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Abstract
Purpose of Review In this review, we highlight which livers may benefit from additional treatment before implantation and
describe the concept of hypothermic machine liver perfusion. Furthermore, we explain why cold oxygenated perfusion concepts
could potentially lead to a breakthrough in this challenging field of transplantation. Accordingly, we summarize recent clinical
applications of different hypothermic perfusion approaches.
Recent Findings The impact of end-ischemic, hypothermic liver perfusion in liver transplantation is currently assessed by two
multicenter, randomized controlled trials. Recently, new applications of hypothermic perfusion showed promising results and
recipients were protected from severe intrahepatic biliary complications, despite the use of very extended criteria grafts including
donation after circulatory death livers.
Summary Hypothermic machine liver perfusion is beneficial for high-risk livers and protects recipients from most feared
complications. Importantly, such easy approach is currently implemented in several European centers and new markers obtained
from perfusate may improve the prediction of liver function in the future.

Keywords Machine perfusion .Mitochondria . Hypothermic oxygenated perfusion (HOPE) .Metabolic liver function

Abbreviations
ATP Adenosine triphosphate
DAMPs Danger-associated molecular patterns
DBD Donation after brain death
DCD Donation after circulatory death
D-HOPE Dual hypothermic oxygenated perfusion
DWIT Donor warm ischemia time
EAD Early allograft dysfunction
EASL The European Association for Study

of the Liver
ECD Extended criteria donor
HMP Hypothermic machine perfusion

HOPE Hypothermic oxygenated perfusion
IC Ischemic cholangiopathy
KCs Kupffer cells
MELD Model of end-stage liver disease
MPT pore Mitochondria permeability transition

pore
ROS Reactive oxygen species
SEC Sinusoidal endothelial cells
TLR-4 Toll-like-receptor-4

Introduction

The worldwide need of organs for transplantation has trig-
gered a revival of machine perfusion techniques, with the
aim to rescue organs previously not considered for transplan-
tation. However, based on the excellent results in convention-
ally stored non-injured liver grafts [1••], the aim for machine
perfusion in the field appears ambitious; machine perfusion
should offer a real repair of high-risk organs before implanta-
tion, should also allow testing of organ function, and poten-
tially enable prolonged preservation, if needed for logistic
reasons [2]. At the same time, machine perfusion procedures
need to be most practical and also affordable. To meet such
challenges, an extensive understanding of the underlying
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mechanism of liver injury and protection is of utmost
importance.

This review focuses therefore on recent developments and
research in cold perfusion techniques in liver transplantation.
First, we discuss which liver grafts would benefit from perfu-
sion approaches. Next, we highlight pros and cons of cold
liver perfusion. Third, we report on new findings regarding
mechanism of injury and protection during and after cold liver
perfusion. Finally, we provide a clinical outlook and report on
current human applications.

Which Livers May Benefit from New
Preservation Techniques?

Before the era of cold storage, perfusion of organs prior to
transplantation had already received major interest, as the idea
behind was to maintain organ function outside of the human
body by supplying oxygen and nutrients [3]. However,
cooling with modern preservation solutions offered a very
simple and cheap way of keeping an organ transplantable for
several hours without severe loss of viability [4]. Nowadays,
the limits of static preservations techniques have been recog-
nized and machine perfusion techniques receive significant re-
interest for their potential advantages in supporting organ
function during preservation [5]. Despite this, cold storage
remains an easy and successful preservation technique for
normal or ideal liver grafts, actually depicted in results of a
recent benchmark study in transplantation of cold stored livers

[1••]. Of note, definitions of extended criteria donor (ECD)
livers are somewhat arbitrary and depend on the donation rates
and physiology of donors in different countries, e.g., donor
age > 60–80 years, hepatic steatosis > 15–30%, cold storage >
10–12 h [6–11]. Many European centers nowadays routinely
face liver offers from donors above 60 years of age, together
with significant amount of steatosis in the era of NASH [12,
13]. Based on this, the “normal” liver graft today is often
already aged between 60 and 70 years, with significant
macrosteatosis up to 15% and cold ischemia up to 10 h [8,
13–15]. Such data however differ from the USA, underlined
by a significantly higher donor risk index (DRI) in Europe
[10]. Extended criteria in Europe therefore include livers with
a high amount of macrosteatosis (> 30 or > 40%), prolonged
cold ischemia (> 12 h), additional donor warm ischemia
(DCD), or a very high donor age (> 80 years) (EASL guide-
lines [10, 14, 16]). Those liver grafts will likewise need opti-
mization before implantation, especially when combined with
risky recipients (re-transplantation, high model of end-stage
liver disease—MELD score) [17, 18]. Based on the reported
literature, liver grafts have been categorized in Table 1 and
potential applications of machine perfusion in extended
DBD and DCD livers are described.

Why Cold Perfusion?

The advantages and disadvantages of hypothermia are both
caused by decreased cellular metabolism rates due to slowing

Table 1 Transmitted risk in DBD
and DCD liver transplantation
and suggested preservation
method

Risk class Risk parameter Suggested preservation

Normal graft = ECD graft -Donor age up to 80 years Standard cold storage
-Cold ischemia up to 10 h

-Macrosteatosis up to 20%

Extended ECD -Donor age > 80 years Machine perfusion recommended
-Cold ischemia > 10–15 h

-Macrosteatosis > 20%

“Normal” DCD graft -Donor age up to 60 years Standard cold storage
-Functional donor warm ischemia

up to 20 min

-Cold ischemia up to 6 h

-Macrosteatosis up to 5%

Extended DCD graft -Donor age > 60–80 years Machine perfusion recommended
-Functional donor warm ischemia > 20 min

-Cold ischemia > 6–8 h

-Macrosteatosis > 5–20%

Overextended DCD graft
(“high Risk”)11

-Donor age > 80 years Not without machine perfusion
-Functional donor warm ischemia > 30 min

-Cold ischemia > 8 h

-Macrosteatosis > 20%

Combination of > 2 of the risk factors in each risk parameter box

ECD extended criteria graft, DED donation after brain death, DCD donation after circulatory death
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down of enzymatic processes of multiple proteins in the cold.
Protective effects of hypothermia have been repeatedly recog-
nized in the past centuries since the time of Hippocrates. For
example, Napoleon’s battlefield surgeon, Baron Larrey, ob-
served improved survival of injured soldiers left in the snow
compared with those treated with warm blankets and hot
drinks [19, 20]. However, cold storage of organs without ac-
tive supply of oxygen and nutrients is limited to the energetic
reserves of liver grafts, which are depleted between 24 and
48 h of storage, as anaerobic glycolysis is the main metabolic
pathway [21]. This leads slowly to intracellular acidosis, nu-
cleotide depletion, and accumulation of purine metabolites,
e.g., hypoxanthine [22, 23]. The time an organ can sustain
these conditions depends therefore on cooling to reduce met-
abolic activity and oxygen requirements and on the use of
fluids designed to preserve the intracellular milieu in the ab-
sence of proper Na+/K+ pump function [24]. In addition, met-
abolic function is more difficult to assess at temperatures be-
low 15 °C, especially for livers, where no active bile produc-
tion is measurable in the cold [25].

In contrast, the concept of full physiological support of
organs outside of the body under normothermic conditions
aims to avoid metabolic stress, provides oxygen and energy

by driving aerobic pathways, and allows testing of organ func-
tion [26–28]. Applying however normothermic perfusion af-
ter ischemia, e.g., normothermic regional perfusion (NRP) or
normothermic ex vivo perfusion, bears also a risk of severe
injury.

Ischemia reperfusion injury occurs when blood supply to a
tissue is blocked for minutes to hours and afterwards restored
[29]. The current consensus is that a period of ischemia primes
the tissue for subsequent damage upon reperfusion [30].
While ischemic cells will die if blood flow is not reestablished,
significant damage is initiated during reperfusion [31••]. Thus,
paradoxically, the essential therapeutic intervention to treat
ischemia, i.e., reperfusion, drives also tissue pathophysiology
[32••]. Of note, the first minutes of reperfusion are most crit-
ical, as the first damaging and irreversible event is a burst of
reactive oxygen species (ROS) produced by mitochondria
[33••, 34].Mitochondrial ROS initiate disrupting of adenosine
triphosphate (ATP) production, opening of the mitochondrial
permeability transition (MPT) pore, and releasing of danger-
associated molecular patterns (DAMPs) [32••, 33••, 34],
which lead to sterile inflammation (Fig. 1) [35•], besides acti-
vation of the innate immune system [36]. In the long term,
such events trigger the formation of fibrotic scar tissue

Fig. 1 Mechanism of injury following ischemia/reperfusion and protection through hypothermic machine perfusion approaches
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replacing dead cells [37]. The exact causes of mitochondrial
ROS upon reperfusion have been controversially discussed
[38, 39], but recent studies support the view that complex I
is the main site of mitochondrial superoxide production [33••].
Metabolic transitions during ischemia shift electrons to succi-
nate, which acts as an electron store in the absence of oxygen
[31••]. Upon reperfusion, succinate fuels reverse electron
transfer (RET) between complex II and I, due to high proton
motive forces in the first minutes following ischemia [40].
Therapeutic interventions should therefore address accumula-
tion of succinate during ischemia, or its oxidation during re-
perfusion. For example, inhibition of RET by temporarily
blocking of complex II [34] or decreasing mitochondrial
ROS by mitochondrial antioxidants is currently explored
[41]. In this context, the supply of oxygen to ischemic mito-
chondria under cold conditions by hypothermic oxygenated
organ perfusion is a new and interesting approach, as it ad-
dresses several key points:

In contrast to normothermic reperfusion, oxygenation of
cells in the cold lead to a very limited ROS release, probably
due to a low proton motive force at temperatures below 15 °C
(own data). Of note, reverse electron flow is mostly abundant
in spite of accumulated succinate (own data). At the same
time, forward metabolism of accumulated succinate leads to
ATP resynthesis [34, 42]. The phenomenon of shutting down
most fueling processes and supporting mitochondrial or chlo-
roplast activity is probably related to a common ancestral pro-
cess in animals, humans, and plants, enabling cells to survive
in winter time by hibernation or winter rest [43, 44].
Reperfusion of ischemic livers, treated by cold oxygenated
perfusion, triggers therefore significant less oxidative damage
in mitochondria with subsequent less downstream inflamma-
tion (Fig. 1) [45, 46]. Importantly, mitochondrial switch from
ischemic to fully ATP loaded status needs 1–2 h of cold oxy-
genated perfusion, which can be performed after cold storage
in transplant centers [47]. Such end-ischemic treatment of
livers is attractive and cheap, as it needs no additional theater
capacity [48].

The disadvantage of this approach is the current lack of
methods in testing the energetic status in perfused livers. It
is also unclear how long cold oxygenated perfusion could be
safely maintained [49••, 50]. Upcoming research, however, is
awaited and analysis of perfusate during cold oxygenated per-
fusion by NMR techniques will likewise allow measuring
metabolic function of livers during cold perfusion.

Importantly, the effectiveness of an end-ischemic cold
liver oxygenation has been further paralleled by numerous
studies from the group of Minor who performed oxygen
persufflation in the livers and kidneys under hypothermic
conditions [51]. Likewise, normothermic oxygenated short-
term perfusion provides also protection of the kidneys in
spite of significant cold storage periods before end-ischemic
perfusion [52, 53].

Different Technical Aspects of Hypothermic
Liver Perfusion

The majority of experimental studies published on hypother-
mic machine perfusion (HMP) in the last 20 years involved
mainly ex vivo liver perfusions without implantation [54]. In
accordance with experiences from the kidney perfusions,
HMP in livers was initially applied continuously and demon-
strated improved hepatocyte and endothelial cell viability
compared to simple cold storage [55–57]. The experimental
conditions used, however, varied largely, and most of these
studies were performed on liver grafts with no or only minor
injury.

Regarding the perfusion route, two different approaches are
competitively used. Single portal vein perfusion was usually
preferred in rat livers [57–62], while seven studies explored
liver integrity using dual perfusion techniques via hepatic ar-
tery and portal vein in pig livers [55, 56, 63–67]. Although
dual perfusion through the hepatic artery and the portal vein
failed to show clear advantages in ex vivo models [55, 64, 66,
68], advocates of this dual technique repeatedly emphasize
better supply of oxygen to the peribiliary vascular plexus
[69–71].Most of the interlobular biliary branches are however
also reached by portal branches, and the debate is ongoing
regarding the amount of oxygen needed in the portal vein
during HMP. In discarded human livers, Jomaa et al. showed
feasibility of short and end-ischemic machine liver perfusion
at 4–8 °C using dual vs single portal vein or hepatic artery
[72]. No histologically difference appeared in these livers
comparing different perfusion routes [72]. The technique of
dual hypothermic machine liver perfusion has first been trans-
ferred into clinical practice by the group of James Guarrera,
who reported outcomes of 20 human livers transplanted after
dual HMP [73].

Next to the perfusion route, the temperature during HMP
has been described at a wide range between 1 and 22 °C [74].
Metabolic activity appears more depressed at lower tempera-
ture, while the perfusate viscosity increases [75]. In this con-
text, higher vascular resistances have been reported during
HMP, which transmit an increased risk of endothelial injury
in the liver sinusoids, which becomes more evident when cold
perfusion is prolonged and high perfusion pressures are used
[60, 76, 77]. Ex situ perfusion experiments are therefore lim-
ited to relatively short intervals between 2 and 24 h [74]. In
addition, high perfusion pressures were shown to induce en-
dothelial and Kupffer cell injury and most professionals there-
fore perform HMP at low portal vein pressure of 3–5 mmHg
and low arterial pressure of 20–30 mmHg [78].

Tissue oxygenation during HMP simply relies on the dis-
solved oxygen in a blood-free perfusate [79], and the amount
of oxygen needed in the perfusate is another matter of debate.
Experimental studies have described a wide range of perfusate
oxygenation between 10 and 106 kPA [74, 80]. Importantly,
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such cold oxygenation enables graft mitochondria to suffi-
ciently produce and restore cellular energy, which increases
significantly already within the first hour of perfusion
[81–83]. Based on this, majority of centers, who apply HMP
in liver transplantation, use it only for a short end-ischemic
period [78, 84, 85]. Another advantage of HMP is the much
easier technical approach because machine transport is not
necessary.

Multiple perfusion solutions including Belzer UW solution
and Vasosol with different variations were assessed in exper-
imental studies [5, 74]. For example, low potassium concen-
trations were found to be protective and experimental studies
showed a decreased vascular resistance of livers during cold
perfusion [60]. Although several additives, i.e., reactive oxy-
gen scavengers, vasodilators, and amino acids, have been
assessed in experiments to improve perfusion quality of livers,
none of these substances are routinely used in clinical practice
yet [73].The majority of perfusion experiments has however
been performed with Belzer UW machine perfusion solution
[86]. Importantly, this UW perfusion solution is used for most
liver perfusions today, despite the fact that this solution has
initially been developed to perfuse kidneys and achieved CE
certificate for this application.

Clinical Applications

Hypothermic dual (portal vein and hepatic artery) perfusion of
twenty standard DBD human livers was first reported in 2010
by Guarerra et al. [73]. Machine perfusion was applied after
previous 8–9 h cold storage and transport of organs to the
recipient center. Prior to implantation, livers underwent 3–
7 h HMP with relatively high flow rates of 0.667 ml/g liver
weight/min. Importantly, no additional oxygen was supple-
mented into the perfusate and pO2 levels in perfusates ranged
between 120 and 160 mmHg [73]. The team of James

Guarrera performs the end-ischemic dual cold liver perfusion
(cannulating portal vein and hepatic artery) using the modified
Medtronic PBS device® (Medtronic Minneapolis). A
Vasosol®-based perfusate, supplemented with vasodilators
and antioxidants, is continuously circulated through the liver
at temperatures between 4 and 8 °C [73]. Of note, the perfu-
sion flows are adjusted to the liver weight (0.667 ml perfusate/
g liver/min) and perfusion pressures are monitored [73].
Perfusion resulted in significantly less peak enzyme release
and shorter hospital stay, as well as less early allograft dys-
function (EAD) compared to a non-randomized control group.
In a further report, the same investigators recently showed less
biliary complications after hypothermic perfusion to marginal
DBD organs (Table 2) [85].

Consistent to these results, hypothermic oxygenation per-
fusion (HOPE) has been shown to be effective in human DCD
liver grafts, with less occurrence of intrahepatic biliary com-
plications as compared to matched un-perfused DCD livers.
Our practice of HOPE is based on more than 15 years of
experimental research in several small and large animal trans-
plant models [82, 87–89], as well as on human practice in
DCD livers [48, 84]. The perfusion is performed solely
through the portal vein, in an open system (Liver Assist device
(Organ Assist®)), where the liver swims in the cold perfusion
solution and the perfusate flows out of the vena cava passive-
ly, to avoid sinusoidal congestion together with adjusting the
maximum perfusion pressure at 3 mmHg (Fig. 2) [82]. Under
these conditions, the perfusion flow ranges between 150 and
250 ml/min [82, 90]. We perfuse with 3 l of recirculating
Belzer machine perfusion solution (MPS) at temperatures be-
tween 8 and 12 °C and a high oxygen saturation (60–80 kPa)
[2]. Perfusion is maintained for at least 1 h, but is generally
performed during recipient hepatectomy until graft implanta-
tion without need of an extra theater setting.

Most importantly, HOPE treatment appears sufficient by
single portal vein perfusion, as the entire intra- and

Fig. 2 Examples of hypothermic oxygenated perfusion of liver grafts prior to implantation
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extrahepatic biliary system is positively effected through mul-
tiple collaterals between portal vein and hepatic artery [48, 84,
91]. Furthermore, at hypothermic temperatures, single portal
vein perfusion has been demonstrated to sufficiently protect
the biliary tree, in spite of long donor warm ischemia times.
The group from Groningen has reported the first ten extended
DCD liver grafts, transplanted after dual HOPE (D-HOPE),
where hypothermic oxygenated perfusion was applied
through both hepatic artery and portal vein with subsequent
transplantation. Importantly, no graft loss was described in the
D-HOPE group compared to un-perfused controls (Table 2)
[78]. The D-HOPE technique equals the HOPE technique and
the team of R. Porte perfuses livers with the same liver assist
device, using 4 l of Belzer UW solution supplemented with
glutathione and oxygen at partial pressures of at least
450 mmHg [78]. End-ischemic cold perfusion in Groningen
is performed at 10° for at least 2 h, and cannulation of the
hepatic artery is achieved using a large supra-truncural aortic
patch provided by the retrieval surgeon in order to not directly
cannulate the hepatic artery to prevent arterial injury [78].

Randomized trials have been initiated to further evalu-
ate the effect of HOPE on DBD and DCD liver grafts
(hope-liver.com—Zurich, Groningen Institute for Organ
transplantation—GIOT: University Hospital RWTH Aachen,
Aachen, Germany). In the first long-term outcome analysis af-
ter HOPE, 50 recipients of extended DCD livers experienced a
similar 5-year graft survival after HOPE treatment, when com-
pared to lowest risk, primary DBD liver transplantations [92].
HOPE has also been recently applied inMaastricht type II DCD
livers following standard NRP and cold storage in Italy [49••]
and the perfusion protected DCD kidneys, as demonstrated
recently in a rodent model of kidney transplantation [93, 94].

Conclusions and Future Perspective

Improvement of the quality of liver grafts and prediction of
organ function before implantation are the two main issues to
allow the safe use of injured organs. Most efforts should there-
fore be directed to further develop dynamic preservation
methods, which will likewise replace static cold storage in
high-risk grafts. In this context, thresholds need to be defined,
and machine perfusion techniques should be compared. For
example, the impact of new perfusion devices, e.g., the
Transmedics® machine for normothermic perfusion, is
awaited [95], and potential new oxygen carriers, e.g.,
Hemopure® replacing RBCs during sub- and normothermic
perfusion, are under investigation [96]. Importantly, modern
analytical technologies (e.g., proteomics, metabolomics) are
currently applied on liver tissue and perfusate and may help to
explore new biomarkers, which are urgently needed to assess
graft quality and predict not only the necessary perfusion du-
ration but also liver function after subsequent transplantation.
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