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B.; Styk, W.; Popek-Marciniec, S.;

Filip, A.A. WT1 Gene Mutations,

rs16754 Variant, and WT1

Overexpression as Prognostic Factors

in Acute Myeloid Leukemia Patients.

J. Clin. Med. 2022, 11, 1873.

https://doi.org/10.3390/

jcm11071873

Academic Editor: Håkon Reikvam

Received: 19 February 2022

Accepted: 25 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

WT1 Gene Mutations, rs16754 Variant, and WT1 Overexpression
as Prognostic Factors in Acute Myeloid Leukemia Patients
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Abstract: (1) Background: The aim of our study was the complex assessment of WT1 variants and
their expression in relation to chromosomal changes and molecular prognostic markers in acute
myeloid leukemia (AML). It is the first multidimensional study in Polish AML patients; (2) Methods:
Bone marrow aspirates of 90 AML patients were used for cell cultures (banding techniques and
fluorescence in situ hybridization), and to isolate DNA (WT1 genotyping, array comparative genomic
hybridization), and RNA (WT1 expression). Peripheral blood samples from 100 healthy blood donors
were used to analyze WT1 rs16754; (3) Results: Allele frequency and distribution of WT1 variant
rs16754 (A;G) did not differ significantly among AML patients and controls. Higher expression of WT1
gene was observed in AA genotype (of rs16754) in comparison with GA or GG genotypes—10,556.7
vs. 25,836.5 copies (p = 0.01), respectively. WT1 mutations were more frequent in AML patients under
65 years of age (p < 0.0001) and affected relapse-free survival (RFS). The presence of NPM1 or CEBPA
mutations decreased the risk of WT1 mutation presence, odds ratio (OR) = 0.11, 95% CI 0.02–0.46,
p = 0.002 or OR = 0.05, 95% CI 0.006–0.46, p = 0.002, respectively. We observed significantly higher WT1
expression in AML CD34+ vs. CD34−, −20,985 vs. 8304 (p = 0.039), respectively. The difference in
WT1 expression between patients with normal and abnormal karyotype was statistically insignificant;
(4) Conclusions: WT1 gene expression and its rs16754 variant at diagnosis did not affect AML outcome.
WT1 mutation may affect RFS in AML.

Keywords: acute myeloid leukemia; WT1 gene expression; WT1 gene mutation; rs16754 variant;
chromosomal aberrations; FLT3 mutation; NPM1 mutation; CEBPA mutation

1. Introduction

Acute myeloid leukemia (AML) affects the function of the hematopoietic system
and is a genetically heterogeneous disease at cytogenetic and molecular levels [1]. AML
development includes multistep events associated with point mutations, as well as chromo-
somal aberrations [2]. Mutations in genes encoding Wilms tumor 1 (WT1), nucleophosmin
(NPM1), FMS-like tyrosine kinase-3 (FLT3), and CCAAT/enhancer-binding protein alpha
(CEBPA) affect the pathogenesis of AML [3].

The WT1 gene (locus 11p13) encodes a transcription factor that regulates cell growth
and differentiation [4]. It contains 10 exons, of which 4 (7–10) encode a DNA-binding
domain [5]. The WT1 gene may possess both tumor suppressor and oncogenic functions in
childhood Wilms tumors and leukemias, respectively [6]. WT1 gene mutations are found in
6–15% of newly diagnosed AML patients [3]. Hot spots were described in two exons (7 and
9), in which loss of function mutations can occur [7]. The alterations of the WT1 gene are
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associated with younger age, as well as the coexistence of FLT3 and CEBPA mutations [7].
The changes in the WT1 gene sequence may affect its expression [3]. The role of WT1
mutations in the pathogenesis of AML remains controversial [3].

Among many variants present in the WT1 gene, special attention has been paid to
the single nucleotide polymorphism rs16754 located in exon 7 (at nucleotide 1297A>G) [8].
Some studies have suggested that rs16754 can be a negative prognostic factor in AML [3,9].
The prognosis in AML is affected adversely by WT1 gene overexpression [10,11]. The
WT1 protein shows antiapoptotic activity. Moreover, higher WT1 expression is associated
with lower cell differentiation [12]. However, the exact role of the WT1 gene in AML
pathogenesis has not been completely revealed. The highest levels of WT1 expression were
found in the M3 AML subgroup (according to French-American-British, FAB, classification)
and were linked to a failure of achieving complete remission (CR), shorter overall survival
(OS), and shorter progression-free survival [13,14]. It is possible that some changes in
coding or noncoding regions of the WT1 gene or some chromosomal aberrations, especially
in the form of microdeletions or microduplications, may affect WT1 gene expression. WT1
gene variants and their expression may affect AML prognosis and outcome [9]. However,
the results remain controversial.

Abnormal divisions of leukemic cells are often the consequence of gene mutations
whose products affect the signaling pathways associated with cell proliferation. The
prognosis for AML patients is affected not only by WT1 gene mutation or abnormal
expression but also by mutations of the FLT3, NPM1, and CEBPA genes which were also
evaluated [15,16].

Most chromosomal aberrations implicate the appearance of certain gene rearrange-
ments, which affect not only the pathogenesis of the disease but also the prognosis and
response to the treatment. Clonal chromosomal abnormalities are identified in approx-
imately 55% of adult AML patients and are recognized as independent prognostic fac-
tors [17]. Approximately 15% of patients with clonal changes have complex karyotype,
i.e., three or more chromosomal alterations [18]. Patients with t(8;21), inv(16)/t(16;16), or
t(15;17) have a favorable prognosis. The prognosis is poor for AML patients with complex
karyotype or with the aberrations including inv(3)/t(3;3), t(6;9), monosomy 5 or del(5q),
and monosomy 7 or del(7q) [19]. The cases of cytogenetically normal AML (CN-AML) are
quite heterogeneous and, depending on cryptic molecular changes, are currently classified
in the group of intermediate prognoses [20].

The aim of our study was the complex assessment of the WT1 rs16754 variant and
WT1 mutations and expression in relation to chromosomal changes and molecular markers
such as mutations in FLT3, NPM1, and CEBPA genes. Taking into account some of the
controversies among current reports and conflicting results, we decided to analyze WT1
variants in the form of mutations and single nucleotide polymorphism, as well as WT1 gene
expression in AML. Such multidimensional analysis has not yet been carried out among
AML patients in the Polish population.

2. Materials and Methods

The study group consisted of 90 newly-diagnosed AML patients (42 women and
48 men) aged between 18 and 85 years, hospitalized at the Department of Hematooncology
and Bone Marrow Transplantation, at the Medical University of Lublin between the years
of 2008–2020 (Table 1). Control samples were of peripheral blood taken from 100 healthy
blood donors at the Regional Blood Center of Kielce, Poland.

Table 1. Clinical-laboratory characteristics of patients with AML.

Age median (range) 62.63 (18–85)

Gender (%)

Male 42 (47)

Female 48 (53)
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Table 1. Cont.

Laboratory parameters (range)

HB g/dL 9.26 (4.8–9.7)

WBC G/L 55.15 (0.8–94.84)

PLT G/L 89.06 (6.0–783.0)

FAB subtype:

M0 6

M1 7

M2 7

M3 12

M4 42

M5 15

M6 1

Risk category:

favorable 13

intermediate 34

adverse 43

Induction therapy:

DAC 52

Idarubicin + ATRA 6

AZA 9

reduced DA 15

low-dose cytarabine 8

Stem cell transplantation:

no 42

allogeneic 37

autologous 11

Cytogenetic:

Normal karyotype 45

Abnormal karyotype 45 (22 *)

FISH (%):

del(13)(q14.3) 51 (56.6)

del(17)(p13.1) 15 (16.7)

del(11)(q23) 13 (14.4)

del(6)(q23) 5 (5.5)

t(15;17)(q22;q21.1) 6 (6.6)

BCR/ABL 2 (2.2)

MLL amplification 1 (1.1)

MYC amplification 1 (1.1)

EVI1 amplification 1 (1.1)

Immunophenotype—negativity/positivity

CD34 51/39

CD33 19/71
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Table 1. Cont.

CD14 66/24

Molecular variants—present/absent

FLT3-ITD 8/82

NPM1 mutation 11/79

CEBPA mutation 7/83
* complex karyotype.

The preliminary diagnosis of AML was based on standard FAB (French-American-
British) criteria [11]. On the basis of genetic changes detected at diagnosis, patients were
stratified into one of four risk categories: favorable, intermediate-I, intermediate-II, and
adverse, according to European Leukemia Net criteria [20]. The mean time of follow-up
was 27 months.

With informed consent in accordance with the Declaration of Helsinki of 1975, revised
in 2008, and after approval from the Medical University Ethics Committee (app. no.: KE-
254/24/2011 and KE-0254/229/2013), the bone marrow aspirates were collected to heparin
and EDTA collection tubes (Sarstedt, Nümbrecht, Germany), to be used for cell culture and
for DNA, RNA isolation, respectively.

The treatment of patients generally depended on their age, performance status, and
medical history. Patients aged 60 years or lower received induction regimen DAC (daunoru-
bicin 60 mg/m2 on days 1 through 3, continuous infusion of cytarabine 200 mg/m2 on
days 1 through 7, and cladribine 5 mg/m2 on days 1 through 5). Consolidation treatment
consisted of one course of cytarabine 1.5 g/m2 on days 1 through 3 with mitoxantrone
10 mg/m2 on days 3 through 5 and one course of high-dose cytarabine 2 g/m2 twice daily
on days 1, 3, and 5. Then those with favorable karyotype or not eligible for hematopoi-
etic stem cell transplantation (HSCT) were treated for about two years with maintenance
therapy based on cytarabine combined with daunorubicin or thioguanine; patients with
intermediate or adverse karyotype were referred for allogeneic HSCT (allo-HSCT) or auto-
HSCT in cases not eligible for allo-HSCT or lacking suitable donor. Patients aged over
60 years of age in good general condition and without significant comorbidities were
treated with reduced induction regimen DA (daunorubicin 45 mg/m2 days 1 through 2 or 3
and continuous infusion of cytarabine 100 mg/m2 on days 1 through 5 or 7); consolidation
and maintenance chemotherapy in this group was reduced as compared with younger
patients. Finally, patients over 75 years or younger with significant comorbidities or in poor
performance status received low-dose cytarabine (20 mg twice daily for 10 days) repeated
every 4 weeks until disease progression. Another treatment option in this group of patients
is an azacytidine-a hypomethylating agent used at a dose of 75 mg/m2 once a day for
7 days during a 28-day cycle. This treatment is continued until unacceptable toxicity or
disease progression. Refractory and relapsed patients were treated with different regimens
such as ICE (idarubicin, cytarabine, etoposide), CLAG (cladribine, cytarabine, G-CSF), or
MEC (mitoxantrone, etoposide, cytarabine). Patients with promyelocytic leukemia received
therapy based on idarubicin and ATRA (all-trans-retinoic acid).

2.1. Classical Cytogenetics and Fluorescence In Situ Hybridization (FISH)

Unstimulated cultures of both leukemic (from the first portion of the bone marrow
aspirates) and normal (peripheral blood of healthy donors) cells were performed in 15 mL
of growth medium (RPMI 1640 medium supplemented with 15% FCS, 100 U/mL penicillin,
and 50 µg/mL streptomycin 50 µg/mL, Biomed). The cells were cultured for 24–72 h,
and then cultures were terminated conventionally. Metaphase spreads were stained using
banding techniques (GTG and RHG bands). Karyotypes were described according to the
International System for Human Cytogenetic Nomenclature (ISCN) 2020 [4].

FISH was initially performed on uncultured cells from the diagnostic bone marrow
specimens using following probes: 13q14.3, D13S319 and D13S25, 5q (5p15.31 and EGR1),
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7q (7q22.1 and 7q31), 20q (20q12 and 20q13.2), EVI1 (3q26) breakapart, MLL (11q23),
IGH/CCND1 (14q32.3/11q13), EGFR (7p11.2), EWSR1/ERG (21q22; 22q12), MDM2 (12q14.3-
q15), IGH/BCL2 (14q32.3; 18q21) (all from Cytocell), dual-fusion probe the PML (15q22)
and RARA (17q21.1) loci, 21q (D21S259, D21S341, D21S342, 21q22.13–q22.2), 17q23/17p12,
TP53/CEP17, D5S23/D5S721 (5p15.2), EGR1 (5q31), CEP7/D7S486 (7q31), D8Z2 (CEP8),
MYC (8q24.12–24.13), CDKN2A (9p21), MYB (6q23), CEP9 (9p11–q11), ETV6 (12p13), CEP15
(D15Z4), CEP17 (D17Z1), D20S108 (20q12), D13S319 (13q14.3)/13q34, RUNX1 (21q22), dual-
fusion probe the BCR (22q11.2) and ABL (9q34) loci, AML1/ETO (21q22/8q22) (all from
VYSIS, Abbott Laboratories), 1q21/SRD (1p36), hTERT 5p15/5q31, DEK/NUP214 (6p22;
9q34), FGFR1(8p12), MAF/IGH (16q23; 14q32), BCL1/IGH (11q13; 14q32), 22q11/22q13 (all
from KREATECH Diagnostics). FISH was performed according to the manufacturer’s
instructions. A total of 200 interphase cells per each sample were examined. The cutoff
level for each individual probe was determined based on negative sample analysis and
calculated as the mean ± 3SD.

2.2. DNA Isolation

DNA isolation from bone marrow aspirates (AML samples) and peripheral blood
(control samples) was performed using a commercial kit (Qiagen, Hilden, Germany),
according to the procedure provided by the manufacturer. The concentration and quality
of isolated DNA were checked spectrophotometrically with NanoDrop 2000 (Thermo
Scientific, Waltham, MA, USA). DNA was stored at −20 ◦C. DNA from bone marrow
aspirates was used to analyze chromosomal aberrations (with array CGH method) and
WT1 genotyping (with DNA sequencing method). DNA isolated from peripheral blood
was used to analyze the WT1 rs16754 variant.

2.3. Array Comparative Genomic Hybridization (aCGH)

Each step of the aCGH method was performed according to the manufacturer’s
(PerkinElmer, Waltham, MA, USA) instructions. The microarrays (Constitutional Chip 4.0)
contained human DNA clones (about 100–300 kb long) derived from artificial bacterial
chromosomes (BAC probes), which covered the entire human genome. The average
resolution of the probes was less than 650 kb.

The process of array hybridization was carried out in HS 400 Pro hybridization station
(Tecan, Mennedorf, Switzerland). Array scanning was performed in a ScanArrayGx scanner
(PerkinElmer). The OneClick software (PerkinElmer) was used to analyze the results
obtained with the aCGH technique. The results were described according to ISCN 2020 [4].

2.4. WT1 Genotyping—Analysis of WT1 Mutations and rs16754 Variant

The determination of all possible mutations in exons 7 and 9 and rs16754 variant (in
exon 7) of the WT1 gene was performed using direct sequencing. Primer sequences and
the procedure of sequencing were performed according to Summers et al., 2007 [21]. A
total of 25 µL reaction mixture consisted of 100 ng genomic DNA, 10 µM of each primer,
0.25 mM dNTPs mixture, and 0.31 U of HD polymerase (Clontech) with 1 × PCR reaction
buffer (Clontech). PCR reactions with modified thermal conditions were the same for
exon 7 and 9 analysis: initial denaturation (98 ◦C-3 min), 35 cycles (98 ◦C-20 s, 60 ◦C-10 s,
72 ◦C-15 s), final elongation (72 ◦C-5 min). The PCR reactions were performed in Applied
Biosystems 9700 Thermal Cycler. Sequencing PCR was performed using BigDye Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA, USA) in a thermal cycler
(as previously). The sequencing PCR product was purified using an exterminator kit
(A&A Biotechnology, Gdynia, Poland). The sequencing run module was StdSeq50_POP7 in
genetic analyzer 3130 (Applied Biosystems). The results were analyzed by use of Applied
Biosystems software.
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2.5. RNA Isolation and WT1 Expression

RNA isolation was carried out according to the procedure developed by Chomczynski
and Sacchi [22]. The concentration of isolated RNA was checked spectrophotometrically
using a NanoDrop device (Thermo Scientific). The quality of this nucleic acid was checked
during electrophoresis in 2% agarose gel. RNA was stored at −80 ◦C.

After RNA isolation, the reverse transcription reaction was performed (A&A Biotech-
nology set). The real-time PCR reaction (Applied Biosystems 7500 Fast) was carried out on
the cDNA (100 ng) template. The analysis of WT1 gene expression was performed using
a WT1 ProfileQuant (Ipsogen, Marseille, France) kit. In real-time PCR, we used primers
and probes with the sequences described by Cillioni et al. [23]. The ABL gene was the
reference gene. The sequences of the primers and probes for ABL were used according
to the protocol described by Beillard et al. [24]. In accordance with the LeukemiaNet
guidelines, the detection of more than 250 copies of WT1/10,000 copies of the control ABL
gene was defined as WT1 overexpression [23,25].

2.6. Analysis for Other Gene Mutations

FLT3 and NPM1 gene mutations were analyzed as previously described [26]. The
detection of CEBPA gene mutation was according to Benthaus et al. 2008 [27].

2.7. Statistical Analysis

The efficacy of induction therapy was assessed using response criteria proposed by
European Leukemia Net [20]. Overall survival (OS) was defined as the time from diagnosis
to death from any cause. Relapse-free survival (RFS) was defined as time calculated from
the achievement of remission until the date of relapse or death from any cause. The
probabilities of OS and RFS rates were estimated using the Kaplan–Meier method. Genetic
risk groups were compared with respect to these parameters using the log-rank test. In
the case of WT1 rs16754 variant, deviations in genotype frequencies in controls (healthy
blood donors) and cases (AML patients) from Hardy–Weinberg equilibrium (HWE) were
assessed by Chi-squared test with Yates’s correction for the groups with less than five
patients [28]. For 95% confidence interval (CI), we assumed p = 0.05 and χ2 = 3.84; therefore,
if the χ2 ≤ 3.84 and the corresponding p ≥ 0.05, then the population is in HWE, as described
previously by Zmorzynski et al., 2019 [29]. Differences with a p value less than 0.05 were
considered statistically significant. Statistica software version 12.0 (Statsoft, Tulsa, AK,
USA) was used for statistical analysis.

3. Results

The presented study included 90 AML patients, 42 males and 48 females, with a
median age of 62.63 years. Cytogenetic and molecular analyzes were successful in all the
individuals investigated within the study.

3.1. WT1 rs16754 Variant

The HWE test showed that the genotypic frequencies of the WT1 rs16754 variant
were not in HWE for AML patients (Table 2). The differences in the genotypic and allelic
frequencies of WT1 between the study and control groups were statistically insignificant
(Table 3).

The studied WT1 variant did not influence the risk of AML. Genotypes AA predom-
inated in the intermediate risk group (33/74). Genotypes AA and GA predominated in
the adverse risk group (28/74 and 12/13, respectively). All cases with poor risks had
homozygous GG (3/3). The presence of GA and GG genotypes did not affect the risk of
WT1 mutations occurrence (p = 0.68). We observed higher expression of WT1 gene in pa-
tients with AA genotype in comparison with those with GA or GG genotypes—10,556.7 vs.
25,836.5 NCN copies (p = 0.01), respectively. The AA genotypes were associated with lower
PLT numbers in comparison with GA + GG genotypes—78.37 vs. 137.18 (G/L), p = 0.02
(Table 4). Survival curves were defined by the Kaplan–Meier method and compared us-
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ing the log-rank test. Among surviving patients, there were no statistically significant
differences in OS and RFS between patients with AA genotype and those with GA or GG
genotypes—p = 0.302 and p = 0.365, respectively (Figures 1 and 2).

Table 2. Hardy–Weinberg equilibrium (HWE) for WT1 rs16754 variant in case and control groups
according to expected (E) and observed (O) values.

GROUPS GENOTYPES Total HWE p Value and χ2 *

WT1 rs16754 variant
- AA GA GG - -

CONTROL
E 79.21 19.58 1.21 100

p = 0.44, χ2 = 0.57O 80 18 2 100
CASE

E 70.2 18.55 1.25 90
p = 0.0007, χ2 = 11.5O 74 11 5 90

* if the χ2 ≤ 3.84 and the corresponding p ≥ 0.05, then the population is in HWE.

Table 3. The comparison of allele frequency and distribution of WT1 variant among AML patients
and controls.

Gene Variants
and Alleles AML n (%) Controls n (%) Odds Ratio 95% CI p Values

Codominant model
AA 74 (82.2%) 80 (80%) 1 - -
GA 11 (12.2%) 18 (18%) 1.51 0.67–3.41 0.31
GG 5 (5.5%) 2 (2%) 0.37 0.06–1.96 0.41

Dominant model
AA 74 (82.2%) 80 (80%) 1 - -

GA + GG 16 (17.7%) 20 (20%) 1.15 0.55–2.40 0.69
Recessive model

AA + GA 85 (94.4%) 98 (98%) 1 - -
GG 5 (5.5%) 2 (2%) 0.34 0.06–1.83 0.36

Total: 90 (100%) 100 (100%)
Alleles

A 159 (88.3%) 178 (89%) 1 - -
G 21 (11.7%) 22 (11%) 0.93 0.49–1.76 0.84

Total: 180 (100%) 200 (100%)

Table 4. Correlation of WT1 variants and overexpression with clinical characteristics in AML patients.

Features WT1 AA
Genotype

WT1 GA +
GG

Genotype
p Value WT1

Mutated
WT1 Wild

Type p Value
WT1

Expression
*

WT1
Expression

**
p Value

Gender

Male 34 8
0.76

18 38
0.38

37 12
0.61

Female 40 8 8 26 29 12

Age

Age < 65 years 62 12
0.63

23 13
<0.0001

55 19
0.64

Age ≥ 65 years 12 4 3 51 11 5

Cytogenetics

Normal
karyotype 35 10

0.27
16 29

0.16
32 13

0.63
Abnormal
karyotype 39 6 10 35 34 11

Point mutations



J. Clin. Med. 2022, 11, 1873 8 of 17

Table 4. Cont.

Features WT1 AA
Genotype

WT1 GA +
GG

Genotype
p Value WT1

Mutated
WT1 Wild

Type p Value
WT1

Expression
*

WT1
Expression

**
p Value

NPM1 wild type 66 13
0.64

18 61
0.002

58 21
0.75

NPM1 mutated 8 3 8 3 8 3

FLT3 wild type 67 15
0.93

21 61
0.07

62 20
0.25

FLT3 mutated 7 1 5 3 4 4

CEBPA wild type 69 14
0.80

20 63
0.002

60 23
0.74

CEBPA mutated 5 2 6 1 6 1

Clinical values

WBC median 42.16 113.59 0.06 13.74 61.19 0.64 50.82 74.63 0.96

Hb median 9.18 9.74 0.33 8.85 9.33 0.27 9.28 9.17 0.17

PLT median 78.37 137.18 0.02 86 90.28 0.19 90.79 84.45 0.45

* WT1 expression lower than medium value (NCN = 13,273.12). ** WT1 expression higher than medium value
(NCN = 13,273.12).

3.2. WT1 Mutations

WT1 mutations were found in 26/90 patients (28.9%). A total of 13 patients had WT1
mutations affecting exon 7 (14.4%), whereas 12 patients (13.3%) had WT1 mutations in exon
9. Only one patient had WT1 mutations in both exon 7 and 9 (1.1%). The total number of
WT1 mutations was 24. We found the following mutations:

- In exon 7: c.1375G>A (p.A399V), c.1334C>A (p.R385R), c.1382A>T (p.P401P), c.1389del-
A (p.N404H); c.1320G>A (p.P381S), c.1314C>T (p.V379I), c.1324indelGTACAAGAG/
GTACAAGAGGGTACAAGAG (frameshift variant);

- In exon 9: c.1590delC (p.L491X), c.1567G>A (p.R463P), c.1557T>A/C (p.T460S/A).

The most common mutations were substitutions (18/24, 75%). In contrast, deletions
were found in 5 cases (5/24, 20.8%). One indel mutation was found (1/24, 4.1%).

WT1 mutations were present more frequently in AML patients with age under 65 years
(p < 0.0001) (Table 4). The presence of NPM1 or CEBPA mutations decreased the risk of
mutations occurrence in WT1 gene-OR = 0.11, 95% CI 0.02–0.46, p = 0.002 or OR = 0.05,
95% CI 0.006–0.46, p = 0.002, respectively (Table 4). WT1 mutation, as well as WT1 rs16754
genotypes, did not affect the OS of AML patients (Figure 1). We observed an association
of WT1 mutations with RFS (Figure 2a). A univariate Cox analysis revealed that patients
above 65 years of age had a 2.5-fold risk of death, p = <0.01 HR = 2.52 (Table 5).

3.3. WT1 Expression

The number of WT1 gene copies (normalized copy number, NCN) was calculated into
10,000 ABL gene copies. A value of >250 WT1 copies per 10,000 ABL copies was seen as a
manifestation of overexpression of this WT1 gene. The WT1 overexpression was observed
in all AML patients at the time of diagnosis. The mean of WT1 expression was 13,273.12
(range from 1342.9 to 172,093). In patients with normal karyotype and with chromosomal
aberrations, we observed mean WT1 expression 12,747.44 (range 1342.9–172,093) and
13,798.79 (range 1458–105,842.5). The difference in WT1 expression between patients with
normal and abnormal karyotypes was statistically insignificant (Table 4). We observed
significantly higher WT1 expression in AML CD34 positive patients in comparison with
AML CD34 negative individuals—20,985 (NCN) vs. 8304 (NCN), p = 0.039.
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Figure 1. Kaplan–Meier analysis of OS in the group of AML patients taking into account: (a) WT1 
mutation; (b) WT1 rs16754 variant; (c) WT1 overexpression. 
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mutation; (b) WT1 rs16754 variant; (c) WT1 overexpression.
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Figure 2. Kaplan–Meier analysis of RFS in the group of AML patients taking into account: (a) WT1 
mutation; (b) WT1 rs16754 variant; (c) WT1 overexpression. 
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Table 5. Analysis of prognostic impact on OS and RFS in AML patients.

Feature Univariate Analysis Multivariate Analysis

p Value HR 95% CI p Value HR 95% CI

OS
Age <0.01 2.52 1.33–4,81 0.01 0.41 0.22–0.81

WT1 mutation 0.82 1.07 0.59–2.33 0.74 0.89 0.48–1.52
WT1 overexpression 0.35 0.76 0.44–1.34 0.54 0.84 0.45–1.82

NPM1 mutation 0.13 2.03 0.81–5.10 0.31 1.73 0.61–4.93
FLT3-ITD 0.76 0.86 0.35–2.17 0.61 0.78 0.29–1.93

CEBPA mutation 0.54 1.44 0.45–4.62 0.96 0.97 0.27–3.27
Abnormal karyotype 0.64 0.89 0.53–1.47 0.77 0.92 0.51–1.56

RFS
Age 0.07 2.08 0.92–4.65 0.24 0.59 0.27–1.52

WT1 mutation 0.11 1.84 0.59–3.25 0.76 1.13 0.36–2.18
WT1 overexpression 0.19 0.63 0.31–1.27 0.59 0.79 0.33–1.83

NPM1 mutation 0.04 3.46 1.03–6.55 0.17 2.75 0.92–5.45
FLT3-ITD 0.58 0.74 0.26–2.13 0.38 0.57 0.15–1.99

CEBPA mutation 0.16 2.37 0.70–7.95 0.62 1.42 0.39–5.75
Abnormal karyotype 0.51 0.78 0.37–1.62 0.69 0.84 0.35–1.87

3.4. FLT3, NPM1, and CEBPA Mutations

Internal tandem duplication of FLT3 gene (FLT3-ITD) was observed in eight patients
(8.8%). In all cases, FLT3-ITD change involved only one allele. In six patients with FLT3-ITD,
complete remission could not be achieved. We did not observe a statistically significant
difference between WT1 gene expression in patients with FLT3-ITD and patients with FLT3
wild type-13,628 vs. 13,238, p = 0.98. In patients with FLT3 mutation, hyperleukocytosis
was observed in comparison with those with FLT3 wild type—49.5 vs. 152 G/L (p = 0.002),
respectively. In patients who reached CR, a lower WBC number was observed—22.9 vs. 59
(G/L), p = 0.012. FLT3 mutation did not impact CR in AML patients (p = 0.81).

NPM1 mutational analysis revealed a type A mutation in exon 12 (956dupTCTG). This
type of mutation was observed in 11 patients. Both FLT3-ITD and NPM1 mutations did
not coexist together. The mean number of WT1 copies in patients with NPM1 mutation
was lower than the median value (7663.26 NCN). However, this difference in mean WT1
NCN copies between AML patients with or without NPM1 mutation was statistically
insignificant (p = 0.71). Similar results were observed in the case of patients with or without
CEBPA mutation—7356 vs. 13,772 WT1 NCN (p = 0.43), respectively. CEBPA mutation
coexisted with NPM1 mutation in three cases. In one AML patient, the presence of both–
CEBPA mutation and FLT3-ITD was observed. A univariate Cox analysis identified NPM1
mutation impacting RFS of AML patients (p = 0.04, HR = 3.46) (Table 5). In multivariate
Cox analysis, we did not observe any impact of WT1 mutation, WT1 overexpression, or
molecular changes in FLT3, NPM1, and CEBPA genes on OS and RFS in AML patients.

3.5. Cytogenetic Aberrations

In our study, by use of conventional cytogenetics and aCGH, genomic imbalances
were detected in 45 cases (50%). Owing to the aCGH technique, we detected an abnormal
number of chromosomes that included gains and losses, as well as small structural changes
in the form of duplications and deletions.

The aberrations detected with classical cytogenetic techniques included whole chro-
mosomes. These changes were mostly related to the following chromosomes: −17 (11%);
−18 (9%); −5 (8%), +8, −15, −16, −21 (7%); −3, +6, −7, −12, −14, −20, −22 (5%). Intersti-
tial and terminal deletions were also detected (del(3q), del(5q), del(7q), del(11q), del(13q),
del(17p)), translocations (t(3;15), t(5;7), t(8;16), t(8;21), t(9;22), t(10;12), t(11;11) and t(15;17)),
inversions (inv(16)), isochromosomes (i(17q)) and the presence of marker chromosomes.

The chromosomal aberrations revealed by aCGH included small DNA fragments and
were predominantly related to the following regions:
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- losses of (5)(q23q32)—20%;
- losses of (7)(p12.3q36.3)—13%;
- gains of (8)(q12.1q24.3)—10%;
- gains of (11)(q12.2q14.1)—12.2%;
- losses of (11)(q22q23.3)—14.4%;
- losses of (17)(p13.3p13.1)—16.7%;
- losses of (18)(p11.32q23)—11%;
- gains of (22)(q12.3q13.2)—5.5%.

By using the aCGH technique, we have confirmed the occurrence of most changes
detected by classical cytogenetic methods. In our study, we observed amplification of
regions—3q26 (EVI1 gene locus), 8q24 (C-MYC gene locus), and 11q23 (MLL gene locus).

No chromosome X and Y aberrations were found using the microarray CGH method;
however, such aberrations were seen in classical cytogenetics tests. In the case of dele-
tions and additions, no statistically significant differences were found between the results
obtained by classical cytogenetics (GTG and RHG) and aCGH.

The combination of conventional cytogenetics, FISH, and aCGH enabled us to find
favorable karyotype in 13 patients (14.4%), intermediate karyotype in 34 patients (37.7%),
and adverse karyotype in 43 patients (47.7%). The median OS was not reached in favorable-
risk (26.6 months) and in adverse-risk group (12.8 months). It was reached in intermediate-
risk group 39.7 months (p = 0.123 favorable vs. intermediate; p = 0.001 favorable vs.
adverse; p = 0.001 intermediate vs. adverse). The median RFS (6.39 months) was not
reached in adverse-risk group (1.8 month) in comparison with favorable-risk (10.5 months)
and intermediate-risk (8.6 months) groups (p = 0.125 favorable vs. intermediate; p = 0.002
favorable vs. adverse; p = 0.017 intermediate vs. adverse).

4. Discussion

In our study, we analyzed the WT1 rs16754 variant, WT1 mutations, and WT1 gene
expression taking into account chromosomal changes and molecular markers such as
mutations in FLT3, NPM1, and CEBPA genes. To our knowledge, our investigation is the
first multidimensional study including analysis of cryptic chromosomal and molecular
changes in Polish AML patients.

4.1. WT1 rs16754 Variant

In our study, we found that genotypic frequencies of the WT1 gene were not in HWE.
This suggests an association of WT1 rs16754 genotypes with the risk of disease development.
However, in our study, we did not find the association of analyzed genotypes with AML
risk. We cannot exclude, however, that the obtained result was due to sampling error.
Moreover, analyzed genotypes did not affect OS or RFS of AML patients. It is consistent
with results obtained by Kim et al. in Korean patients with AML [30]. In contrast, Long
et al. in their meta-analysis observed that the WT1 rs16754 variant was associated with
better survival of AML patients [9]. They concluded that the WT1 rs16754 variant was
an independent favorable-risk marker [9]. Zhang et al. found that GG genotypes were
associated with significantly higher WT1 expression at mRNA level in comparison with
GA and AA genotypes [31]. In our study, we observed similar results. The expression of
the WT1 gene was statistically higher in AML patients with AA genotype.

4.2. WT1 Mutations

We observed a higher frequency of WT1 mutations in AML patients under 65 years
of age. This is in concordance with results obtained by Krauth et al. [32]. In their study
of 3157 AML patients, they found that WT1 mutations were more frequent in younger
AML patients and were associated with adverse effects in cytogenetically normal AML
patients [32]. In concordance with other studies, we did not find a significant relationship
between WT1 mutations and clinical characteristics, including gender, WBC and PLT count,
and Hb concentration [3,33]. We did not find an association of WT1 mutations with normal
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karyotype. However, we observed a higher frequency of WT1 mutations in AML patients
with NPM1 or CEBPA genes mutations. More frequent WT1 mutations were observed by
Krauth and coworkers in CEBPA mutated AML [32]. In contrast, Hou et al. and Rostami
et al. did not observe a relationship between WT1 mutations and the presence of mutations
in genes-FLT3, NPM1, and CEBPA [3,34]. In other research, Toogeh and coworkers showed
no correlation of WT1 mutations with FLT3-ITD [35]. In our study, we did not observe
an association of WT1 mutations with FLT3-ITD. To assess the prognostic impact of WT1
mutations, we analyzed them taking into account OS and RFS. We found longer RFS
in patients with WT1 mutation. However, this result is not consistent with previous
reports [3,33,36,37]. This may be due to the fact that previous reports were conducted in
other populations or as a result of sampling error.

4.3. WT1 Expression

The WT1 gene shows high expression in AML patients, and its expression at diagnosis
may be an adverse predictor of disease outcome [38]. It has been confirmed that increased
expression of the WT1 gene accelerated disease progression [38]. In our study, we observed
WT1 overexpression in 97.7% of newly diagnosed AML patients, which is in agreement
with previous studies [3,10,16]. In the presented material, all patients qualified for the study
had completed chemotherapy. We observed significantly higher WT1 expression in AML
CD34 positive patients in comparison with AML CD34 negative individuals. Yoon et al.
carried out testing of 104 diagnosed AML patients with normal karyotype and showed that
increased WT1 expression in bone marrow was significantly increased in AML patients [39].
We did not find a statistically significant difference in WT1 expression between patients
with normal and abnormal karyotypes. Moreover, we did not observe an association
between WT1 expression and OS or RFS. Results of our research confirm the data obtained
by other authors [3,40].

4.4. Cytogenetic Analysis

We observed the occurrence of chromosome abnormalities, which were identified
by conventional karyotype testing, aCGH, and were confirmed by FISH testing. Without
conventional cytogenetics and FISH, we would not be able to detect and resolve balanced
aberrations, such as translocations. Similar results were found in numerous studies [19,20].
Our data also support the importance of cytogenetic analysis as a component of the routine
diagnostic workup of AML.

The difference in WT1 expression between patients with normal and abnormal kary-
otypes was statistically insignificant. Moreover, we did not observe an association between
chromosomal aberrations and the presence of WT1 mutations.

The median OS was not reached in the favorable-risk group, as well as in the adverse-
risk group. In the case of RFS, its median value was not reached in the adverse-risk
group only.

The aberration frequently observed using aCGH was the loss of a long arm frag-
ment of chromosome 5 (including NPM1 gene locus), which is in agreement with other
studies [41,42]. Costa et al. and Rucker et al. detected losses of small regions in 5q [43,44].
Mehrotra et al. analyzed 48 AML patients and observed deletions in the 5q33.3 region [45].
Loss of this region was associated with the achievement of CR [45]. Veigaard et al. drew
attention to the 5q23.1–q33.3 region, where they found deletions most frequently [46]. In
addition, Schoch et al., in testing AML patients with complex karyotype, found deletions of
the 5q14–q35 region, as we did in our study [47]. Itzhar et al. specified 5q31.3–q32 regions
which were associated with AML development [48]. The deletion of the 5q31 region was
associated with the aggressive course of AML, the occurrence of additional chromoso-
mal aberrations, and an unfavorable prognosis [46]. We did not detect microdeletions or
microduplications of loci, including WT1, FLT3, and CEBPA genes.
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4.5. Clinical and Molecular Data

NPM1 mutations in AML patients are associated with the presence of normal kary-
otype and are rare in patients with genetic aberrations [49]. We did not notice shorter OS
or RFS in patients with NPM1 mutation. The presence of this mutation is favorable and is
associated with higher CR rates [4]. In CN-AML patients with NPM1 mutation, longer RFS
is observed in comparison with that observed in patients with wild-type NPM1 [20]. In our
study, we observed NPM1 gene mutations only in CN-AML. Patients with NPM1 mutations
and lacking FLT3-ITD have a better prognosis [50]. The coexistence of NPM1 and FLT3-ITD
mutations is a relatively common phenomenon, observed in about 18% of patients with
CN-AML [51]. In our material, we did not find the coexistence of these mutations. Many
studies have confirmed the correlation between FLT3-ITD and an increased number of
leukocytes [52]. Our research has also shown that patients with FLT3-ITD mutations have
increased leukocytosis. The FLT3-ITD adversely affects the response to treatment. However,
in the presented material, we did not find an association between CR rate and the presence
of the FLT3 mutation.

4.6. Limitations

The limitations of our study are associated with the number of AML patients recruited
to the study, as well as an automated DNA sequencing method. The sample size was
relatively small, in part due to the low incidence of the disease, as well as applied methods
such as aCGH. Chromosomal aberrations are factors that need to be taken into account in
determining the prognosis of AML patients. Due to their low resolution, the techniques
of classical cytogenetics do not detect all alterations; therefore, other methods are used in
diagnosing AML, such as PCR and FISH. However, both techniques require prior knowl-
edge of DNA regions where the mutations have occurred. The 90 AML patients sufficed
for most analyzes. However, some were not possible as a result of the low frequency of
certain molecular changes. In the case of automated sequencing, it would be recommended
to use the next-generation sequencing, which has higher resolution and enables analysis of
all exons and introns of the WT1 gene. It is possible that mutations present in other coding
regions or in regulatory regions of the WT1 gene were not detected in our analysis.

4.7. Conclusions

WT1 gene expression and its rs16754 variant at diagnosis did not affect outcomes in
Polish AML patients. WT1 mutation may affect RFS in AML. In conclusion, we propose
a combination of conventional cytogenetics, FISH, and array CGH as necessary tools to
unravel the molecular karyotype of AML.
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