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Adipose tissue is comprised of heterogenous cell populations that regulate both energy
metabolism and immune reactions. Macrophages play critical roles in regulating
immunometabolic homeostasis or disorders through cooperation with adipocytes,
adipose tissue-derived stem cells (ADSCs) or other cells in adipose tissue. Extracellular
vesicles (EVs) are recently recognized as efficient messengers for intercellular
communication. Emerging evidences have demonstrated that adipose EVs are actively
involved in the mutual interactions of macrophages, adipocytes and ADSCs, which
produce considerable influences on immunometabolism under healthy or obese
conditions. Here, we will elaborate the production and the characteristics of adipose
EVs that are related to macrophages under different metabolic demands or stresses,
whilst discuss the roles of these EVs in regulating local or systemic immunometabolic
homeostasis or disorders in the context of adipocyte-macrophage dialogue and ADSC-
macrophage interaction. Particularly, we provide a profile of dynamic adipose
microenvironments based on macrophages. Adipose EVs act as the messengers
between ADSCs and macrophages to maintain the balance of metabolism and
immunity, while drive a vicious cycle between hypertrophic adipocytes and
inflammatory macrophages to cause immunometabolic imbalance. This review may
provide valuable information about the physio- or pathological roles of adipose EVs and
the application of adipose EVs in the diagnosis and treatment of metabolic diseases.
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INTRODUCTION

Adipose tissue is the major metabolic organ that regulates
glycolipid metabolism and energy balance. There are two types
of adipose tissues, which perform distinct functions in energy
regulation. White adipose tissue (WAT) stores surplus energy in
the form of triglycerides, whereas brown adipose tissue (BAT)
dissipates energy through thermogenesis to maintain body
temperature. The Imbalance between energy intake and
consumption may lead to obesity manifested by excessive fat
accumulation and pathological expansion of WAT (1–3). This
disturbance is often accompanied by WAT inflammation,
characterized by infiltration and activation of proinflammatory
immune cells such as macrophages and T cells, as well as high
levels of proinflammatory cytokines. The chronic inflammation
caused by WAT dysfunction leads to insulin resistance in liver,
muscle, adipose tissue, and result in metabolic abnormalities
such as hyperglycemia, hypertension and dyslipidemia, thereby
linking obesity with type 2 diabetes and cardiovascular diseases
(4–7). So, WAT is the main site for local or systemic
immunometabolic regulation under both healthy and
pathological conditions.

Tissue immunometabolism refers to the connection of
immunity and metabolism in metabolic tissues including liver,
muscle, pancreas, and adipose tissue. The regulation of
immunometabolism in these tissues relies on the mutual
interactions among tissue parenchymal cells, stromal cells, and
immune cells. These cellular interactions develop adaptation to
each other to maintain immunometabolic homeostasis and
normal physiological functions of metabolic organs under
healthy condition or in response to acute metabolic demands.
In case of obesity or chronic metabolic stresses, the infiltration
and activation of immune cells may impinge the actions of
metabolic hormones like insulin on parenchymal cells, and
further impair the glycolipid metabolism in metabolic organs,
eventually resulting in tissue maladaptation and metabolic
disorder clusters. For example, lean WAT contains large
amounts of immunomodulatory cells such as alternatively
activated macrophages, regulatory T cells, type 2 innate
lymphoid cells, which cooperate with stromal cells to maintain
tissue homeostasis and support physiological functions of
adipocytes. In contrast, obese WAT is characterized by
accumulation and activation of immune cells including
inflammatory macrophages, effector CD4+ and CD8+ T cells
(mainly Th1 and CTL), which induce tissue inflammation and
cause insulin resistance in adipocytes, hepatocytes and myocytes,
thereby contributing to tissue dysfunction and associated
metabolic complications (1, 8–10). In adipose tissue, adipocytes,
adipose-derived stem cells (ADSCs) and macrophages act as the
main players of parenchymal cells, stromal cells, and immune
cells, respectively, which actively participate in immunometabolic
regulation. Kinds of soluble factors, comprising adipokines,
cytokines, growth factors and fatty acids, are involved in the
intercellular communication to regulate immunity and
metabolism, which have been well reviewed elsewhere and will
not be detailed here (1, 5, 8, 11, 12). Extracellular vesicles (EVs),
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as another form of soluble factors, are recently recognized as the
important modulators affecting neighboring or distant cells. As
membrane-coated vesicles, EVs carry and transport various of
bioactive proteins, lipids, or nucleic acids from donor cells into
recipient cells, thereby affecting their biological characteristics and
functions (13–17). Emerging data have shown the critical roles of
EVs in regulating immunometabolism in metabolic tissues,
particularly in adipose tissue. Herein, we will summarize the
production and characteristics of EVs from WAT and their roles
in maintaining or disrupting immunometabolic homeostasis in
the context of adipocyte-macrophage dialogue and ADSC-
macrophage interaction.
CELLS IN ADIPOSE TISSUE RELATED
TO IMMUNOMETABOLISM

In the 1960s, Rodbell pioneered the study on individual cell
components of adipose tissue, and showed that hormones
produced similar metabolic effects on isolated fat cells and fat
tissue (18). Thus, to some extent, fat cells could be used as
substitute for adipose tissue in particular studies. In fact, fat cells
only account for part of the total cells in adipose tissue. Aside
from adipocytes, a cluster of stromal vascular fractions,
comprised of ADSCs, immune cells, endothelial cells, and
other cell components, are found in WAT (19–22). Among
them, both innate and adaptive immune cells such as
macrophages, natural killer cells, T cells and B cells contribute
to the formation of dynamic immune microenvironments with
the changing metabolic status, wherein various immune cells
communicate with adipocytes, ADSCs or other cells (23–26).
Here, we will discuss the adipocytes, ADSCs and macrophages
in detail.

Adipocytes
As the parenchymal cells of adipose tissue, adipocytes not only
function as critical regulators for energy metabolism, but also
serve as endocrine modulators involved in various physio- or
pathological processes like appetite control and immune
response (5, 11, 27–30). White adipocytes, mainly present in
WAT throughout the body, contain large and unilocular lipid
droplets to store energy in the form of triglycerides. In contrast,
brown adipocytes, mainly distributed in BAT in the scapular area
and neck, contain small and multilocular lipid droplets together
with abundant mitochondria that contribute to energy
dissipation in the form of heat (3, 31–33). In addition, beige
adipocytes, as brown-like adipocytes induced by cold stimuli or
high-fat diet (HFD) challenge, also contribute to energy
consumption via heat production (34, 35). The three types of
adipocytes function differently and cooperate with each other in
response to various metabolic demands or stresses. For instance,
white adipocytes contribute to WAT expansion via hyperplasia
and hypertropia during obesity, whereas the activation of brown
adipocytes and the induction of beige adipocytes reduce obesity
and improve insulin sensitivity. White adipocytes play important
May 2021 | Volume 12 | Article 666344
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roles in regulating glycolipid metabolism and energy balance
through storing excess energy and supplying it when needed.
Large amounts of secretary factors from adipocytes, such as
leptin, adiponectin, cytokines, fatty acids and EVs, are involved
in these processes, which mediate the communication of
adipocytes with other cells inside or outside adipose tissue (5,
11). Besides their functions in energy storage and endocrine,
white adipocytes have recently been recognized to regulate both
innate and adaptive immunity in adipose tissue, such as
recruiting and activating macrophages, presenting antigens to
invariant natural killer T cells or CD4+ T cells (25, 36–40). Thus,
adipocytes may be the major cell components in regulating WAT
immunometabolism. In this review, we mainly focus on the EVs
related to white adipocytes in WAT.

ADSCs
ADSCs are the dominant stromal cells in adipose tissue that
serve as progenitors responsible for the regeneration and
replenish of adipocytes. ADSCs have great potentials for
homing and self-renewal, as well as strong capacity for
multiple differentiation toward adipocytes, chondrocytes, and
muscle cells. Therefore, ADSCs are currently recognized as
promising therapeutic candidates for tissue repair and
regeneration (7, 8). The proliferation and adipogenesis of
ADSCs are essential for the maintenance of metabolic
homeostasis particularly in adipose tissue, as supported by our
previous study showing distinct metabolic influences on WAT
homeostasis by ADSCs from different anatomic locations (41,
42). Notably, human or mouse ADSCs showed strong capacity
for immunomodulation through actively participating in both
innate and adaptive immunity, such as promoting macrophage
polarization toward anti-inflammatory phenotypes or inducing
regulatory T cell differentiation. These immunomodulatory
effects of ADSCs were perfectly reflected in the treatment of
several inflammatory diseases like colitis and sepsis in animal
models (43–46). While for metabolic inflammation, ADSCs also
brought desirable effects on the improvements of immune
microenvironments in adipose tissues or the attenuation of
inflammation and tissue damages in animal models with
obesity or type 2 diabetes (47–50).

Macrophages
The great interest on adipose tissue-resident macrophages
(ATMs) is largely ignited by the discovery that obesity induced
the infiltration and activation of macrophages in WAT to elicit
inflammation and insulin resistance (51, 52). Monocyte
chemoattractant protein-1 (MCP-1) is recognized as the main
contributor to the increase of ATMs in obese mice. Besides,
fatty acids released by necrotic fat cells are also phagocytic
stimuli for ATMs, which promote their infiltration around
necrotic cells to form crown like structures (12, 53, 54). In fact,
macrophages are critical resident cells in WAT, which not only
mediate WAT inflammation and metabolic disorders under
obese condition, but also participate in the maintenance of
WAT immunometabolic homeostasis under lean condition.
Frontiers in Immunology | www.frontiersin.org 3
Macrophages mediate divergent effects on immunometabolism
depending on their different phenotypes. Based on different
stimuli, macrophages can be classified into classically activated
M1 and alternatively activated M2 subsets. M1 macrophages
activated by lipopolysaccharide (LPS) plus interferon (IFN)-g
release proinflammatory cytokines tumor necrosis factor (TNF)-
a, interleukin (IL)-1, IL-6 and so on; while M2 macrophages
activated by IL-4 and IL-13 release IL-10 and arginase-1 to play
an anti-inflammatory effect. Different from the response of
macrophages to in vitro stimulation, ATMs in vivo display
more complexity and flexibility in gene profiles, phenotypes,
and functions. Though many researchers tend to classify ATMs
into M1-like and M2-like macrophages, we will specify their
characteristic phenotypes in this review unless these characters
are not indicated in these studies. As evidenced by the findings
from Lumeng and Fujisaka et al., two types of ATMs dominate
the regulation of WAT immunometabolism in different
metabolic status. Under lean condition, CD206+ ATMs are
dominant in epidydimal WAT characterized by M2
phenotypes (high expression of Ym1, arginase 1 and IL-10),
which facilitate immunometabolic homeostasis in WAT. While
diet-induced obesity induces a population of CD11c+ ATMs
characterized by M1 phenotypes (high expression of iNOS and
TNF-a) that drive immunometabolic disorders inWAT (55–57).
Once obesity induces the phenotype switch of ATMs,
proinflammatory cytokines secreted by M1 ATMs, particularly
TNF-a, IL-1 and IL-6, play a direct role in promoting insulin
resistance and exacerbating local or systemic metabolic
dysfunction. On the contrary, IL-10 produced by M2 ATMs
can relieve TNF-a-induced insulin resistance (27, 55, 58, 59).
Besides aforementioned ATMs, other distinct populations of
ATMs have recently been identified to exert both immune and
metabolic functions and will not be detailed here (60).
ADIPOSE EVS IN REGULATING
IMMUNOMETABOLISM

EVs surrounded by bilayer membranes are produced by the cells
and released into extracellular space. Because of their capacity for
carrying and delivering various cargos to neighboring or distant
recipient cells in an easy and safe way, EVs are recently
recognized as the efficient messengers between cells even
organs. EVs can be divided into microvesicles and exosomes
according to sizes and biogenesis. Microvesicles, sometimes
referred to as microparticles or ectosomes in earlier studies,
have a larger size of about 100-1000 nm in diameter, which are
usually released from plasma membrane into extracellular space
through outward budding. So, the molecule compositions of
microvesicles are largely dependent on their cell sources and may
vary a lot with cell types. In contrast, exosomes are around 30-
150 nm in diameter, which are generated from the endosome
membrane by inward budding to form intraluminal vesicles
inside multivesicular bodies (MVBs). Exosomes are released by
May 2021 | Volume 12 | Article 666344
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the fusion of MVBs with plasma membrane and exocytosis (13,
61, 62). Thus, exosomes from different cell types usually possess
some common proteins involved in exosome biogenesis and
release, such as Alix, TSG101 and several tetraspanins. These
molecules have been well recognized as exosome markers,
among them CD9, CD63 and CD81 are commonly used as
surface markers. Of note, various bioactive proteins, lipids, and
nuclear acids carried by EVs contribute to their heterogeneity
and complexity in molecule compositions and functional
diversity. Kinds of proteins including membrane proteins,
cytosolic and nuclear proteins can be found in EVs. Due to
phospholipid bilayer and lipid rafts embedded within the
membranes, EVs contain plentiful lipids such as sphingomyelin,
cholesterol and ceramide. In addition, different kinds of DNA
and RNA including mRNA and noncoding RNA are also
enclosed in EVs. As for the uptake of EVs by recipient cells,
several different pathways have been proposed, which include
phagocytosis or micropinocytosis, direct membrane fusion,
clathrin or caveolin-mediated endocytosis, as well as lipid raft-
mediated endocytosis. While other particular docking receptors
for EV binding remain to be uncovered. These uptake modes of
Frontiers in Immunology | www.frontiersin.org 4
EVs may depend on the types and physiological states of recipient
cells (63–67) (Figure 1).

Adipose EVs
In WAT, many kinds of cells including aforementioned
adipocytes, ADSCs and macrophages have been found to
produce EVs to regulate local or systemic immunity and
metabolism. As such, EVs act as the pivotal messengers for
intercellular communication inside or outside adipose tissue. To
date, various profiles and functions of adipose EVs have been
revealed by different groups. Based on these findings, some
characteristic markers have been found in adipose EVs, which
are helpful for us to understand their exact cell sources and
functions in circulation or tissues. In recent studies, adiponectin
and fatty acid binding protein 4 (FABP4) were usually
considered as the specific markers of EVs from adipocytes (68–
70), while perilipin A was identified as a biomarker of stressed
adipocytes in case of obesity in both human and mice (71). In
addition, it has recently been found that CD31 specific for
endothelial cells was highly enriched in EVs from primary
endothelial cells of the mice, which may be added to the list of
FIGURE 1 | Patterns of EV-mediated communication of adipocytes with macrophages in adipose tissue. Adipocytes release microvesicles and exosomes through
outward budding of plasma membrane or exocytosis via MVB pathway, respectively. Macrophages take up EVs by phagocytosis/micropinocytosis①, direct
membrane fusion②, clathrin/caveolin -mediated endocytosis③ or binding with particular docking receptors④. Adipocyte-derived exosomes display general markers
such as CD81, CD63, CD9, Alix, TSG101 and flotillin, as well as several cell-specific molecules such as adiponectin, FABP4 and perilipin A. EVs from adipocyte,
ADSC or endothelial cell are presented in orange, green and gray, respectively.
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cell-specific markers of adipose EVs (72). As for EVs from
other cell components, most of the studies used common
exosome markers, whereas few studies reported their specific
markers related to cell types. For instance, CD9, CD63, TSG101
were usually used to identify exosomes isolated from both
primary ADSCs and macrophages regardless of cell sources
(73) (Figure 1).

In terms of adipose-related EVs, several earlier studies put more
attention on the alteration and overall effects of these EVs upon
obesity rather than their specific sources and functions. In these
studies, EVs were isolated from adipose tissue explants or plasma
regardless of their cell sources (74–76), so it is relatively difficult to
determine their exact cell-to-cell pathways and related regulatory
mechanisms. Besides the direct influences on WAT functions
(discussed later), adipose EVs also influence remote metabolic
tissues such as liver and muscle by regulating local or systemic
immune microenvironments. Two studies from adolescents
demonstrated that exosomes with specific miRNA profile from
obese visceral fat targeted TGF-b signaling pathways, which were
possibly associated with inflammation and fibrosis in end-organ
caused by obesity (75, 77). While another human study revealed
that EVs from obese visceral fat impaired the insulin action in
HepG2 hepatocytes, possibly related to their high loading of MCP-
1, IL-6 and macrophage migration inhibitory factor (MIF) (74).
However, there was no evidence for the direct effects of these EV
miRNA or cytokines on related signaling pathways in target tissues
or cells. Although accumulating data have demonstrated the
package of various cytokines in EVs, the precise functions of
these EV-associated cytokines remain largely unknown, possibly
due to their different action modes from free soluble cytokines.
Free soluble cytokines act on recipient cells through binding their
specific receptors on plasma membranes to mediate relevant
signaling pathways. While EV-packaged cytokines may cause
more complicated effects in recipient cells, as they can be taken
up through different pathways including phagocytosis, pinocytosis,
or receptor-mediated endocytosis (64, 78–80). An earlier study
showed that the membrane form of TNF-a carried by exosomes
could activate its classical NF-kB signaling pathway. Later,
Fitzgerald and colleagues revealed that cytokines could be
bounded to EV surface or encapsulated inside EVs (78, 79).
Thus, there is still the possibility that adipose EV-associated
cytokines activate conventional signaling pathways in recipient
cells. As the production of cytokines from the cells in soluble or
EV-associated forms may depend on different cell types, stimulus
factors and activation status (79–81), it will bemore complicated to
clarify the fine-tune regulation of adipose EVs on remote
metabolic organs. With respect to the regulation of adipose EVs
in WAT, emerging studies have demonstrated the precise cell-to-
cell crosstalk, which cover the various interactions between
adipocytes, stromal cells, endothelial cells, and immune cells. For
example, Scherer’s group recently revealed that epithelial cells
communicated with adipocytes through small EVs (sEVs) in
WAT. Using adipocyte-specific caveolin 1 (cav1) knockout mice
and a series of in vivo and in vitro tracking techniques, they
demonstrated that sEVs mediated the trafficking of cav1, a
membrane-bound protein abundant in adipocytes and
Frontiers in Immunology | www.frontiersin.org 5
endothelial cells, from neighboring endothelial cells to
adipocytes. More interesting, this EV transfer was regulated by
different metabolic state in vivo, which was increased by fasting but
returned to basal levels when feeding. Particularly, the production
of EVs from the endothelial cells of obeseWAT was almost absent,
indicating the importance of these EVs in metabolic
homeostasis (72).

Adipose EVs in Adipocyte-
Macrophage Dialogue
As critical parenchymal cells and immune cells of WAT,
adipocytes and macrophages cooperate with each other to
regulate local or systemic immunometabolic homeostasis or
disorders (37, 38, 59, 82). As mentioned earlier, ATMs
characterized by CD206+ M2 phenotypes are abundant in lean
adipose tissue, while obesity induces the infiltration and
activation of macrophages with CD11c+ M1 phenotypes. This
phenotype switch of macrophages is currently believed to be
caused by hypertrophic or apoptotic adipocytes in obese adipose
tissue, which in turn impairs the insulin action in adipocytes (55,
59). The interaction between adipocytes and macrophages can be
mediated by multiple ways such as adipocyte-derived free fatty
acids and macrophage-derived cytokines, whilst EVs are
emerging as the important intercellular messengers to exert
functions during this process.

Actions of Adipocyte-Derived EVs
on Macrophages
It has been demonstrated that both human and mice adipocytes
could release EVs that were detectable in circulation. So,
adipocytes are the important sources of EVs that influence the
microenvironments inside even outside adipose tissue. Upon
metabolic stresses like obesity, the production of adipocyte-
derived EVs was increased whilst their cargos were changed
(71, 83–86). To some extent, these alterations in adipocyte EVs
may serve as the indicators of adipose tissue health even
biomarkers of metabolic disorders. More importantly, these
EVs are actively involved in regulating immunometabolic
homeostasis or disorders through acting on nearby or distant
target cells including adipocytes, endothelial cells, immune cells
even neuron (87–89). Regarding the regulation of adipocyte-
derived EVs on immune cells, most of the studies focus on
macrophages rather than other cell types. Adipocytes release EVs
to act on either monocytes or macrophages, thus producing
regulatory effects on both immunity and metabolism. Initially,
Deng et al. showed that exosome-like vesicles from visceral fat of
obese mice could be taken up by blood monocytes, and then
promoted their differentiation into macrophages and activation
characterized by TNF-a and IL-6 secretion. Transfusion of these
exosome-like vesicles from obese fat significantly impaired the
insulin sensitivity of lean mice, which was dependent on toll-like
receptor (TLR) 4 pathway. Through in vitro experiments,
exosomal retinol binding protein 4 (RBP4) was verified to be
responsible for the inflammatory activation of macrophages (90).
This study raised the possibility that EVs from hypertrophic
May 2021 | Volume 12 | Article 666344
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adipocytes might promote ATM activation and cause obesity-
associated inflammation and insulin resistance. Additionally,
Renovato-Martins et al. demonstrated that microparticles (with
similar sizes to microvesicles) from human obese omental fat
could upregulate the expression of CD16 and CCR5 on human
monocytes and increased their migration capacity. In particular,
they found that these microparticles from obese fat carried
abundant TLR8 compared to those from lean fat, which could
be transferred into monocytes and induced the expression of
CD16 (91). These observations provided evidences for
macrophage migration and activation mediated by EVs from
obese fat, which may explain at least in part the contribution of
these EVs to ATM infiltration and activation in obese WAT.
Considering these EVs were isolated from WAT explants, their
exact cell sources remained to be confirmed though the
circulating EVs from adipocytes were increased in response to
obesity. In recent years, accumulating evidences have
demonstrated the direct regulation of adipocyte-derived EVs
on macrophage functions including differentiation, migration
and polarization. Several studies showed that EVs from mouse or
human adipocytes not only induced the migration of primary
monocytes and macrophages, but also promoted their
differentiation into ATM phenotypes, though EVs with
different sizes might target to different pathways in recipient
cells (70, 92). Several proteins like MIF, macrophage-colony
stimulating factor (M-CSF) and TNF-a have been identified in
EVs from in vitro-differentiated human adipocytes, which might
contribute to the proinflammatory phenotypes of macrophages,
and these macrophages in turn impaired the insulin action on
adipocytes (70), suggesting that EVs could drive a reciprocal
interaction between adipocytes and macrophages. Using primary
adipocytes from obese mice, Tamara et al. demonstrated that
EVs from pathologically hypertrophic adipocytes with distinct
protein profile not only promoted macrophage inflammation
by elevating TNF-a and IL-6, but also induced adipocyte
differentiation and impaired insulin action of heathy
adipocytes (93). Since these observations were obtained from
in vitro culture system, the influences of in vivo micro
environments and EV-associated cytokines need to be
considered and determined. Notably, a recent study provided
an insight into the regulation of adipocytes on ATM polarization
via exosomes, in which mature adipocytes secreted exosomal
miRNA (miR)-34a into macrophages and inhibited CD206+ M2
polarization by downregulating Krüppel-like factor 4. In line
with the detrimental roles of miR-34a in obesity-associated
metabolic dysregulation, these observations may provide an
explanation for adipose tissue inflammation mediated by
adipocyte-ATM crosstalk via exosomal miR-34a in obese mice
(94). In a slightly different way, the upregulation of miR-155 in
adipocyte-derived microvesicles from obese mice, as shown in
another study, contributed to M1 polarization depending on the
activation of signal transducer and activator of transcription
(Stat) 1, whilst these microvesicles also elicited a significant
decline of CD206+ M2 percentages in bone marrow-derived
macrophages (95). These observations defined EVs as the
transporters of specific miRNA from adipocytes to
Frontiers in Immunology | www.frontiersin.org 6
macrophages under obese condition, which mediated
macrophage polarization through different ways, probably due
to their different types and contents (Table 1). Considering the
high heterogeneity of EV contents, the combined effects of these
EV miRNA cannot be excluded.

Aside from immune regulation, some recent works also
demonstrated the influences of adipocyte-derived EVs on
metabolic functions of macrophages. Flaherty III et al.
provided evidences for the release of lipid-filled exosomes from
mice adipocytes. These exosomes were taken up by bone marrow
precursors in vitro and promoted their differentiation into ATM-
like cells. This study revealed an alternative pathway for lipid
metabolism, by which adipocyte-derived exosomes mediated the
transportation of triglyceride into macrophages and subsequent
hydrolysis, thus establishing a local lipid cycle to maintain
homeostasis in perigonadal WAT (83) (Table 1). Indeed,
besides triglyceride, fatty acids were also present in specific
fraction of EVs from both human and mouse adipocytes, some
of them were increased by obesity and influenced the functions
of target cells through regulating metabolism (96, 97). With
respect to the functions of these fatty acid-loaded EVs on
macrophages, it remains an open but interesting area for
future study. In addition, adipocyte-derived EVs also produce
influence on the cholesterol metabolism of macrophages.
Visceral fat from HFD-fed mice could release exosomes to
induce the formation of macrophage foam cells by impairing
their cholesterol efflux, thereby exacerbating atherosclerosis in
hyperlipidemic apolipoprotein E-deficient mice (98). The similar
effects on cholesterol efflux were also observed in EVs shed by
human visceral fat, and the majority of these EVs were verified to
be adipocyte origin (99). However, if the effects of EV miRNA
specified in this study could be further verified, particularly for
EVs from primary adipocytes, the above conclusion would be
more convincing. Based on the roles of EVs, some treatments
targeting the crosstalk between adipocytes and macrophages may
provide protection against obesity-associated metabolic
disorders by altering the release and regulatory effects of EVs
from adipocytes. For instance, exosomes from melatonin-treated
adipocytes inactivated Stat3/NF-kB signaling and alleviated
HFD‐induced adipose inflammation, hepatic ER stress and
steatosis in vivo (100, 101).

Action of Macrophage-Derived EVs
on Adipocytes
In addition to taking up EVs as recipient cells, macrophages also
release EVs to influence other cells. Earlier studies demonstrated
that human THP-1 monocytes or differentiated macrophages
produced EVs with specific miRNA, which could act on target
cells to influence their functions, such as inducing monocyte
differentiation into macrophages (102–106). Recently, several in
vitro studies provided evidences for EV-mediated action on
adipocytes by macrophages. Microvesicles from THP-1-
differentiated M1 macrophages, which were induced by LPS
plus IFN-g, significantly induced insulin resistance in human
adipocytes (107). While exosomes from THP-1-differentiated
macrophages, which were induced by LPS, had no influences on
May 2021 | Volume 12 | Article 666344
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TABLE 1 | EVs involved in adipocyte-macrophage dialogue and ADSC-macrophage interaction.

Function Reference

Promote differentiation of monocytes into macrophages
Promote inflammatory activation of macrophages
Induce insulin resistance in mice

Deng et al. Diabetes

Mediate attraction of macrophages in vitro and in vivo Eguchi, A., et al. PLoS One
Differentiate monocytes into macrophages with ATM characteristics (pro-
and anti-inflammatory phenotypes)

Kranendonk, et al. Obesity

Promote inflammation of macrophages Tamara, C. et al. Int J Mol

Suppress the macrophages polarization toward M2 in vitro Pan, Y. et al. J Clin Invest

Promote M1 macrophage activation Zhang, et al. J Mol Cell Biol,
Induce differentiation of bone marrow progenitors into ATM-like cells Flaherty, et al. Science

Promote formation of macrophage foam cell formation
Promote macrophage polarization into M1 phenotypes
Exacerbate atherosclerosis in apolipoprotein E–deficient mice

Xie, Z. et al. J Am Heart Assoc

Induce insulin resistance in human adipocytes Zhang, Y., et al. Nutr Metab

Change the expression of genes related to inflammation in adipocytes De Silva, et al. J Physiol
Biochem

Impair glucose uptake and mitochondrial activity in adipocytes Tian, F., et al. Journal of
Diabetes Research

Impair insulin action and glucose uptake in adipocytes
Cause insulin resistance in lean mice

Ying, W. et al. Cell

Increase insulin action and glucose uptake in adipocytes
Improve insulin sensitivity in obese mice

Ying, W., et al. Cell

Impair insulin action in adipocytes
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Source EVs Contents Target

VAT from obese mice
(adipocytes)?

Exosome-like
vesicles

RBP4 Monocytes
Macrophages

Stressed 3T3-L1 adipocytes Microparticles – Macrophages
Human in vitro differentiated adipocytes EVs RBP4, TNF-

a, MIF
Monocytes

Mouse hypertrophied adipocytes EVs – RAW264.7
macrophages

Mature adipocytes from
VAT of obese mice

Exosomes MiR-34a ATMs, BMDMs

Primary adipocytes from VAT of obese mice Microvesicle MiR-155 BMDMs
Mouse adipocyte from VAT Exosomes Triglyceride Bone marrow

precursors, ATMs
VAT of obese mouse (adipocytes)? Exosomes – RAW264.7

THP-1 differentiated- M1 macrophages
(induced by LPS plus IFN-g)

Macrovesicles – Human adipocytes

THP-1-differentiated macrophages (induced
by LPS)

Exosomes Specific
miRNA

Human adipocytes

High glucose-induced RAW264.7 macrophage Exosomes MiR-210 3T3-L1
adipocytes

ATMs from Obese mice Exosomes MiR-155 Mouse adipocytes

ATMs from lean mice Exosomes – Mouse adipocytes

Obese ATMs Exosomes MiR-29a Adipocytes

Lean ADSCs Exosomes Stat3 Macrophages
ATMs

VAT, Visceral adipose tissue; BMDM, Bone marrow derived macrophage.
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insulin-mediated glucose uptake in human adipocytes, but
changed their gene expression related to inflammation
pathways (108). Moreover, high glucose promoted the package
of miR-210 into exosomes from macrophages, which impaired
glucose uptake and mitochondrial activity in 3T3-L1 adipocytes
(109). These studies showed a slight difference in the effects of
macrophage-derived EVs, possibly resulting from different
stimuli on the macrophages, or different EV types carrying
distinct components from the macrophages. Of note, these
findings reflect the fact that both inflammatory and metabolic
stresses could be passed from macrophages into adipocytes
through EVs (Table 1).

Direct evidences for the regulation of ATMs on adipocyte
functions come from the animal studies. Ying and colleagues
isolated exosomes from mouse ATMs and observed their
transportation into 3T3-L1 adipocytes through in vitro
experiments. Interestingly, exosomes from either obese or lean
ATMs produced different effects on insulin action in both
insulin-target cells and animal models. Lean mice treated with
obese ATM exosomes showed obvious insulin resistance,
whereas obese mice treated with lean ATM exosomes showed
improvement of insulin sensitivity. Consistently, exosomes from
obese ATMs impaired insulin-induced AKT activation and
glucose uptake in 3T3-L1 adipocytes, whereas exosomes from
lean ATMs improved this process. Compared with lean ATM
exosomes, obese ATM exosomes contained abundant miR-155,
which might contribute to these undesired effects probably
through targeting peroxisome proliferator-activated receptor
(PPAR) -g (110). In support of this study, another report also
showed the impairment of insulin action in both 3T3-L1
adipocytes and lean mice by obese ATM exosomes, in which
miR-29a was identified to be increased and exerted deleterious
effects dependent on PPAR-d (111). Meanwhile, both of the
studies provided evidences for the effects of ATM exosomes on
insulin sensitivity in hepatocytes and myocytes besides
adipocytes (110, 111). The differences in exosomal miRNA
profiles and their target pathways between these two studies
remain to be clarified. Possible explanation might be the
influence of differences in animal models, cell or exosome
isolation methods and so on. Furthermore, another interesting
study found a distinct population of lipid-laden ATMs with the
capacity for exosome production, which could induce
proinflammatory gene signature in adipose tissue similar to
obese WAT, suggesting that ATMs could perform functions in
both metabolism and immunity through EVs (60). Altogether,
these findings have demonstrated the considerable impacts of
ATM-derived EVs on local or systemic immunometabolism by
targeting adipocytes as well as other cell types via paracrine and
endocrine (Table 1).

Adipose EVs in ADSC-Macrophage
Interaction
In response to metabolic demands or stresses, ADSCs serve as
the source of adipocytes that regulate glycolipid metabolism
in adipose tissue. Meanwhile, as the main stromal cells, ADSCs
also act as indispensable immune regulators inside or outside
Frontiers in Immunology | www.frontiersin.org 8
adipose tissue. During these processes, ADSCs and macrophages
cooperate to form dynamic microenvironments to regulate
immunometabolic homeostasis or disorders. Accumulating
data have shown that either human or mouse ADSCs have an
ability to promote the alternative activation of macrophages and
inhibit the inflammation of monocytes/macrophages. These
effects elicited by ADSCs provided protection against several
inflammatory diseases in animal models such as experimental
colitis, sepsis, hepatitis and neuroinflammation (43–46, 112–
114). The early evidence for the regulation of ADSCs on
monocytes or macrophages came from Gonzalez-Rey’s study,
in which human ADSCs inhibited the production of TNF-a and
IL-12 from activated macrophages of septic mice. More
excitingly, systemic infusion of ADSCs protected against severe
colitis and sepsis in animal models, suggesting the anti-
inflammatory effects of ADSCs (44). Later, we demonstrated
the strong ability of mouse ADSCs to promote the expression of
IL-10 and arginase 1 in macrophages and their potential to
inhibit obesity-induced WAT inflammation, further confirming
the regulation of ADSCs on macrophages as well as
inflammatory diseases (47). In a similar manner, ADSCs
induced the alternative activation of macrophages and
ameliorated colitis or neuroinflammation in animal models
through several different pathways or inhibitory molecules
like TSG-6 (43, 46, 112–114). Consistent with the roles of
mouse ADSCs in obesity-induced WAT inflammation, human
or rat ADSCs also displayed beneficial effects on relieving
obesity-induced metabolic disorders, type 2 diabetes mellitus
related complications in lung, liver, kidney, as well as
cardiovascular diseases such as cardiac hypertrophy and aortic
inflammation. And importantly, ADSC-induced macrophage
polarization was actively involved in the above processes (47–
50, 115–117). Conversely, macrophages with distinct phenotypes
could also produce different effects on proliferation,
differentiation and adipogenesis of ADSCs, either maintaining
or disrupting local or systemic metabolic homeostasis (118–121).
As both ADSCs and macrophages change their characteristics
and functions with the alteration of metabolic status, instant
information exchanges are necessary for the interaction between
ADSCs and macrophages, in which soluble factors including EVs
and cytokines are actively involved.

Regarding the communication of ADSCs with macrophages,
several studies have provided evidences for the pivotal roles of
soluble factors during these processes (122–124). Our previous
study showed that ADSCs from lean mice attenuated obesity-
induced WAT inflammation and metabolic disorders, in which
soluble factors from ADSCs played critical roles in remodeling
IL-10high and arginase 1high M2-like macrophages (47).
Considering that ADSCs produce abundant EVs, it is
inevitable to add EVs to the list of ADSC-macrophage
dialogue. As expected, the delivery of exosomes from lean
ADSCs into obese mice produced desirable effects on relieving
obesity and improving insulin sensitivity in these mice.
Exosomes from lean ADSCs promoted macrophage
polarization toward arginase-1high M2 phenotypes in visceral
adipose tissue, which facilitated WAT beiging and homeostasis
May 2021 | Volume 12 | Article 666344
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in HFD-fed mice. Using primary macrophages, we demonstrated
that these exosomes could carry active Stat3 to promote M2
polarization and inhibit macrophage inflammation (125)
(Table 1). Subsequently, several other studies confirmed that
exosomes from either human or mouse ADSCs showed similar
effects on macrophages, and more importantly, these exosomes
were applied into the treatment of different disease models
related inflammation or injury in animals (73, 126–130).
Notably, the therapeutic potentials of ADSC-derived EVs have
also been reported in metabolism-related disease models such as
type 1, type 2 diabetes or diabetic nephropathy, and more target
cells like T cells, hepatocytes or podocytes have been revealed
(131–135). All these observations suggest that ADSC-derived
EVs may regulate immunometabolic homeostasis in multiple
ways. With respect to different types, contents of EVs from
ADSCs as well as their detailed regulatory mechanisms, further
investigation is still required. On the other hand, there are few
reports regarding the action of ATM EVs on ADSCs, though
some data showed that EVs from human monocytes influenced
Frontiers in Immunology | www.frontiersin.org 9
the expression of genes associated with cytokines or chemokines
in human ADSCs (136).
CONCLUSIONS AND PERSPECTIVES

Recent studies provide evidences for the pivotal roles of adipose
EVs that are produced by or act on macrophages in mediating
adipocyte-macrophage dialogue and ADSC-macrophage
interaction, as well as their roles in regulating local or systemic
immunometabolism. Under physiological conditions, EVs
released from ADSCs may dominate their interaction with
macrophages to induce M2 phenotypes (IL-10high, arginase
1high), which facilitate the maintenance of immunometabolic
homeostasis in WAT. While under pathological conditions such
as obesity, EVs released from adipocytes, particularly
hypertrophic adipocytes, may dominate their dialogue with
macrophages to induce the infiltration and M1 polarization
(TNF-ahigh, iNOShigh) of macrophages. Macrophages switch
FIGURE 2 | EV-mediated interaction of macrophages with adipocytes or ADSCs in regulating immunometabolic homeostasis or disorders. Under healthy condition,
ADSCs release EVs carrying active Stat3 to induce macrophage polarization toward M2 phenotypes; adipocytes release EVs to transfer lipid (triglyceride, TG) into
macrophages, thereby maintaining immunometabolic homeostasis in WAT. In case of metabolic stress like obesity, hypertrophic adipocytes secret EVs with MIF,
RBP4, miR-155, miR-34a, miR-29a to promote macrophage infiltration and M1 polarization, whilst suppress M2 polarization; M1 macrophages in turn cause insulin
resistance of adipocytes through delivering miR-155, miR-29a, miR-210 via EVs, thus forming a vicious cycle to promote immunometabolic disorders in WAT.
May 2021 | Volume 12 | Article 666344
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their phenotypes to promote metabolic inflammation in WAT,
and in turn release EVs to impair adipocyte functions, eventually
forming a vicious cycle to aggravate immunometabolic disorders
in WAT. Furthermore, adipocytes can also transfer lipid into
ATMs by releasing EVs, which may mediate a lipid cycle to
participate in immunometabolism (Figure 2).

Considering the complexity and diversity of adipose EVs, EVs
from and to macrophages in immunometabolism remain to be
further elucidated. For future studies in this field, several
directions may be helpful. From the spatial dimension, various
of EVs with distinct cell sources and targets need to be
determined for their special contents and functions in specific
microenvironments. From the time dimension, instant
alterations of EV types, numbers and contents are required to
be monitored with the change of immune or metabolic
microenvironments. From the perspective of application, more
promising EV-based biomarkers and therapeutic approaches are
still awaiting to be identified and constructed.
Frontiers in Immunology | www.frontiersin.org 10
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