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Abstract

The gut microbiota has been increasingly correlated with depressive disorder. It was recently shown that the

transplantation of the gut microbiota from depressed patients to animals can produce depressive-like behaviors,
suggesting that the gut microbiota plays a causal role in the development of depression. In addition, metabolic
disorder, which is strongly associated with depression, is exacerbated by changes in the composition of the gut

microbiota and is alleviated by treatment with antidepressants. However, the key players and pathways that link the
gut microbiota to the pathogenesis of depression remain largely unknown. To evaluate the relationships between
depression and metabolic disorders in feces and plasma, we monitored changes in fecal and plasma metabolomes
during the development of depressive-like behaviors in rats exposed to chronic unpredictable mild stress (CUMS). In
these animals, the fecal metabolome was altered first and subjected to changes in the plasma metabolome. Changes in
the abundance of fecal metabolites were associated with depressive-like behaviors and with altered levels of
neurotransmitters in the hippocampus. Furthermore, the analysis of the fecal metabolome and the fecal microbiota in
CUMS rats demonstrated consistent changes in the levels of several amino acids, including L-threonine, isoleucine,
alanine, serine, tyrosine, and oxidized proline. Finally, we observed significant correlations between these amino acids
and the altered fecal microbiota. The results of this study suggest that changes in amino acid metabolism by the gut
microbiota contribute to changes in circulating amino acids and are associated with the behavior indices of depression.

Introduction

Major depressive disorder (MDD) is a widespread mood
disorder that has significant adverse effects on personal
health and results in staggering medical costs’. Despite a
battery of psychological and pharmacological treatments
for depression, only 74% of patients with MDD show
improvement”. Thus, there is an urgent need to develop
more efficacious therapies and to identify the additional
causal factors of depression®*,
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Although MDD is primarily a psychological condition,
the overall physiology of depression is embedded in the
central nervous system®. The symptoms of depression are
far-reaching, including weight loss®, sleeping difficulties’,
and psychomotor agitation®. A more comprehensive
understanding of the pathophysiology of depression will,
therefore, require a multifaceted investigation of the
physiological factors that contribute to depression”’.
Depression has been associated with changes in several
physiological pathways, including adipose-derived hor-
mones'', insulin signaling'?, inflammatory cytokines'®,
the hypothalamic—pituitary—adrenal axis"'?, and oxida-
tive stress pathways'®. In addition, metabolic disorder has
recently been recognized as a characteristic of depres-
sion'>'® and as a potential target for antidepressant
therapies'”.
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The gut microbiota has been strongly associated with
depression'®'?, and this association has been attributed to
the bi-directional communication between the gut and
the brain®***!, Decreases in the diversity and richness of
the gut microbiota are associated with depression®”.
Moreover, fecal transplantation from patients with MDD
replicates depressive symptoms in recipient rodents>.
Thus, changes in the gut microbiota are likely to con-
tribute to the pathogenesis of depression*, The adoption
of depressive behaviors also results in reduced richness
and diversity of the gut microbiota, suggesting that the gut
microbiota and depression can impact one another'’.
However, despite this evidence, the key players in this
process and the precise molecular mechanisms by which
the gut microbiota and depression impact one another are
not yet clear™”’.

Pathophysiological and pharmacological studies
demonstrate that metabolic disorders occur in the
plasma/serum and in the central nervous system of
depressed patients®?° and in animal models with
depressive-like behaviors®”*®, These changes can be
rebalanced by the treatment with antidepressants**. For
example, plasma alpha-aminobutyric acid has been shown
to be a potential biomarker of MDD and a predictor of
therapeutic response in MDD?!. This close relationship
between the gut microbiota and the pathomechanisms of
depression highlights the potential key role of gut
microbiota in depression. Thus, in addition to under-
standing the molecular mechanisms by which the gut
microbiota contributes to changes in the metabolome in
depression, it is essential to determine the timing of these
changes. This timing will be crucial in understanding how
the two disorders influence one another.

To address these key questions, we performed a tem-
poral dynamic gas chromatography—mass spectrometry
(GC-MS) analysis of the fecal and plasma metabolomes
during the development of depressive-like behaviors in
rats. Animal models of depression have substantial
advantages because they can establish relationships
between a wide range of possible causal factors**~*°, For
these analyses, we induced depressive-like behaviors by
exposing rats to chronic unpredictable mild stress
(CUMS), which is widely accepted to most closely mimic
the social stressors suffered by patients with MDD?*%%,
Using this system, we determined the precise timing of
changes in the fecal and plasma metabolomes and
explored how the gut microbiota contributes to changes
in the plasma metabolome and other depressive-like
symptoms.

Materials and methods
Animals and reagents

Eight-week-old male Sprague—Dawley rats with an
average body weight of 200g (+10g) were purchased
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from Beijing Vital River Laboratories Co. (SCXK (Jing)
2011-2012). To ensure adequate statistical power, six rats
were randomly enrolled in each group by a random
number generator implemented in SPSS 22.0 (Chicago,
USA). The rats were housed with free access to food and
water and kept at a controlled room temperature of 25 °C
(£ 1°C), humidity (45 + 15%), and light (lights on at 8:00
a.m., 12-h day/night switch). Newly purchased rats were
acclimatized to their new environment for 1 week prior to
the start of experiments. All experimental procedures
were approved by the Committee on Animal Research
and Ethics of Shanxi University.

Neurotransmitter standards, including
5-hydroxytryptamine (5-HT), norepinephrine (NE), tryp-
tophan (TRP), gamma-aminobutyric acid (GABA), 3,4-
dihydroxyphenylacetic acid (DOPAC), kynurenine (KYN),
3-methoxytyramine (3-MT), 5-hydroxyindole acetic
acid (5-HIAA), 3-hydroxykynurenine (3-HK), 3-
hydroxyanthranilic acid (3-HAA), and dopamine (DA)
were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Homovanillic acid and the derivatization reagent
dansyl chloride were purchased from Tokyo Chemical
Industry Co. Ltd. (Tokyo, Japan). Formic acid, acetone,
methanol, and acetonitrile (LC-MS grade) were obtained
from Merck (Darmstadt, Germany). All solvents were of
High Performance Liquid Chromatography (HPLC) grade
or above.

CUMS modeling

To determine the timing of metabolome changes in the
feces and plasma of depressive animals, CUMS modeling
was performed according to the protocol described pre-
viously®. Briefly, rats were housed individually and sub-
jected to 2—4 of the following stressors every day in a
random order for 4 weeks: foot shock for 2 min, swim-
ming in 4 °C water for 5 min, tail clamp for 2 min, subject
to noise for 3 h, food deprivation for 24 h, water depri-
vation for 24 h, and subject to room temperature at 45 °C
for 5 min. Fecal samples were collected using metabolic
cages every week. Orbital blood samples were obtained
every week, and femoral artery blood samples were col-
lected after scarification with ethyl carbamate anesthesia.
Ethylenediaminetetraacetic acid-anticoagulated blood was
centrifuged at 4 °C, 3000 rpm for 15 min, and the super-
natants were stored at —80 °C.

Body weight measurement
The body weight of each rat was measured at 8 a.m. on
days 0, 7, 14, 21, and 28 of the CUMS modeling process.

Sucrose preference test

One bottle of tap water and another bottle of 1%
sucrose solution were provided to each rat for 4 h, and the
consumption of sucrose and water was recorded. The
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sucrose preference rate was calculated as sucrose con-
sumption (g)/(sucrose consumption (g)+ water con-
sumption (g)). To avoid neophobia, exposure to 1%
sucrose solution for 24 h was performed before sucrose
preference test.

Open-field test

To evaluate the changes in learning and memory of rats
exposed to CUMS, open-field tests (OFTs) were carried
out once a week. Each rat was monitored for 5 min, and
grooming time, immobility time, rearing, and crossing
counts were recorded.

GC-MS

GC-MS analysis of fecal and plasma samples was con-
ducted as previously described®. Briefly, for fecal samples,
200 mg of dried feces was homogenized in 500 ul water and
centrifuged at 13,000 rpm for 10 min. The supernatant was
then transferred to 400 ul of acetonitrile for protein pre-
cipitation. For plasma samples, 500 ul of the plasma was
added to 400 pl of acetonitrile for protein precipitation. A
second centrifugation similar to the above was performed,
and the supernatant was thoroughly dried in a nitrogen
concentrator and re-suspended in 30pl of pyridine-
methoxy amino acid salt solution (15 mg/ml). The solu-
tion was subsequently incubated at 70 °C for 1 h, and 50 pl
of N,O-bis (trimethylsilyl) tri-fluoroacetamide (including 1%
trimethylchlorosilane) was added before another incubation
at 40°C for 1.5h. One microliter of each analyte was
injected in a (10:1) split mode into a trace gas chromato-
graph coupled with a Polyris Q Ion Trap mass spectrometer
(Thermo Fisher Scientific, MA, USA). Ethyl Chloroformate
(ECF) derivatives were separated with a DB-5MS capillary
column (30 m x 250 pm i.d., 0.25 um film thickness; Agilent
] & W Scientific, CA, USA). Helium was used as the carrier
gas at a constant flow rate of 1.0 ml/min. The oven tem-
perature for GC-MS was first held at 80°C for 3 min,
ramped to 140 °C at a speed of 7 °C/min, held at 140 °C for
4 min, ramped to 180°C at a speed of 4°C /min, held at
180 °C for 6 min, then ramped to 280 °C at a speed of 5°C
/min and held at 280 °C for 2 min.

Neurotransmitter quantitation

Ultra-high  performance  liquid chromatography-
Electrospray Ionization -Tandem Mass Spectrometry
(UHPLC-ESI-MS/MS) quantitation of 12 neurotransmitters
in the hippocampus was carried out according to the pre-
viously reported methods with some modifications***'.
Briefly, 30-50 mg of rat hippocampus sample was homo-
genized and precipitated with methanol. The supernatant
was completely dried with a nitrogen concentrator and
reconstituted with the initial mobile phase of UHPLC.
UHPLC-ESI-MS/MS was run on a Thermo Scientific Dio-
nex Ultimate 3000 RSLC system, combined with a Thermo
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Q Exactive Orbitrap mass spectrometer. The analytes were
separated with a Thermo Hypersill GOLD (2.1 x 100 mm,
1.7 pum) column. The mobile phase consisting of phases A
(water:formic acid (99.9:0.1, v/v)) and B (acetonitrile:formic
acid (99.9:0.1, v/v)) was used with a gradient elution at a flow
rate of 0.3 ml/min: linear increase from 0% B to 20% B in
3 min; hold at 60% B for 3 min; linear increase from 60% B
to 80% B in 4 min; linear increase from 80% B to 95% B in
3 min; hold at 95% B for 4 min. ESI-MS/MS conditions were
set as follows: gas temperature, 350 °C; gas flow, 46 ml/min;
capillary voltage, 3000V; and nebulizer pressure, 35 ps.
MS acquisitions were performed in the parallel reaction
monitoring mode.

16s rDNA amplicon sequencing

Total bacterial DNA was extracted from fecal samples
using the Fast DNA SPIN kit for feces (MPBIO, CA, USA)
according to the manufacturer’s instructions. DNA integrity
tests were performed by agarose gel electrophoresis. The V4
region of 16s rDNA was targeted and polymerase chain
reaction (PCR) amplified using the primer pairs 515F/806R
(515F: 5'-TGTGCCAGCMGC CGCGGTAA-3’; 806R: 5’
GGACTACHVGGGTWTCTAAT-3’). The PCR cycling
conditions were as follows: 98 °C for 30s, followed by 35
cycles of 98 °C for 55, 56 °C for 20's, and 70 °C for 20s. The
PCR amplicons were purified with AmpureXp beads
(AGENCOURT) to remove nonspecific products. PCR
products were checked using a Bioanalyzer DNA 1000 chip
(Agilent Technologies, CA, USA), and libraries were qua-
lified and pair-end sequenced using the PE300 sequencing
strategy provided by the Illumina MiSeq system.

Data acquisition for GC-MS and neurotransmitter
quantitation

For GC-MS, mass data were collected in full scan mode
from 50 to 650 m/z. Compounds were identified by
comparison of mass spectra with those in the National
Institute of Standards and Technology library (version
2.0). The Human Metabolome Database (http://www.
hmdb.ca) was used for further verification. The identified
metabolites were validated with commercially available
standards. The GC—MS-generated raw result files were
converted to Net-CDF format and then processed by
XCMS using default settings.

To quantify the neurotransmitters, the calibration curve
for each analyte was obtained by linear regression analysis
with 1/x* weighting factor, which contained 10 points cov-
ering a linear range of 0.02-20 ng. Data acquisition and
analysis were performed with Thermo Xcalibur 2.2 software.

Metabolome analysis

To eliminate the differences and to increase the ortho-
gonality of metabolomic features, the metabolomic datasets
were first normalized to constant sum and scaled with
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Pareto scaling using SIMCA-P 13.0 (Umetrics AB, Umea,
Sweden). Principal component analysis was performed to
explore the natural separation between the study groups.
Orthogonal projection to latent structure discriminate ana-
lysis (OPLS-DA) was used to investigate the difference
between groups by incorporating known classification
information. Metabolites with variable importance for the
projection values greater than 1 in the established OPLS-DA
model, and false discovery rate-adjusted P values < 0.05 in
an independent-samples ¢ test were designated as differ-
ential metabolites contributing to the separation of the study
groups. Metabolic pathway enrichment of the between-
group differential metabolites was performed by the Meta-
boAnalyst web portal (http://www.metaboanalyst.ca).

Metagenome analysis

A set of parameters were selected to filter the raw reads of
16s rDNA sequencing data, including a minimum sequence
length of 150 bp, a minimum Q-score of 20, a maximum
number of consecutive N of 0, and a maximum of three
consecutive low-quality base calls allowed before truncat-
ing. The number of filtered sequences per sample ranged
from 47,243 to 59,454, with a mean of 52,470. FLASH v1.2.7
was used to assemble the pair-end sequencing reads.
Operational taxonomic units (OTUs) were picked using
UCLUST in QIIME pipeline (v1.8.0) against the Green-
Genes database (the May 2013 version, http://greengenes.
secondgenome.com) at 97% identity. OTUs with a relative
abundance lower than 0.001% of the total OTUs were
removed*?, leaving OTUs per sample ranging from 367 to
536 at the genus level. LEfSe®® was used to assess bio-
markers (linear discriminant analysis score > 3.0) from the
relative abundance of bacterial taxonomy. An adjusted P
value < 0.05 was defined as statistically significant. The
metabolic potential of the altered microbiota was predicted
by Phylogenetic Investigation of Communities by Recon-
struction of Unobserved STates (PICRUSt) analysis‘”.

PERMANOVA analysis

Permutational multivariate analysis of variance (PERMA-
NOVA) was performed on the metabolite-abundance pro-
files to assess the effect of each behavior index using
Bray—Curtis distance and 9999 permutations in R (v3.5.0,
vegan package). Behavior indices with adjusted P values <
0.05 were defined as being significantly associated with
metabolites.

Co-inertia analysis

Co-inertia analysis (CIA) was performed on metabo-
lomic abundance profiles of feces and plasma to assess the
relationships between the fecal metabolome and the
plasma metabolome. The CIA plot was generated by R
software (v3.5.0, package vegan) using default parameters.
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Canonical correspondence analysis

Canonical correspondence analysis (CCA) was per-
formed to assess the effect of altered fecal metabolites on
the separation between CUMS-enriched and healthy
control-enriched plasma metabolites. The differential
enrichments of altered plasma metabolites were deter-
mined by odds ratio analysis. The CCA plot was generated
by R software (v3.5.0, package vegan) with default
parameters.

Procrustes analysis

Procrustes analysis (PA) was performed to assess the
similarity between the altered fecal metabolome and the
plasma metabolome. PA was based on the super-
imposition of principal coordinates constructed from the
distance matrices calculated from the square root of the
Jensen—Shannon divergence. The significance of PA was
determined by 10,000 Monte Carlo permutations in
QIIME.

Correlation analysis

Spearman correlations among the altered microbiota
genera, the altered metabolites, depressive-like behavior
indices, and neurotransmitters in hippocampus were
calculated and plotted in R (v3.5.0, package corrplot).
Correlations with absolute coefficient values>0.6 and
adjusted P values<0.05 were defined as statistically
significant.

Statistical analysis

Data for spectrometry profiling, behavior indexing,
and neurotransmitter quantitation are expressed as the
mean + SEM. Statistical analyses were performed with
two-tailed Student’s ¢ tests in SPSS 22.0. P values were
adjusted with false discovery rate correction in R (v3.5.0,
package p.adjust), and adjusted P values< 0.05 were
defined as statistically significant. If a between-group
variation was statistically significant, one-way analysis of
variance was performed to estimate the within-group
variation.

Results
Depressive-like phenotypes arise at different times during
exposure to CUMS

CUMS is a widely accepted animal model of depressive-
like behaviors that mimics the social stressors suffered by
human beings”**. While much attention has been paid to
the terminal state of CUMS, comparatively little is known
about the timing of symptom origin®***~*°. To investigate
the role of the gut microbiota in the development of
depressive-like symptoms, we monitored the temporal
dynamics of experimental phenotypes during the CUMS
modeling process (Fig. 1a). After the final week of CUMS
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Fig. 1 Experimental procedures and temporal dynamics of behavior indices. a Animals were exposed to CUMS as described in the materials and
methods section for 4 weeks (W1-W4) after the adaptation to a new environment for 1 week (W0). Fecal and plasma samples were collected weekly.
Sugar preference rate (b), body weight (c), and behavior indices of open-field test (d-g) were recorded every week. To avoid the possible interference
with CUMS modeling, tail suspension test and forced swimming test were performed not weekly but after a 4-week CUMS exposure. Student’s t tests
were applied to calculate between-group statistical significance. *P < 0.05, **P < 0.01, and ***P < 0.001. BW, body weight; CUMS, chronic unpredictable
mild stress; FST, forced swimming test; OFT, open-field test; SC, sample collection; SPT, sucrose preference test; TST, tail suspension test

exposure, we observed a notable decrease in sugar pre-
ference rate (Supplementary Fig. la) and significant
increases in the time spent immobile in OFT (Supple-
mentary Fig. 1b), forced swimming test (Supplementary
Fig. 1c), and tail suspension test (Supplementary Fig. 1d).
We also observed clear separations of metabolome in the
hippocampus (Supplementary Fig. 2a) and prefrontal cortex
(Supplementary Fig. 2b) at the same time point. These
results suggested that our CUMS modeling was successful
and could be used to study the contributions of gut
microbiota to the development of depressive-like behaviors.

Although we observed depressive-like phenotypes after
a 4-week CUMS modeling, the temporal dynamics of each
experimental phenotype differed. For example, we
observed significant differences in body weight (Fig. 1c),
two OFT indices (time spent immobile (Fig. 1d)), and
rearing counts (Fig. 1f) starting in the 3rd week of expo-
sure to CUMS. We did not observe significant changes in
sucrose preference rate (Fig. 1b), grooming time (Fig. 1e)
or crossing counts (Fig. 1g) of OFT until the last week of
CUMS modeling, although an isolated notable change was

evident in grooming time (Fig. 1e) at the 1st week. These
results suggest that depressive-like behaviors develop at
different time points in CUMS rats.

Fecal metabolome disorder arose before plasma
metabolome disorder during exposure to CUMS

The circulating metabolome has been reported to be a
key source of biomarkers of depression*®*’, and the gut
microbiota/metabolome has been suggested as a critical
influencing factor®®*’, To investigate the reasons that
underlie the asynchronous development of depressive-like
behaviors, we analyzed the plasma (Fig. 2 a, b, Supple-
mentary Fig. 3 al—a5) and fecal metabolomes (Fig. 2 c, d,
Supplementary Fig. 3 b1-b5) from the five time points of
the CUMS modeling process (Fig. 1a) using GC-MS. The
results of principal component analysis demonstrated
clear differences between the fecal metabolome of CUMS
rats and that of healthy controls beginning in the 3rd
week of CUMS exposure (Fig. 2 ¢, d), but no significant
difference in the plasma metabolome occurred until the
4th week of CUMS exposure (Fig. 2 a, b). These findings
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demonstrate that changes in the fecal metabolome arise
before changes in the plasma metabolome in CUMS rats
during the development of depressive-like behaviors,
suggesting that the fecal metabolome has an effect on the
plasma metabolome.

Changes in the fecal metabolome are associated with
depressive-like behaviors

Behavior indices are key indicators of depressive-like
symptoms in CUMS rats**. Because changes in the fecal

metabolome (Fig. 2 ¢, d, Supplementary Fig. 3 b1-b5)
coincided with the initiation of depressive-like symptoms
(Fig. 1 b-—g), we investigated a potential correlation
between depressive-like symptoms and the altered fecal
metabolome. Based on PERMANOVA, sucrose pre-
ference rate, body weight, and all indices of OFT were
significantly correlated with the altered fecal metabolome
(adjusted P < 0.05; Table 1) in the 4th week of the CUMS
modeling, suggesting that changes in the fecal metabo-
lome contribute to depressive-like behaviors. In addition,
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we observed significant correlations between the altered Table 1 PERMANOVA ranking the association between
fecal microbiota in the 4th week of CUMS exposure and  the altered fecal metabolites and behavior indices/

the behavior indices (adjusted P value < 0.05; Table 2).  neurotransmitters in the hippocampus

These results suggest that the altered gut microbiota

. . Phenotype Degree of R? P value Adjusted P
affects the depressive-like symptoms of CUMS rats, pos- P 9 )
. freedom value
sibly through the altered gut metabolome.
Body weight 1 006270267 1.10E-03 2.38E-03
Changes in the fecal metabolic profile are associated with . : 000683232 80GE-03 139E-02

changes in the plasma metabolome of CUMS rats

reference rate
Changes in the plasma metabolome have been reported P

to be correlated with depression in both humans®® and ~ ©ro°ming time 1 001321207 408E-02 663£-02
animal models with depressive-like behaviors®!. To study  Immobility time 1 0.01229415 6.55E-02  1.00E-01
the relationships between the fecal and plasma metabo-  Rearing counts 1 006455333 1.10E-03 238F-03
lgmes during the development of depressive-like b.eha- Crossing counts | 001299891 317601 458E-01
viors, CIA was performed with metabolome data obtained
from each time point during CUMS modeling process MT 1 00517155 1.108:03 238503
(Fig. 2 e, f, Supplementary Fig. 3 c1-c5). The fecal and NE 1 003423785 1.10E-03 238E-03
plasma metabolomes were tightly clustered at weeks 0 st 1 003661607 1.10E-03 2.38E-03
and 1 qf CLTMS modellr‘lg (Supplementary Fig. 3 cl, c2), " 1 002254633 750E-03 139E-02
suggesting little correlation between each other. In later
time points, closer to the onset of depressive-like beha- HVA ! 006469889 1.10E-03  238E-03
viors, we observed a separation trend between the meta-  KYN 1 005594343 1.10E-03 2.38E-03
bolome of feces and plasma (Fig. 2e, Supplementary Fig. 3 1pp 1 004790959 1.10E-03 2.38E-03
c3, c4). A clea‘r sepafatlon appeared at the 4th week of 31K : 005785465 110603 238E-03
CUMS modeling (Fig. 2f, Supplementary Fig. 3 c5),
demonstrating a correlation between the fecal and plasma GABA ] 002100625 1.308-03  260E-03
metabolomes in CUMS rats. 5-HIAA 1 003044673 1.10E-03 238E-03
To further investigate the extent to which altered fecal  3an 1 005556307 1.10F-03 238F-03
metabolites are associated with changes in the plasma DA 1 00444571 110603 238E-03

metabolome in CUMS rats, we analyzed the differential
metabolites of the fecal metabolome Separating the PERMANOVA permutational multivariate analysis of variance
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Table 2 PERMANOVA ranking the association between
fecal microbiota genera and behavior indices/
neurotransmitters in the hippocampus

Phenotype Degree of R? P value Adjusted P
freedom value
Body weight 1 0.0441 1.00E-04 2.36E-04
Sucrose 1 0.0318 1.00E-04 2.36E-04
preference rate
Grooming time 1 0.0432 1.00E-04 236E-04
Immobility time 1 0.0402 1.00E-04 2.36E-04
Rearing counts 1 0.0377 1.00E-04 2.36E-04
Crossing counts 1 0.0271 2.00E-04 4.33E-04
3-MT 1 0.0505 1.00E-04 2.36E-04
NE 1 00167 564E-01 895E-01
5-HT 1 0.0091 5.85E-01 8.95E-01
DOPAC 1 0.0476 1.00E-04 2.36E-04
HVA 1 0.0523 1.00E-04 236E-04
KYN 1 00133 6.38E-02 1.11E-01
TRP 1 0.0394 1.00E-04 2.36E-04
GABA 1 00170 8.80E-03 1.63E-02
3-HK 1 0.0098 7.89E-01 1
5-HIAA 1 0.0538 1.00E-04 2.36E-04
3-HIAA 1 0.0457 1.00E-04 2.36E-04
DA 1 00183 430E-03 8.60E-03

PERMANOVA permutational multivariate analysis of variance

CUMS rats and the healthy controls at the 4th week of
CUMS modeling with OPLS-DA. A total of 32 differential
metabolites were selected (variable importance for the
projection >1, adjusted P value < 0.05), among which 26
metabolites were structurally identified (Supplementary
Table 1). Targeted metabolomic profiling further corro-
borated the differences in abundance between the CUMS
rats and the healthy controls (data not shown). To
investigate the relationship between the changes in the
fecal and plasma metabolomes, PA with Euclidean dis-
tances was performed. Results of PA on the differential
metabolites of feces and plasma revealed a strong con-
gruency of sample separation (Fig. 3a). To further inves-
tigate whether the differential abundance of fecal
metabolites correlates with the changes in the plasma
metabolome, we carried out CCA. The results of CCA
revealed a clear separation between the CUMS-enriched
and the control-enriched plasma metabolites/spectral
features (Fig. 3b, Supplementary Table 2) along the vec-
tors for L-threonine, isoleucine, alanine, serine, tyrosine,
and oxidized proline. These results suggest that these
fecal amino acids, which are less abundant in the CUMS
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rats, contribute to changes in the plasma metabolome in
CUMS rats.

Metabolites with differential abundance are associated
with depressive-like phenotypes

Neurotransmitter depletion in the hippocampus is a key
feature of depressive-like symptoms®’. To study the cor-
relations between the changes in the abundances of fecal
metabolites and depressive-like phenotypes, we tested for
Spearman correlations among the fecal metabolites,
depressive-like behaviors, and neurotransmitters in the
hippocampus (Fig. 4). Among the 26 fecal metabolites
whose abundances differed in the CUMS rats and the
healthy controls, two correlation clusters were observed
from the heatmap of the Spearman correlation with
hierarchical cluster analysis (Fig. 4). One cluster consisted
of oligosaccharides and the other consisted mostly of
amino acids. In the oligosaccharide cluster, D-allose, D-
rhamnose, and myo-inositol were negatively correlated
with homovanillic acid in the hippocampus (Spearman
correlation, adjusted P value < 0.05; Supplementary Table
3). Within the cluster of amino acids, most metabolites
were negatively correlated with changes in neuro-
transmitters in the hippocampus and with depressive-like
behaviors (Fig. 4, Supplementary Table 3).

Notably, among the altered fecal amino acids that were
responsible for the CCA separation between the CUMS-
enriched and control-enriched plasma metabolomic fea-
tures (Fig. 3b), fecal tyrosine levels were negatively cor-
related with body weight; fecal alanine, tyrosine, and
isoleucine levels were positively correlated with plasma
phosphoric acid; fecal alanine and L-threonine levels were
positively correlated with plasma pyrimidine levels; and
fecal alanine and tyrosine levels were positively correlated
with plasma L-threonine levels (Spearman correlation,
adjusted P <0.05; Fig. 4, Supplementary Table 3). These
results suggest that the altered fecal metabolites, espe-
cially amino acids, were correlated with each other and
with the depressive-like phenotypes.

The fecal microbiota contributes to changes in fecal amino
acid metabolisms in CUMS rats

The fecal metabolome is influenced by several factors,
including the host genetic background, the gut microbiota,
and environmental elements such as diet. Because the host
background and environmental factors are essentially the
same for the CUMS rats, we investigated whether the gut
microbiota was responsible for the altered fecal metabolites.
We observed a statistically significant difference in a-
diversity analysis (Supplementary Fig. 4a) and a clear
separation in p-diversity analysis (Supplementary Fig. 4b) of
fecal microbiota between the CUMS rats and the healthy
controls, suggesting that the microbiota composition of
CUMS rats is significantly different from that of the healthy
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Fig. 4 Spearman correlations between the differential fecal metabolites, behavior indices, and neurotransmitters in the hippocampus.
Spearman’s rank correlation coefficient among 6 behavior indices, 12 neurotransmitters in the hippocampus, and 26 fecal metabolites that differed
significantly in abundance between the CUMS group and the healthy control group (see Supplementary Table 3 for details). Axis label: black, fecal
metabolites; red, neurotransmitters; blue, behavior indices. Numbers on the lower left panel: value of correlation coefficient; symbols on the upper
right panel: results of significance test; *adjusted P < 0.05, **adjusted P < 0.01. CUMS, chronic unpredictable mild stress
J

controls. Metabolic pathways were first deduced from the
differential fecal metabolites using the pathway enrichment
element of the MetaboAnalyst web portal. Pathways of
amino acid biosynthesis and metabolism were significantly
enriched after exposure to CUMS (Fig. 5a). The composi-
tion and function of fecal microbiota were then studied by
16s rDNA sequencing. We carried out Linear discriminant
analysis Effect Size (LEfSe) analysis to study the differential
composition of fecal microbiota in the CUMS rats and the
healthy controls. We observed that Blautia was the only

genus enriched in the CUMS rats, while a total of 13 genera
were enriched in the healthy controls (Fig. 5b, Supple-
mentary Table 4). The functional profiles of the altered
fecal microbiota of the CUMS rats were predicted by
PICRUSt analysis (Fig. 5 c—h). Among the six predicted
metabolic pathways, amino acid metabolism and nucleotide
metabolism (Fig. 5 ¢, d) were significantly varied in the fecal
microbiota of CUMS compared to those of the healthy
controls. The consistency between the enriched metabolic
pathway of the fecal metabolome and the predicted
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functional profile of the fecal microbiota suggests that the
fecal microbiota contributes substantially to changes in
fecal amino acid metabolism.

The altered fecal microbiota is associated with depressive-
like symptoms

To further investigate the extent to which changes in
the fecal microbiota are associated with depressive-like
symptoms, we performed Spearman rank correlation
analysis on differential taxa and behavior indices between
the CUMS rats and the healthy controls (Fig. 6). We
observed differences in a total of 14 genera. Using hier-
archical cluster analysis, we separated the altered fecal
microbiota into several clusters. The genera Prevotella,
Oligella, Blautia, and Phascolarctobacterium were posi-
tively correlated with each other and with immobility time
in the OFT, which was negatively correlated with most
of the other behavior indices and most of the

neurotransmitters in the hippocampus (adjusted P < 0.05;
Supplementary Table 5). On the other hand, the genera
Faecalibacterium and Desulfovibrio were positively cor-
related with neurotransmitter levels in the hippocampus
and with most of the behavior indices except the immo-
bility time of OFT (adjusted P<0.05; Supplementary
Table 5). The genera SMB53 and CF231 were positively
correlated with neurotransmitter levels in the hippo-
campus and negatively correlated with the genera Pre-
votella, Oligella, Blautia, and Phascolarctobacterium
(adjusted P < 0.05; Supplementary Table 5). In combina-
tion with the consistency between the altered fecal
metabolome and the altered functional profile of the fecal
microbiota and the correlation between the fecal and
plasma metabolome, these results led us to conclude that
the altered gut microbiota affects the metabolism of
amino acids in the host circulating system and is asso-
ciated with behavior indices of depression.



Jianguo et al. Translational Psychiatry (2019) 9:40

Page 11 of 14 40

p
g
2
[} [}
S o EE S 3 S 2
('8“.05_)%""%0% Q@9 S3.8 %3%. . E g %5
B“Q§EGEE SN= Lﬂ8§om:.§gg E 3 = 3
K] 528Sc8S2 853 Agmgtg-iggoo > 3 o o
Sa 250888353208 5555885588 S 2 £ f09. < <
0L, S 083 EC RSN SESS 03 aSERFSSLSRS £ E BUIy Z <2
S5 2088 5 o082 2000 O RECESSSoaIZREG _ S-20al Zotas
$§’$Q§§$ 3580238880535 85853>58T 3«80 fSolwTptcT
A0 AL EATOLOSKAQASIQELESEOQAXNOITX¥DMn 00N O0OBACZWw Rl o 1
Prevotella g EIEIE - | Bl B oon 11
Oligella o:s 1] - -] (-1 -] - - |
3-MT - ]
Blautia o o a [~ - [ - ][ (- - [ ] - -]
Phascolarctobacterium e oss o o [T - 0 T
Immobility time oss G L= = T 1~
Parabacteroides
Haemophilus a a = a

Corynebacterium « & - I - |

Allobaculum 0.6
Clostridium a
Dialister 078 [ ]

Faecalibacterium a gaE A a
Desulfovibrio «ss 0ss os7 032 oer a [ -]- - |- ] -1 - |- ]
Adlercreutzia a
Lactobacillus

Dorea <o <5
Roseburia 0.2
Flexispirarappini s :
Ruminococcus [ ] ] - -1
Mucispirilum 034 or -] - |
Ruminococcaceae o7 IS - |
Oscillospira as [T o-gn
Butyricimonas
Rothianasimurium [- ]
Streptococcus [ ] -]
Coprococcus 0.2
HVA - | e
KYN - - (-1 - |
Body weight - HEEEER -1 - - |
3-HK 71 053 052 7 04 <75 022 036 035 03 « Hraaa BT
Rearing counts <zs ost <« ez <78 25 034 072 04 o 02 oo [ NI [ ][]
DA o < 036 071 EREICa - - |- | T - 11
Grooming time <. 056 <02 028 os1 035 075 035 072 0s7 us-ﬂ -1
Crossing counts o 0zt HE Ban
SMB53 <5 o35 - 1] 06
DOPAC s <35 oag
CF231 a1 “ O -] |
NE e || ||
5-HIAA « o0 - <oz <70 au s 035 075 o ot o om0 o oz o [ Y I
TRP 432 o o a4 o AN | - ||
5-HT s 038 o7t 074 037 075 073 028 678 075 038 070 05 072 073 075
GABA o 038 7 <35 057 o7 ™ 078 07 071 o7 63 674 037 038 05 63 033 038 038 om et oo [
3-HIAA 5 A
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Discussion

In this study, we applied an integrative analysis of the
fecal and plasma metabolomes to reveal that the changes
in amino acid abundances in the fecal metabolome sig-
nificantly contribute to changes in the plasma metabo-
lome and are associated with the depressive-like
phenotypes in CUMS rats. Our results reveal the con-
sistency of perturbed amino acid metabolism between the
pathway enrichment of the altered fecal metabolome and
the predicted functional profile of the altered fecal

microbiota in the CUMS rats. The findings of this study
suggest that changes in the metabolites of the gut
microbiota play an important role in the pathogenesis of
depressive-like behaviors.

Since the establishment of extensive connections
between the gut microbiota and disease, there has been
great interest in the mechanisms that underlie this cor-
relation® >3, Metabolites have been shown to be the key
messengers in the bi-directional communication between
the gut microbiota and the host>**°. Although depression
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has been correlated with metabolic changes in the circu-
lating system® and the central nervous system®’, the
contribution of the gut microbiota to these changes is not
yet fully understood. In this study, changes in the fecal
metabolome were found to arise before changes in the
plasma metabolome of CUMS rats during the develop-
ment of depressive-like behaviors. Furthermore, the
changes in the abundances of several amino acids in the
feces of CUMS rats, including L-threonine, isoleucine,
alanine, serine, tyrosine, and oxidized proline, were found
to be associated with the changes in the plasma metabo-
lome. Disorders of amino acid metabolism have been
associated with the pathophysiology of depression®'®,
Perturbations in amino acid metabolism have been
reported to occur in the prefrontal cortex of the learned
helplessness rat model of depression®’. Glutamine defi-
ciency in the prefrontal cortex increases depressive-like
behaviors in male mice, and a direct infusion of L-
glutamine reversed the increased immobility in forced
swim test™. In addition, plasma levels of alanine and L-
serine were reported to be correlated with the severity of
depression®®. Consistent with these previous reports, we
observed substantially different levels of the above-
mentioned amino acids in the feces and plasma of
CUMS rats with depressive-like behaviors. We also
observed significant correlations between the abundances
of these amino acids and depressive-like phenotypes.
Taken together, the findings from this study and these
previous reports suggest that disorders of amino acid
metabolism in the gut play a crucial role in the patho-
physiology of depression.

Previous works indicate that the gut microbiota plays an
important role in the pathophysiology of depression®>®’,
although the pathways linking gut bacteria with the cen-
tral nervous system are not fully elucidated"*®'~*, Con-
sistent with our observation of the differential enrichment
of bacterial genera between CUMS rats and healthy
controls, the genus Blautia was reported to be more
abundant in the microbiota of patients with MDD®*, The
relative abundances of taxa Coprococcus and Dorea were
previously shown to be reduced in mice exposed to a
prolonged stressor®, and the abundances of taxa Allo-
baculum and Mucispirillum were reduced in mice
exposed to sub-chronic and mild social defeat stress®®.
Our findings are consistent with prior observations that
the altered gut microbiota is closely correlated with
depression.

Associations between depression and changes in the
metabolic pathways of these amino acids have been pre-
viously reported. Changes in alanine, aspartate, and glu-
tamate metabolism have been reported to be associated
with the antidepressant effects of venlafaxine®’. Changes
in glycine, serine, and threonine metabolism have been
reported to be associated with treatment-resistant
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depression, and a 5-week course of antidepressant treat-
ment modulates the serum levels of these excitatory
amino acids®®. Finally, the biosynthesis of valine, leucine,
and isoleucine is believed to play a crucial role in the
development of depression, possibly through the activa-
tion of the mammalian target of rapamycin pathway.
These three branched-chain amino acids could therefore
serve as biomarkers of depression®®. Abnormalities in the
glutamine—glutamate cycle, which is essential for the
communication between glia and neurons, have been
reported to be critical in the pathophysiology of depres-
sion®”, and decreased glutamate/glutamine levels were
shown to mediate cytidine’s efficacy in treating bipolar
depression’®. The inflammation-induced metabolism of
phenylalanine, tyrosine, and tryptophan is thought to
serve as for monitoring the progression of depression and
for guiding timely psychiatric interventions’'. Our find-
ings, together with previous reports, demonstrate that
changes in amino acid metabolism in the gut microbiota
contribute directly to plasma metabolome disorder and
are associated with depressive-like phenotypes. Further
studies are required to elucidate the mechanisms by
which these amino acids contribute to the pathophysiol-
ogy of depression.

In summary, our results demonstrate that the gut
metabolome contributes markedly to any disorder in the
circulating metabolome of CUMS rats and is associated
with depressive-like behaviors. These findings suggest
that an altered gut metabolome may serve as a promising
target for novel antidepressants.
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