disease pairs, and unknown drug-disease
pairs. A fast and favourable algorithm SVT (Singular
Value Thresholding) [22] has been used to complete pre-
dicted scores of the drug-disease adjacency matrix for
unknown drug-disease pairs. According to previous stud-
ies, each method has its own advantages for predicting
DDIs. However, after comparing the prediction of these
methods, the best method is currently DRRS. The method
achieves the highest AUC (area under curve) value and
the best prediction [14]. Recently, matrix factorization
methods have also been used to identify novel DDIs [23].
The matrix factorization method takes one input
matrix and attempts to obtain two other matrices,
and then the two matrices are multiplied to approxi-
mate the input matrix [23]. Similar to looking for
missing interactions in the input matrix, matrix
factorization can be used as a good technique to solve
the prediction problem. Examples of such matrix
factorization methods are the kernel Bayesian matrix
factorization method (KBMF2K) [24] and the collabora-
tive matrix factorization method (CMF) [25].

In this work, a simple yet effective matrix factorization
model called the Dual-Network L2,1-CMF (Dual-network
L2,1-collaborative matrix factorization) is proposed to
predict new DDIs based on existing DDIs. However,
there are many missing unknown interactions, so a
pre-processing step is used to solve this problem. The
main purpose of this pre-processing method is to at-
tempt to weight K nearest known neighbours (WKNKN)
[26]. Specifically, in the original matrix, WKNKN is used
to describe whether there is an interaction between
drug-disease pairs, bringing each element closer simply
0 and 1 to a reliable value than. Thus, WKNKN will
have a positive impact on the final prediction. Further-
more, unlike the previous matrix factorization methods,
L2,1-norm [2] and GIP (Gaussian interaction profile) ker-
nels are added to the CMF method. Among them,
L2,1-norm can avoid over-fitting and eliminate some un-
attached disease pairs [27]. The GIP kernels are used to
calculate the drug similarity matrix and the disease simi-
larity matrix [28]. Cross validation is used to evaluate
our experimental results. The final experimental results
show that after removing some of the interactions, our
proposed method is superior to other methods. In
addition, a simulation experiment is conducted to
predict new interactions.
The results are described in Section 2, including the

datasets used in our study and experimental results. The
corresponding discussions are presented in Section 3.
The conclusion is described in Section 4. Finally, Section
5 describes our proposed method, including specific
solution steps and iterative processes.

Results
DDIs datasets
Information about the drugs and diseases was obtained
from Gottlieb et al. [17], and the Fdataset comprises mul-
tiple data sources. It is the gold standard dataset. This data-
set includes 1933 DDIs, 593 drugs and 313 diseases in total.
Further information about the drugs and diseases are ob-
tained from Luo et al. [21], and the Cdataset comprises
multiple data sources. The Cdataset includes 2353 DDIs,
663 drugs and 409 diseases, including drugs from the Drug-
Bank database and diseases from OMIM (Online Mendel-
ian Inheritance in Man) database [7].
Both datasets contain three matrices: Y ∈ℝn ×m, SD ∈

ℝn × n and Sd ∈ℝ
m ×m. The adjacency matrix Y is pro-

posed to describe the association between drug and dis-
ease. In the adjacency matrix, n drugs are represented in
rows and m diseases are represented in columns. If drug
D(i) is associated with disease d(j), the entity Y(D(i), d(j))
is 1; otherwise it is 0. Sparsity is defined as the ratio of
the number of known DDIs to the number of all pos-
sible DDIs [14]. Table 1 lists the specific information
for these two datasets.
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Similarities in the chemical structures of the drugs
The drug similarity matrix is used to predict interac-
tions. The chemical structure information of the drugs
constitutes this matrix, SD. The similarity information is
derived from the Chemical Development Kit (CDK) [29],
and the drug-drug pairs are represented as their 2D
chemical fingerprint scores.

Similarities in disease semantics
The disease similarity matrix was used to predict inter-
actions. The matrix Sd is represented by the medical de-
scriptions of the diseases. The similarities between
disease-disease pairs were obtained from MimMiner
[30]. Therefore, the semantic similarities of the diseases
is achieved through text mining. Finally, the meaningful
medical information is selected and meaningless data is
discarded.

Cross validation experiments
In this study, our experiments are compared to the pre-
vious methods (KBMF, HGBI, DrugNet, MBiRW, and
DRRS). For each method, 10-fold cross validation is re-
peated ten times. However, before running our method,
the pre-processing steps is performed first. The purpose
is to solve the problem of missing unknown interactions.
This pre-processing step improves the accuracy of the
prediction to some extent.
We observe that the interactions between drugs and

diseases remain fixed during cross-validation. In general,
the receiver operating characteristic (ROC) curve can be
described by changing the true positive rate (TPR, sensi-
tivity) of different levels of the false positive rate (FPR,
1-specificity). Moreover, sensitivity and specificity
(SPEC) can be written as follows:

Sensitivity ¼ TP
TP þ FN

; ð1Þ

SPEC ¼ TN
N

¼ TN
TN þ FP

; ð2Þ

where N represents the number of negative samples,
TP represents the number of positive samples correctly
classified by the classifier and FP represents the number
of false positive samples classified by the classifier. Simi-
larly, TN represents the number of negative samples cor-
rectly classified by the classifier, and FN represents the
number of false negative samples.

A popular evaluation indicator AUC is used to evalu-
ate our approach [31]. AUC is defined as the area under
the ROC curve, and it is obvious that the value of this
area will not be greater than 1. In general, the value of
AUC ranges between 0.5 and 1. The AUC value cannot
be less than 0.5. The drug-disease pairs are randomly re-
moved from the interaction matrix Y before running
cross validation. This method is called CV-p (Cross Val-
idation pairs), and its purpose is to increase the difficulty
of the prediction, thereby enabling a more complete as-
sessment of the ability to predict new drugs. In addition,
cross validation is performed on the training set to es-
tablish the parameters λl, λd and λt. Grid search is used
to find the best parameter from the values: λl ∈ {2

−2, 2−1,
20, 21}, λd/λt ∈ {0, 10

−4, 10−3, 10−2, 10−1}.

Prediction of the interaction under CV-p
Table 2 lists the experimental results of CV-p. The aver-
age of the AUC values of the ten cross validation results
are taken as the final AUC score. Note that AUC is
known to be insensitive to skewed class distributions
[32]. The drug disease datasets are highly unbalanced in
this study. In other words, there are more negative fac-
tors than positive factors. Therefore, the AUC value is a
more appropriate measure to evaluate different methods.
Table 2 shows the AUC values for different methods,
and the best AUC value in each column is shown in
bold. Standard deviations are shown in parentheses.
As shown in Table 2, our proposed method,

DNL2,1-CMF, achieves an AUC of 0.951 on the Cdataset,
which is 0.4% higher than DRRS, with an AUC of 0.947.
The AUC value of the DrugNet method is the lowest, and
our method is 14.7% higher than this value. In addition,
our approach also achieves the best results for the Fdata-
set. Our method achieves an AUC of 0.94, which is 1%
higher than DRRS, with an AUC of 0.93. Additionally, the
AUC value of the DrugNet method is the lowest, and our
method is 16.2% higher than this value. Therefore, our
proposed method is better than other existing methods.
In summary, the advantage of our method lies in the

introduction of GIP and L2,1-norm. GIP can obtain network
information on drugs and diseases. L2,1-norm can remove
undesired drug disease pairs, thus improving prediction ac-
curacy. Some of the previous methods only considered a

Table 1 Drugs, Diseases, and Interactions in Each Dataset

Datasets Drugs Diseases Interactions Sparsity

Cdataset 663 409 2532 9.337 × 10−3

Fdataset 593 313 1933 1.041 × 10− 2

Table 2 AUC Results of Cross Validation Experiments

Methods Cdataset Fdataset

DrugNet 0.804 (0.001) 0.778(0.001)

KBMF 0.928(0.004) 0.915(0.003)

HGBI 0.858(0.014) 0.829(0.012)

MBiRw 0.933(0.003) 0.917(0.001)

DRRS 0.947(0.002) 0.930(0.001)

DNL2,1-CMF 0.951(0.001) 0.940(0.001)
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single drug similarity and a single disease similarity and did
not consider their network information. Therefore, our
method can achieve better AUC values.

Sensitivity analysis from WKNKN
As mentioned earlier in this paper, because there are
some missing unknown interactions in the drug disease
interaction matrix Y, a pre-processing method is used to
minimize the error. The parameters K and p are fixed. K
is the number of nearest known neighbours. p is a decay
term where p ≤ 1, and WKNKN is used before running
DNL2,1-CMF. When K = 5, p = 0.7, the AUC value
approaches stability. The sensitivity analysis of these two
parameters is shown in Figs. 1 and 2, respectively.

Discussion
Case study
In this subsection, a simulation experiment was con-
ducted. Our method was used to predict the correct

drugs in an unknown situation. Therefore, an unknown
situation was created by removing some of the DDIs. Y
was decomposed into two matrices, A and B, thus the
product of these two matrices was used as the final pre-
diction matrix. In this prediction matrix, all elements
were no longer 0 and 1. Instead, all elements were close
to 0 or 1. Therefore, we compared the elements in Y to
determine the final prediction.
On the Cdataset, the seven pairs of interactions related to

the drug zoledronic acid (KEGG ID: D01968) were com-
pletely removed. The drug was used to prevent skeletal
fractures in patients with cancers such as multiple myeloma
and prostate cancer. It can also be used to treat the hyper-
calcemia of malignancy and can be helpful for treating pain
from bone metastases. A simulation was conducted to yield
the prediction score matrix. Finally, the prediction score
matrix counted whether those removed interactions were
predicted. At the same time, the new interactions were
counted. In other words, the disease most relevant to this

Fig. 1 The flow chart from the original datasets to the final predicted score matrix
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drug was found. Among them, all known interactions and
three novel interactions were successfully predicted. Table 3
lists the experimental results for the Cdataset. According to
the level of relevance, these diseases were sorted from high
to low. The known interactions are in bold. It is worth not-
ing that according to our experimental analysis, the eighth
disease, osteoporosis, had the strongest interaction with
zoledronic acid. More information about the drug is
published in DrugBank database.
The complete interactions of the drug hyoscyamine

(KEGG ID: D00147) were removed. The drug is mainly
used to treat bladder spasm, peptic ulcer disease, diver-
ticulitis, colic, irritable bowel syndrome, cystitis and pan-
creatitis. This drug is also used to treat certain heart
diseases and to control the symptoms of Parkinson’s dis-
ease and rhinitis. Fourteen pairs of interactions were
removed, and these interactions were still predicted by

our method. At the same time, motion sickness was
predicted to be related to this drug. More information
about the drug is published in https://www.drugbank.ca/
drugs/DB00424. Table 4 lists the experimental results.
For the Fdataset, the interactions of the drug cisplatin

and the drug dexamethasone were removed, and a simu-
lation experiment was conducted. Table 5 lists the
experimental results for cisplatin, and Table 6 lists the
experimental results for dexamethasone.
For cisplatin (KEGG ID: D00275), nine interactions

were removed. Six known interactions and three novel
interactions were successfully predicted. The known
interactions are shown in bold. More information about
cisplatin is published at https://www.drugbank.ca/drugs/
DB00515. For dexamethasone (KEGG ID: D00292),
sixteen interactions were removed. Eleven known inter-
actions and four novel interactions were successfully

Fig. 2 Sensitivity analysis for K under CV-p

Table 3 Predicted Diseases for Zoledronic acid, Cdataset

Rank Disease Disease ID

1 IBMPFD1 D167320

2 MYELOMA, MULTIPLE D254500

3 MISMATCH REPAIR CANCER SYNDROME D276300

4 PAGET DISEASE OF BONE 2, EARLY-ONSET D602080

5 HAJDU-CHENEY SYNDROME D102500

6 HEREDITARY LEIOMYOMATOSIS AND RENAL CELL CANCER D605839

7 HYPERCALCEMIA, INFANTILE D143880

8 OSTEOPOROSIS D166710

9 RENAL CELL CARCINOMA,NON-PAPILLARY D144700

10 ACROOSTEOLYSIS D102400
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predicted. Moreover, endometriosis can be prevented by
dexamethasone. In 2014, the ClinicalTrials.gov database
was tested for this disease, and the reliability of this
result has been confirmed by clinical trials. Sixty-four
participants were used in the experiment. Detailed ex-
perimental results can be found at https://clinicaltrials.-
gov/ct2/show/study/NCT02056717. Diseases ranked 12,
13, and 14 were not confirmed by ClinicalTrials.gov for
treatment with dexamethasone.
According to the above simulation results, our method

has good performance for different datasets. According to
Table 3 to Table 6, it can be concluded that the advantages
of the L2,1-norm are increasing the disease matrix sparsity
and discarding unwanted disease pairs. This advantage is
reflected in the fact that in a drug-disease pair, unwanted
noise is removed by the L2,1-norm, so the vast majority of

known DDIs that have been removed are successfully
predicted. Therefore, the addition of GIP kernels and
L2,1-norm achieved better results than other advanced
methods.

Conclusions
In this paper, an effective matrix factorization model is
proposed. L2,1-norm and GIP kernel are applied in this
model. Moreover, the GIP kernel provides more network
information for predicting novel DDIs. AUC is used to
evaluate the indicators and our method achieves excel-
lent results, so our method is feasible.
It is worth noting that the pre-processing method

WKNKN plays an important role in prediction because
there are many missing unknown interactions that are
addressed by this pre-processing method. This is helpful
for the final experimental results. However, the datasets
used in this paper still have some limitations. For ex-
ample, disease-disease similarity, sequence similarity and
GO similarity are not considered. We will collect more
similarity information in future work.
In the future, more datasets will be available, and more

novel DDIs will be predicted. Of course, we will con-
tinue to employ more machine learning methods or
deep learning methods to solve drug development
problems.

Methods
Problem formalization
Formally, the known interactions Y(D(i), d(j)) of drug
D(i) associated with disease d(j) are considered to be a
matrix factorization model. The input matrix Y is

Table 4 Predicted Diseases for Hyoscyamine, Cdataset

Rank Disease Disease ID

1 TREMOR, NYSTAGMUS, AND DUODENAL ULCER D190310

2 PARKINSON DISEASE, LATE-ONSET D168600

3 PARK11 D607688

4 PARKINSON DISEASE, MITOCHONDRIAL D556500

5 PARK15 D260300

6 PARK3 D602404

7 PARK1 D168601

8 PARK8 D607060

9 PARK7 D606324

10 PARK2 D600116

11 ENTEROCOLITIS D226150

12 HYPERHIDROSIS PALMARIS ET PLANTARIS D144110

13 ACANTHOSIS NIGRICANS WITH MUSCLE CRAMPS AND ACRAL ENLARGEMENT D200170

14 PELGER-HUET-LIKE ANOMALY AND EPISODIC FEVER WITH ABDOMINAL PAIN D260570

15 MOTION SICKNESS D158280

Table 5 Predicted Diseases for Cisplatin, Fdataset

Rank Disease Disease ID

1 LYMPHOMA,HODGKIN,CLASSIC D236000

2 BLADDER CANCER D109800

3 MISMATCH REPAIR CANCER SYNDROME D276300

4 OSTEOGENIC SARCOMA D259500

5 SMALL CELL CANCER OF THE LUNG D182280

6 MYELOMA,MULTIPLE D254500

7 OESOPHAGEAL CANCER D133239

8 RHABDOMYOSARCOMA 2 D268220

9 PROSTATE CANCER, HEREDITARY, 1 D601518

10 LUNG CANCER D211980
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decomposed into two low rank matrices A and B. These
two matrices retain the features of the original matrix.
Then, the two matrices are optimized through
constraints. Finally, the specific matrices of A and B are
obtained. Our mission is to rank all of the drug-disease
pairs Y(D(i), d(j)). The most likely interaction pairs have
the highest ranking.

Gaussian interaction profile kernel
The method is based on the assumption that diseases
that interact with DDIs networks and unrelated drugs in
drug-disease networks may show similar interactions
with new diseases. D(i) and D(j) represent two drugs,
d(i) and d(j) represent two diseases. Their network simi-
larity calculations can be written as:

GIPDrug Di;Dj
� � ¼ exp −γ Y Dið Þ−Y Dj

� ��� ��2
� �

; ð3Þ

GIPdisease di;d j
� � ¼ exp −γ Y dið Þ−Y d j

� ��� ��2
� �

; ð4Þ

where γ is a parameter, which is used to adjust the band-
width of the kernel. In addition, Y(Di) and Y(Dj) are the
interaction profiles of Di and Dj. Similarly, Y(di) and
Y(dj) are the interaction profiles of di and dj. Then, the
two network similarity matrices can be combined with
SD and Sd to be written as:

KD¼αSD þ 1−αð ÞGIPD; ð5Þ
Kd ¼ αSd þ 1−αð ÞGIPd; ð6Þ

where α ∈ [0, 1] is an adjustable parameter. KD is a drug

kernel, which represents a linear combination of the
drug chemical similarity matrix SD and the drug net-
work similarity matrix GIPD. Kd is a disease kernel,
which represents a linear combination of the disease
semantic similarity matrix Sd and the disease network
similarity matrix GIPd. Thus, the network information
is applied to the prediction of DDIs and performed
well in yielding results.

Dual-network L2,1-collaborative matrix factorization
(DNL2,1-CMF)
The traditional collaborative matrix factorization (CMF)
uses collaborative filtering to predict novel interactions
[25]. The objective function of CMF is given as follows:

minA;B ¼ Y−ABT
�� ��2

F
þ λl Ak k2F þ Bk k2F

� �

þ λd SD−AAT
�� ��2

F
þ λt Sd−BBT

�� ��2
F
; ð7Þ

where ‖⋅‖F is the Frobenius norm and λl, λd and λt are
non-negative parameters.
CMF is an effective method for predicting DDIs.

However, this method ignores the network informa-
tion of drugs and diseases. This problem will reduce
the accuracy of the CMF method in predicting novel
DDIs.
In this study, an improved collaborative matrix

factorization method is used to predict DDIs. The
L2,1-norm is added to the collaborative matrix
factorization method, and drug network information
and disease network information are combined with
this method. The interaction matrix Y is decomposed

Table 6 Predicted Diseases for Dexamethasone, Fdataset

Rank Disease Disease ID

1 OTITIS MEDIA, SUSCEPTIBILITY TO D166760

2 DERMATOSIS PAPULOSA NIGRA D125600

3 MISMATCH REPAIR CANCER SYNDROME D276300

4 ENTEROPATHY, FAMILIAL, WITH VILLOUS OEDEMA AND IMMUNOGLOBULIN G2 DEFICIENCY D600351

5 THROMBOCYTOPENIC PURPURA, AUTOIMMUNE D188030

6 HYPERTHERMIA, CUTANEOUS, WITH HEADACHES AND NAUSEA D145590

7 GREENBERG DYSPLASIA D215140

8 GROWTH RETARDATION, SMALL AND PUFFY HANDS AND FEET, AND ECZEMA D233810

9 ASTHMA, NASAL POLYPS, AND ASPIRIN INTOLERANCE D208550

10 MYCOSIS FUNGOIDES D254400

11 DOHLE BODIES AND LEUKAEMIA D223350

12 ATAXIA, EARLY-ONSET, WITH OCULOMOTOR APRAXIA AND HYPOALBUMINEMIA D208920

13 ANAEMIA, AUTOIMMUNE HAEMOLYTIC D205700

14 ADIE PUPIL D103100

15 ENDOMETRIOSIS, SUSCEPTIBILITY TO, 1 D131200
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into two matrices A and B, where ABT ≈ Y.The
dual-network L2,1-collaborative matrix factorization
(DNL2,1-CMF) method uses regularization terms to
request that the potential feature vectors of similar
drugs and similar diseases are similar, and the poten-
tial feature vectors of dissimilar drugs and dissimilar
diseases are dissimilar [33], where SD ≈AAT and Sd ≈
BBT. Considering that GIP explores kernel network
information, the dual-network can be interpreted as a
drug network and a disease network generated by
GIP. Specifically, the interaction profiles can be gen-
erated from a drug-disease interaction network. For a
classifier, the interaction profiles can be used as fea-
ture vectors [34]. Therefore, the kernel method is
used, and the kernel can be constructed from the
interaction profiles. In summary, because of these ad-
vantages, GIP can achieve better results. Therefore,
the objective function of DNL2,1-CMF method can be
written as

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þλl Bk k2;1 þ λd KD−AAT
�� ��2

F þ λt Kd−BBT
�� ��2

F ;

ð8Þ

where‖⋅‖F is the Frobenius norm and λl, λd and λt are
non-negative parameters. The first term is an approxi-
mate model of the matrix Y, whose purpose is to search
the latent feature matrices A and B. The Tikhonov
regularization is used to minimizes the norms of A, B in
the second term, whose purpose is to avoid overfitting.
The L2,1-norm is applied in B in the third term. The pur-
pose is to increase the sparsity of the disease matrix and

discard unwanted disease pairs. For a detailed explanation,
please refer to [2]. Based on a previous study [25], the ef-
fect of the last two regularization terms is to minimize the
squared error between SD(Sd) and AAT(BBT).

Initialization of A and B
For the input DDIs matrix Y, the singular value decom-
position (SVD) method is used to obtain the initial value
of matrix A and matrix B.

U; S;V½ � ¼ SVD Y; kð Þ;A ¼ US1=2k ;B ¼ VS1=2k ; ð9Þ

where Sk is a diagonal matrix and contains the k largest
singular values. In addition, the minimization of the ob-
jective function is used to predict the outcome of the in-
teractions, but this could lead to unsatisfactory results.
Many zeros have not been found, so the WKNKN pre-
processing method is used to solve this problem. Figure 3
shows a specific prediction flow chart from the original
datasets to the final predicted score matrix.

Optimization algorithm
In this study, the least squares method is used to up-
date A and B. First, L is represented as the objection
function of DNL2,1-CMF method. Then, ∂L/∂A and ∂L/
∂B are set to be 0. According to the alternating least
squares method, A and B are updated until convergence.
It is worth noting that λl, λd and λt are automatically de-
termined by the cross validation on the training set to the
optimal parameter values. Thus, the update rules are as
follows:

A ¼ YBþ λdKDAð Þ BTBþ λlIk þ λdAAT
� �−1

; ð10Þ

Fig. 3 Sensitivity analysis for p under CV-p
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B ¼ YTAþ λtKdB
� �

ATAþ λlIk þ λtB
TBþ λlDIk

� �−1
: ð11Þ

According to formula (5) and formula (6), KD can be
represented by SD, and Kd can be represented by Sd.
These two complete updated rules can be written as:

A ¼ YBþ λd αSD þ 1−αð ÞGIPDð ÞAð Þ BTBþ λlIk þ λdAA
T

� �−1
;

ð12Þ

B ¼ YTAþ λt αSd þ 1−αð ÞGIPdð ÞB� �

ATAþ λlIk þ λtB
TBþ λlDIk

� �

−1;

ð13Þ
where D is a diagonal matrix with the i-th diagonal
element as dii = 1/2‖(B)i‖2. Therefore, the specific algo-
rithm of DNL2,1-CMF is as follows:
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