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Using smart speakers to contactlessly monitor
heart rhythms
Anran Wang 1✉, Dan Nguyen2, Arun R. Sridhar 2✉ & Shyamnath Gollakota 1✉

Heart rhythm assessment is indispensable in diagnosis and management of many cardiac

conditions and to study heart rate variability in healthy individuals. We present a proof-of-

concept system for acquiring individual heart beats using smart speakers in a fully contact-

free manner. Our algorithms transform the smart speaker into a short-range active sonar

system and measure heart rate and inter-beat intervals (R-R intervals) for both regular and

irregular rhythms. The smart speaker emits inaudible 18–22 kHz sound and receives echoes

reflected from the human body that encode sub-mm displacements due to heart beats. We

conducted a clinical study with both healthy participants and hospitalized cardiac patients

with diverse structural and arrhythmic cardiac abnormalities including atrial fibrillation, flutter

and congestive heart failure. Compared to electrocardiogram (ECG) data, our system com-

puted R-R intervals for healthy participants with a median error of 28 ms over 12,280 heart

beats and a correlation coefficient of 0.929. For hospitalized cardiac patients, the median

error was 30ms over 5639 heart beats with a correlation coefficient of 0.901. The increasing

adoption of smart speakers in hospitals and homes may provide a means to realize the

potential of our non-contact cardiac rhythm monitoring system for monitoring of contagious

or quarantined patients, skin sensitive patients and in telemedicine settings.
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C linical heart rhythm assessment depends on reliable
acquisition of beat-to-beat intervals of the heart, also
known as the R–R intervals. Physiologically, the R–R

interval represents the time between successive ventricular
depolarizations of the heart. Acquisition and assessment of R–R
interval irregularity is necessary for diagnosing many cardiac
arrhythmias and to study heart rate variability (HRV) in healthy
individuals1,2. Although frequency domain analysis can estimate
average heart rate in regular and quasi-periodic heart rhythm
conditions, it fails when the rhythm is irregular, which is com-
mon in pathological conditions such as atrial fibrillation3. R–R
intervals are conventionally measured by identifying individual
heartbeats extracted using electrocardiography (ECG). This
approach works for both regular and irregular rhythms but
requires physical contact with the skin to operate.

A noncontact solution for heart rhythm monitoring offers
several advantages. It can monitor infectious and contagious
patients where cleaning of contact-based devices can be time
consuming and burdensome4,5, monitor patients in home iso-
lation and quarantine settings, and benefit patients with skin
allergies who are intolerant to wearable and contact-based
devices6. Contactless rhythm acquisition may also be valuable
in the modern telemedicine era, whereby patients’ self-
administered rhythm analysis are communicated to their phy-
sician. The benefits of a self-administered test are numerous,
and may include the ability to connect patients living in rural
areas to physicians, screening patients for atrial fibrillation
remotely, and obtaining clinical trial data without the need for
an in-person visit.

The widespread adoption of high-quality smart speakers
equipped with multiple microphones presents a unique oppor-
tunity for contactless monitoring of human body and internal
organ functions. Google Nest smart devices can already deter-
mine a user’s distance on its smart speaker by emitting soft,
inaudible acoustic signals and analyzing their reflections from the
human body7,8. Apple HomePod and Amazon Echo devices
support an array of six and seven microphones, respectively, that
are used for sophisticated acoustic processing9.

Here, we describe a proof-of-concept contactless system for
monitoring cardiac rhythm using smart speakers that can identify
individual heartbeats in both regular and irregular rhythms. Our
algorithms extract both heart rate and R–R intervals by trans-
forming a smart speaker into a short-range active sonar system.
An active sonar-based approach to contactless monitoring has the
distinct benefit of scalability vis-a-vis smart speakers. Unlike
Doppler radar10–13 and optical vibrocardiography14–16, active
sonar hardware components (i.e., multiple microphones and
speaker) are ubiquitous in smart speakers. Further, in contrast to
approaches that use facial photoplethysmographic signals17,18,
which raise privacy issues due to their use of cameras, active
sonar can operate using inaudible acoustic signals and does not
require the capturing of audible sounds.

At a high level, a smart speaker emits 18–22 kHz inaudible
sound signals that are reflected off the human body and received
by a microphone array. We designed algorithms to (1) analyze
these signals and detect the subtle motion of the chest wall caused
by the heart’s apical impulse as well as by arterial pulsations on
the body’s surface, and (2) separate these signals from much
larger breathing motions and ambient noise. We show that a
smart speaker running our algorithms that is placed in front of a
subject less than a meter away can identify individual heartbeats
and extract heart rate and R–R intervals for both healthy parti-
cipants and patients with different cardiac abnormalities. These
data could be used for studying heart rhythms, detecting cardiac
arrhythmias, and determining HRV.

Results
Concept and algorithms. Prior work has focused on contactless
monitoring of breathing signals using active sonar on smart
devices19–22. Recent work23 computes heart rate using smart
phones from 5 to 30 cm, but assumes that the heartbeats are
regular and thus uses frequency domain analysis to extract the
heart motion from the fundamental frequency and its harmonic
components. This approach however does not work with irre-
gular heart rhythm since there is no well-defined peak in the
frequency domain and the energy is spread across a range of
frequencies. Extracting irregular beats is difficult using acoustic
signals since heartbeats result in a 0.3–0.8 mm motion on the
surface of the human body24; this is an order of magnitude
smaller than the wavelength of sound at our operational fre-
quencies. Further, commodity smart speakers are designed pri-
marily to transmit in the audible frequencies, and the inaudible
frequencies they support have a limited bandwidth—4 kHz
bandwidth across 18–22 kHz—with a nonideal frequency
response. Unlike ultrasonic devices25, commodity smart devices
also have a limited sampling rate, about 48 kHz, that produces a
low signal-to-noise ratio, making it difficult to achieve the high
temporal resolution required to measure the precise timing of
each heartbeat. Another complicating factor is that breathing
creates a much larger motion than heartbeats on the surface of
the body. Though respiration rates are typically lower than heart
rates, respiration is not a perfect sinusoidal motion since inha-
lation and exhalation durations can differ (Fig. 1A). This creates
high-frequency components in the breathing motion that inter-
fere with the minute heartbeat motion. At low signal-to-noise
ratios, this prevents the latter from being reliably separated in the
frequency domain using filtering (Fig. 1B); when the heart signal
is weak and overwhelmed by interference from breathing motion,
it becomes challenging to extract individual heartbeats in irre-
gular rhythm.

Our smart speaker-based sonar system generates frequency
modulated (FM) continuous wave (FMCW) signals, with the
frequency linearly increasing from 18 to 22 kHz. We extract
individual heartbeats from reflections of these transmissions
captured by a microphone array. We first preprocess the received
signal at each microphone to filter out the audible frequencies to
remove background noise. We then extract the impulse response
of the acoustic channel which represents the times of arrival of
the various reflections from the speaker to the microphone. Since
cardiac motion is minute, it can be drowned out by reflections
corresponding to coarse motion from distant locations. There-
fore, we perform echo suppression to eliminate echoes arriving
from distances greater than 1 m (Fig. 1C).

We then separate the heart rhythm from breathing motion.
Heart rhythm can be irregular, and breathing motion is not a
perfect sinusoidal signal. Therefore, filtering alone is not effective.
We introduce an adaptive learning-based beamforming algorithm
that maximizes the signal-to-interference and noise ratio (SINR) by
aligning heartbeat signals across microphones and frequencies
while minimizing the interference from breathing motion and
noise. The adaptive beamformer uses complex weights to combine
the signals from different microphones across frequencies. To
compute the weights, we formulate an optimization function that
we solve using a gradient ascent algorithm26. Since we do not
assume a priori periodic structure to the heart rhythm, the learning
algorithm can erroneously detect high frequency, impulse-like
signals caused by abrupt breaths or interference in the environ-
ment. We introduce regularization parameters in the optimization
function by penalizing such abrupt changes (see “Methods”).

Finally, we segment the resulting heart rhythm signal into
individual heartbeats. Since beamforming can be imperfect
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(see Supplementary Fig. 1), we still confront the challenge of
nonnegligible residual interference from respiration motion,
which shifts the heart signal back and forth between the in-
phase and quadrature-phase components of the acoustic signal
(see Fig. 2). Our algorithm simultaneously identifies the
segmenting points and the shift in each segment. We do this by
(1) comparing adjacent segments to account for different segment
lengths due to irregular R–R intervals and (2) tracking the shift
between in-phase and quadrature-phase components caused by
residual breathing motion. Once we identify each beat segment,
we compute the heart rate and R–R intervals.

Testing with healthy participants. We recruited a cohort of
26 voluntary participants who had no prior history of cardiac
conditions. The median age of the participants was 31 [interquartile
range (IQR), 8.5] years and body mass index (BMI) was 22 (IQR, 3).
The female-to-male ratio was 0.6 (see Supplementary Table 1).

Participants were fitted with a Polar H10 Sensor System (Polar
Electro, Kempele, Finland) that measures ECG and outputs the
heart rate and R–R intervals. We used the ECG sensor to gather
ground truth data for the study. All testing was performed in a
private room at the University of Washington, where participants
sat upright on a chair by a table on which our prototype smart
speaker was placed. The testing was conducted with the clothing
the participants were already wearing indoors such as blouses,
tops, T-shirts, and button downs made with different fabric
materials. Participants took a series of 1-min measurement
sessions, where they were asked to sit still and breath normally.
For each healthy participant, we conducted a total of seven 60-s

sessions. In the first three, the smart speaker was placed in front
of the participant’s chest at the nipple level, at a distance of 40, 50,
and 60 cm. For the fourth session, the smart speaker was pointed
10 cm above the participant’s chest at a distance of 50 cm. For the
fifth, the smart speaker was pointed toward the chest but at an
angle of 20° and a distance of 50 cm. In the sixth, measurements
were conducted at a distance of 50 cm, while jazz music played at
around 75 dB(A) sound power level from a distance of 5 m. In the
final session, participants were asked to jog in place to increase
their heart rate above 110 beats per minute (BPM) before starting
measurements at a distance of 50 cm.

We computed the average heart rate by counting the number
of heartbeats over a period of 60 s and compared it to the heart
rate output by the ECG device. Figure 3A shows the scatter plot of
the heart rates across all participants and sessions. Measurements
from the smart speaker and the ECG sensor had intraclass and
concordance correlation coefficients (CCCs) of both 0.983.
Figure 3B shows the cumulative distribution function of the
error in the heart rate. The median absolute error (MAE) was 1
BPM, with a 90th percentile error of less than 4 BPM. We also
compared the R–R intervals output by the smart speaker and the
ECG sensor. The intraclass correlation (ICC) coefficient and CCC
between the two measurements were 0.929 and 0.927, respectively
(Fig. 3C). The MAE in the R–R intervals was 28 ms, with a
standard deviation of 49 ms, and the 90th percentile error was 75
ms (Fig. 3D). The mean absolute error in the R–R intervals as a
percentage of the ground truth R–R interval was 3.6% with a
standard deviation of 4.3%.

As the distance from the speaker to the participant increased,
the acoustic signal attenuated, increasing errors. As Fig. 4A

Fig. 1 The processing pipeline of our system is able to extract the tiny motion of heartbeats from the raw active sonar signal. A The displacement from
respiration and heartbeat in the in-phase component of the raw active sonar signal. While breathing motion (blue curve) is strong, the heartbeats (red
circle) are weak and not reliably observable in this signal. B The frequency domain with the respiratory frequency range, heart rate range, and high-
frequency noise. The respiratory signal strength is much higher and its harmonics spread into heart rate frequencies preventing the latter from being
reliably extracted by just filtering. C The different algorithms in our system to separate heart motion from respiration and extract individual heartbeats.
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shows, when the distance increased from 40 to 60 cm, the median
error in the R–R intervals increased from 25 to 33 ms. The
median error was 26 ms when the speaker pointed 10 cm above
the chest level (Fig. 4B) and 31 ms when the speaker pointed at an
angle of 20° from the chest (Fig. 4C). This demonstrates that our
adaptive beamforming algorithm provided some tolerance to
imperfect alignments of the smart speaker system. The algorithm
is also resilient to larger angles with the smart speaker placed to
the left and right of the participant; the error however is high
when placed behind the participant, facing their back (Supple-
mentary Fig. 2).

Figure 4D shows that background music increased the median
error from 25 to 32 ms; this is likely due to residual high-
frequency components and nonlinearity of the phone emitting
the music. Since breathing is more pronounced after exercise, it
can create larger amounts of interference; the median error was
32 ms after exercising, in contrast to an error of 25 ms during the
rest state (Fig. 4E). Finally, R–R intervals for female participants
showed a median error of 30 ms versus 27 ms for male
participants (Fig. 4F). The error also slightly increases with
BMI (Supplementary Fig. 3).

Testing with cardiac patients. We also tested system perfor-
mance for hospitalized cardiac patients (n= 24). Once enrolled in
the study, the patients’ existing telemetries were reviewed by a
medical doctor (D.N.), and the patients were adjudicated into

either a regular rhythm category (sinus rhythm, atrial flutter with
regular conduction, ventricular paced, or atrioventricular paced)
or an irregular rhythm category (atrial fibrillation or atrial flutter
with variable conduction). Table 1 shows baseline demographic
and clinical data for cardiac patients stratified by heart rhythm.
Patients in the irregular rhythm cohort were more likely to have a
history of atrial fibrillation and more likely to be female. Age,
BMI, reason for hospitalization, medical comorbidities, and car-
diac medications were uniform between the regular and irregular
rhythm cohorts. Since prior audiocardiography work showed
poor results in extreme obese patients27, we excluded patients
whose BMI exceeded 35 for this study but evaluated them in a
separate study described later.

To obtain ground truth heart rate and R–R interval data for
comparison, half the patients were fitted with a chest-worn Polar
H10 Sensor System (Polar Electro, Kempele, Finland). Patients
unable to wear the chest band due to discomfort, recent thoracic
surgery, or poor ECG signal acquisition (n= 12) were fitted with
a fingertip-worn CorSense monitor (Elite HRV, Asheville, NC,
USA). These data were downloaded in real time to a bluetooth-
connected smartphone using the HRV+ mobile app (Elite HRV,
Asheville, NC, USA). The rationale behind this method is that
hospital telemetry software does not allow for digitalization and
storage of the R–R interval data. Previous studies have
demonstrated portable HRV devices to have acceptable error
compared to gold standard ECG monitoring28.

Fig. 2 Example heart rhythm waveforms extracted by our system along the ground truth ECG waveforms. The acoustic waveforms include both in-phase
and quadrature-phase components after beamforming. The cardiac rhythm signal shifts between the in-phase and quadrature-phase components due to
residual respiration motion that remains after beamforming. The vertical dotted lines show the segments computed by the segmentation algorithm, which
combines data from both in-phase and quadrature-phase components. The figure shows the waveforms for a A healthy participant and B atrial fibrillation
patient.
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Patients were positioned sitting vertically on the hospital beds
in their own room and the smart speaker system was placed
around 50–60 cm from them, with the speaker inlet pointed at the
chest at the level of the nipple. Ambient noise sources (e.g.,
television) were turned off and family members and visitors of
patients who were required to stay in the room were asked to sit
at least 2 m away from the smart speaker during the sessions.
Data were acquired from the smart speaker system in five
sessions, each lasting 60 s. During each session, patients were
instructed to remain still. All patients tolerated the data
acquisition process; however, data acquisition was prematurely
terminated for one patient due to developing nausea related to a
prior medical condition.

Figure 5A, B shows system performance in computing the
average heart rate across all cardiac patients. The MAE in the
heart rate was 2 BPM, with a 90th percentile error of less than 3
BPM. For R–R intervals, the ICC and CCC were 0.901 and 0.898,
respectively (Fig. 5C). The MAE in the R–R intervals was around
30 ms, with a standard deviation of 67.2 ms, and the 90th
percentile error was less than 93 ms (Fig. 5D). The mean absolute
error in the R–R intervals as a percentage of the ground truth
R–R interval was 4.0% with a standard deviation of 7.6%.

Focusing on irregular heartbeats, the mean absolute R–R
interval error among patients with atrial fibrillation instances was
35 ms with ICC and CCCs of 0.891 and 0.890, respectively.
Higher median R–R intervals correspond to higher 90th
percentile error (Supplementary Fig. 4). There was no noticeable
decrease in accuracy among those with irregular rhythms
compared to those with regular rhythms. Within the context of

clinical practice, it is unlikely that this magnitude of error would
result in diagnostic errors for detecting atrial fibrillation where
R–R interval variation less than 50 ms is often not clinically
important. In atrial fibrillation, the R–R interval widely varies
from beat to beat and standard deviations range between 95 and
233 ms in different physiological states29. Proper diagnosis of
rhythm disorders relies on the ability to detect temporally
disparate R–R intervals, rather than precise R–R interval
measurement.

The time series plots in Fig. 6A–E show the R–R intervals for
atrial fibrillation instances. Both ground truth and smart speaker
data showed noticeable variation in R–R intervals, which is
indicative of irregular heartbeats. Figure 6F shows an instance of
respiratory sinus arrhythmia where both data streams showed
that the R–R interval duration decreased with inspiration and
increased with expiration. Figure 6G corresponds to a patient
with an implanted permanent cardiac pacemaker and a paced
rhythm. The patient in Fig. 6H had an intrinsic rhythm
(nonpaced rhythm) and this patient had mild variations in the
R–R intervals with a standard deviation less than 10 ms. This low
level of HRV is not uncommon. We collected data from patients
in the cardiac floor of our tertiary care medical center with a
variety of cardiac conditions, which included cardiac conduction
disorders, arrhythmias, cardiomyopathy, as well as valvular
disorders. Many of these cardiac conditions directly or indirectly
affect the HRV. Respiratory sinus arrhythmia, which is a
major cause of HRV, becomes less common with age30 and is
less prevalent in patients with diabetes due to autonomic
neuropathy31. Our hospitalized population had a mean age of

Fig. 3 Evaluation of heart rate and R–R interval accuracies among the healthy participants. A Scatter plot of average heart rate in beats per minute
(BPM) compared with ground truth. B Cumulative distribution function (CDF) of the absolute heart rate error. C Scatter plot of R–R intervals compared
with ground truth. D The CDF of the absolute R–R interval error. Limits of agreement (LOA) were computed using twice the standard deviation (gray
dashed line in A and C. Median and 90th percentile values are noted in red circles in B and D.
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63.2 years in the regular rhythm group and 68.0 in the irregular
rhythm group, and there were a total of 5 out of 24 patients with
diabetes. In addition, medications that influence vagal tone, such
as beta blockers, digoxin, and opiate pain medications, may
decrease sinus arrhythmia32. Our sample of hospitalized cardiac
patients often had multiple factors which could reduce HRV
(Fig. 6G, H).

Effect of extreme obesity. The above study excluded cardiac
patients with a BMI greater than 35. Next, we evaluated the
algorithm’s performance for five extreme obese hospitalized
cardiac patients with BMIs between 36 and 40.4 (median BMI of
38.6). Our algorithm could extract cardiac rhythm signals for only
one of these five participants, likely because excessive adipose
tissue dampens motion of the heart at the body’s surface. This
effect has also been shown in the past to limit the use of audio-
cardiography27 and optical vibrocardiography33 for cardiovas-
cular examination of the severe obese. These findings are in line
with our results with healthy participants, where the error was
slightly higher for female participants (Fig. 4F).

Discussion
Smart speaker technology is rapidly evolving and may provide a
reliant and convenient platform for the next generation of health
monitoring solutions22,34. Indeed, the increasing adoption of
smart speakers in hospitals35 and homes36 could provide a means

to realize the potential for our contactless cardiac rhythm mon-
itoring system.

The ability to monitor cardiac rhythm using smart speakers
raises privacy concerns. The short-range nature of active sonar,
however, can protect privacy since it requires the direct engage-
ment and implicit consent of the user, who must be within a
meter of the speaker and stay still. The 18–22 kHz acoustic fre-
quencies we use in our system also contain little information
about audible sounds in the environment. Finally, smart speaker
manufacturers do not give third-party app developers access to
raw acoustic signals from individual microphones. Consequently,
the smart speaker manufacturers can implement and deploy this
capability in a manner that balances the needs and concerns of
patients, healthcare providers, and privacy advocates.

Certain differences between healthy participants and cardiac
patients may impact the fidelity of heart rate and R–R interval
acquisition using smart speakers in patients with cardiovascular
disease. Patient factors that alter arterial vessel and ventricular
compliance and medical treatments that alter thoracic anatomy
and ventricular contractility are more prevalent in hospitalized
cardiac patients. For instance, increased age and hypertension
both cause blood vessel stiffening via vessel fibrosis, collagen
deposition, and elastin degradation within the vessel wall37, which
subsequently reduce pulse wave velocity and radial vessel motion.
Patients with hypertension or coronary artery disease may
develop increased ventricular stiffness in a process known as
diastolic dysfunction38. Our cohort had several patients with

Fig. 4 Cumulative distribution functions (CDFs) of absolute error in R–R intervals in different sessions with healthy participants. A CDFs at different
distances (red line, black dashed line, and blue dotted line represent 40, 50, and 60 cm, respectively) from the speaker, B CDFs with the speaker pointing
left at a 20° angle (red line) from the chest, compared to right in front of the chest (black dashed line), C CDFs with the speaker pointing 10 cm above chest
(red line), D CDFs with music playing in the background (red line), E CDFs after exercising in the last session (red line), and F CDFs across genders (red
line and dashed blue line represent female and male, respectively).
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advanced congestive heart failure and reduced ventricular func-
tion; these patients may have displaced and diminished apical
impulses due to left ventricular dilation39 and are often on
medications that further reduces cardiac contractility, such as
beta blockers and antiarrhythmic drugs. Lastly, patients reco-
vering from cardiogenic shock or advanced heart failure who
received a heart transplant as part of their treatment may have
distorted thoracic anatomy due to acute or chronic postsurgical
inflammatory changes. These anatomical and physiologic differ-
ences may explain the performance variation of our smart
speaker system between healthy patients and patients with car-
diovascular diseases.

Our study has the following limitations. Our beamformer
algorithm assumes that the average heart rate falls in the
60–150 BPM range. This is not a hard threshold and our band-
pass filter can detect cardiac signals between 50 and 60 BPM
(Fig. 3A). If the heart rate is much lower, it may however not

detect any cardiac signal or may amplify spurious noise. Like
Doppler radar10 and optical vibrocardiography17, our system
requires participants to remain still for the duration of the
examination and assumes that the measuring device neither
moves nor is prone to vibrations. Movements can affect the
ability to extract the cardiac rhythm (see Supplementary Fig. 5).
Performance results with the healthy cohort showed the system’s
reliability across diverse participant clothing, which included a
single layer of shirts and tops that were not tightly fit, and many
of the hospitalized patients wore loose gowns. While loose clothes
can affect accuracy, the degradation was not drastic: the median
and 90th percentile absolute R–R interval errors changed from 24
to 26 ms and 84 to 80 ms, respectively, for two participants who
participated with both tight and loose clothes. However, multiple
layers of clothing can limit the ability to extract heart motion
since sound attenuates through thick fabric. Since we eliminate
echoes at distances greater than 1 m, family members of the
hospitalized cardiac patients could be in the same room during
the study. At this time, our system is designed for spot mon-
itoring of a single participant. Further hardware and software
enhancements could enable continuous monitoring. To improve
signal strength and range, the smart speaker hardware may need
directional tweeter which can rotate to the direction of interest as
well as speakers with a better response at the target frequencies
and microphones with higher sampling rates and bit resolutions.
New smart speaker models have rotatable directional tweeter
capabilities (e.g., Amazon Echo Show 10) and have microphones
and speakers that are designed to operate at the target fre-
quencies; in contrast, our hardware has a 10–15 dB degradation at
18–22 kHz. Multiple participants could be supported using
FMCW algorithms that use breathing motion to track the loca-
tion of each participant and then separate cardiac signals from
different distances20.

Our smart speaker prototype has a sampling rate of 48 kHz and
uses 18–22 kHz acoustic transmissions which are generally
inaudible to adults but can be audible to the younger population.
Commercial smart speakers like Google Nest support acoustic
frequencies between 25 and 30 kHz, which are inaudible across
the age spectrum and could be used to enable cardiac rhythm
monitoring using our algorithms. Frequencies higher than 30 kHz
require specialized hardware and also limit the range of the sys-
tem. The World Health Organization recommends a noise limit
of 85 dB(A) over an average duration of 8 working hours40. Our
exposure intensity was 75 dB, (around 66 dB(A) at 20 kHz and
50 cm), which is much less than that. Short-time exposure to high
frequency also does not affect the hearing capability of infants41.
Pets have even higher sensitivity to ultrasound as high as
64 kHz42 and sound around 40 kHz can potentially interrupt their
sleep43 and cause feline audiogenic reflex seizures for cats44.
However, sounds in the 18–30 kHz are not known to affect ani-
mals. Prior active sonar studies report that 18–22 kHz FMCW
signals did not elicit reaction from dogs19.

Radar-based systems use radio signals with large bandwidth and
use custom hardware that is not pervasive in smart speakers. Prior
radar-based studies report a median R–R interval error of 8–44ms
for healthy participants13,45–47 and 186ms for cardiac patients
with atrial fibrillation10. Our sound-based system instead uses
active sonar algorithms, hardware that is pervasive in smart
speakers, and is designed to achieve low errors for both regular
and irregular rhythm. Finally, ECG captures the electrical activity
in the heart that includes information about the P wave, QRS
complex, and T wave. Our system is limited to providing the heart
rate and R–R intervals. The R–R intervals can also be identified
visually using a single-lead ECG signal. In contrast, the cardiac
motion appears in both the in-phase and quadrature components

Table 1 Demographic information for hospitalized cardiac
patients.

Regular rhythm
(n= 18)

Irregular rhythm
(n= 6)

Baseline characteristics, mean ± SD
Age (years) 63.2 ± 13.4 68.0 ± 7.6
Height (cm) 172.5 ± 8.0 174.2 ± 14.0
Weight (kg) 82.0 ± 17.6 74.0 ± 18.3
BMI (kg/m2) 27.5 ± 5.0 24.3 ± 4.7
Female (n, %) 2 (11.1%) 2 (43.3%)
Reason for admission, n (%)
Acute coronary syndrome 4 (22.2) 0 (0.0)
Heart failure exacerbation 5 (27.8) 4 (66.7)
Cardiogenic shock 4 (22.2) 1 (16.7)
Valve disease 1 (5.6) 1 (16.7)
Other 4 (22.2) 0 (0.0)
Comorbidities, n (%)
Hypertension 8 (44.4) 3 (50.0)
Hyperlipidemia 6 (33.3) 2 (33.3)
Atrial fibrillation 6 (33.3)a 6 (100.0)
Atrial flutter 1 (5.6) 0 (0.0)
Conduction system disease 3 (16.7) 1 (16.7)
Coronary artery disease 6 (33.3) 1 (16.7)
Diabetes mellitus 4 (22.2) 1 (16.7)
Congestive heart failure 14 (77.8) 5 (83.3)
Valvular disease 7 (38.9) 4 (66.7)
Heart transplant 2 (11.1%) 0 (0.0%)
Stroke/transient
ischemic attack

4 (22.2) 2 (33.3)

Obstructive sleep apnea 3 (16.7) 2 (33.3)
Chronic kidney disease 6 (33.3) 1 (16.7)
Smoker
Current 2 (11.1) 0 (0.0)
Former 3 (16.7) 3 (50.0)

Medications, n (%)
ACE inhibitor 4 (22.2) 1 (16.7)
Angiotensin receptor blocker 3 (16.7) 2 (33.3)
Aldosterone antagonist 5 (27.8) 2 (33.3)
Loop diuretic 8 (44.4) 3 (50.0)
Beta blocker 10 (56.6) 2 (11.1)
Calcium channel blocker 1 (11.8) 2 (28.6)
Antiarrhythmic drug 0 (0.0) 0 (0.0)
Statin 12 (66.7) 2 (33.3)
Digoxin 3 (16.7) 0 (0.0)
Oral anticoagulant 7 (38.9) 5 (83.3)
Aspirin 9 (50.0) 3 (50.0)

aThese are atrial fibrillation patients, but at the time of data acquisition they were noted to be in
regularized rhythm.
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of the active sonar signal and requires computationally combining
both these components to compute R–R intervals.

We build on prior work that uses ultrasonic devices25,48. These
systems use custom hardware with ultrasound frequencies and
sampling rates not supported by commodity smart speakers,
transmit signals at a sound pressure level of 105 dBm at 30 cm48,
which is about 300 times higher than that used by our prototype,
achieve a limited range of 10–20 cm, and have not been clinically
evaluated. Our system addresses these limitations and shows the
feasibility of noncontact monitoring of individual heartbeats in
both healthy and cardiac patients using smart speakers.

In summary, we presented a proof-of-concept system that can
extract cardiac rhythm data using smart speakers. The ability to
compute R–R intervals and HRV has proven to be clinically
useful in distinguishing between atrial fibrillation and sinus
rhythm49. It has also been used to monitor stress, anxiety, and the
general health of the autonomic nervous system1. Further studies
are required to determine the technology’s utility for these and
other potential scenarios.

Methods
Study design. Cardiac patients were enrolled prospectively from the acute care
general cardiology unit at the University of Washington Medical Center, a tertiary
academic medical center in an urban area. All patients’ heart rates and rhythms
were continuously monitored in this unit using hospital-commissioned, three-lead
surface electrode telemetric monitoring systems.

Patients were eligible for inclusion if they were older than 18 years of age and
able to provide informed consent. They were excluded if they were unable to sit still
for more than 15 min, demonstrated cardiopulmonary instability, or had altered
mental status as determined by a medical doctor (D.N.). Randomization was not
applicable, and study investigators were not blinded. Once enrolled in the study,

patients had their clinical variables—age, gender, height, weight, BMI, medications,
and medical comorbidities—abstracted from their electronic medical records. This
study was approved by the University of Washington Institutional Review Board,
and all relevant ethical regulations were followed and informed consent was
obtained.

In the study, we use the Elite HRV CorSense PPG and Polar H10 ECG sensors
for ground truth. PPG sensors are known to produce comparable R–R interval
accuracies to ECG, with high correlation coefficients between 0.968 and 0.99850,51.
To verify this, we performed a comparison test between the ground truth sensors
on two healthy participants and noted that the mean absolute R–R interval
difference was 11 ms.

Smart speaker prototype. Though smart speaker companies have access to
individual microphone data from the microphone array, these data are not cur-
rently provided to third-party developers to protect user privacy. Therefore, we
prototyped our system using an off-the-shelf, seven-microphone array, which had
an identical microphone layout and sensitivity to the Amazon Echo Dot9 but can
output raw recorded signals. The prototype consisted of a commercial UMA-8-SP
USB circular array with seven microphones with a 4.3 cm separation, similar to an
Amazon Echo Dot; a PUI Audio AS05308AS-R speaker; and a 3D-printed case that
held the microphone array and the speaker next to each other (see Supplementary
Fig. 6). The smart speaker was connected to a computer via USB as an external
sound card device, where we played and recorded sounds at a sampling rate of 48
kHz and a sound pressure level of around 75 dB at a distance of 50 cm. A similar
setup and hardware were used in smart speaker research due to the constraints
imposed by smart speaker companies22,52,53.

The minimum distance resolution achieved by our system depends on various
factors that affect phase error: hardware components, circuit design and
interference control, operating system and driver to support high-throughput
audio signals, and the algorithm itself. The mean phase error on our acoustic
hardware is ~0.05 radian in an empty room. Assuming signals from each of the
seven microphones are independent, the corresponding mean displacement error,
with ideal beamforming, is around 0.025 mm. Note that this is an ideal distance
resolution for our specific hardware and is likely better for consumer smart
speakers with better hardware.

Fig. 5 Evaluation of heart rate and R–R interval accuracies among the hospitalized cardiac patients. A Scatter plot of average heart rate in beats per
minute (BPM) compared with ground truth. B The cumulative distribution function (CDF) of the absolute heart rate error. C Scatter plot of R–R intervals
compared with ground truth. D The CDF of the absolute R–R interval error. Limits of agreement (LOA) were computed using twice the standard deviation
(gray dashed line in A and C). Median and 90th percentile values are noted in red circles in B and D.
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Extracting cardiac rhythm using active sonar. We generated a linear FMCW
chirp block with a duration of T= 50 ms, between f0= 18 kHz and f0+ F=
22 kHz, and played it in a loop through the speaker. While we did not perform the
traditional FMCW processing and other signals including white noise could be
used22, we used FMCW signals since they provide good spectral efficiency.
Mathematically, an FMCW signal is given by

xðtÞ ¼ cosð2πf 0t þ π
F
T
t2Þ; t 2 ½0;TÞ ð1Þ

We performed a discrete Fourier transform (DFT) on this signal to extract its
frequency domain representation. We then computed the phase of the transmitted
FMCW signal in the frequency domain within [f0, f0+ F] as ϕFMCW(f), which we
next used in our preprocessing algorithm.

Preprocessing and echo suppression. We first preprocessed the received signal at
each microphone to extract the impulse response of the acoustic channel. We then
suppressed the echoes that arrived from large distances.

To compute the impulse response of the acoustic channel on each microphone,
we performed DFTs over signal blocks of duration T with a sliding window, ΔT=
10 ms. This resulted in an effective sampling rate of 100 Hz for the output cardiac
signal. Let us denote the ith block on the jth microphone as y(i,j)(t). Performing a
DFT over this signal gives us

Yði;jÞðf Þ ¼
XT
t¼0

yði;jÞðtÞe�j2πft=T ð2Þ

We next performed equalization to transform the received FMCW chirp into an
impulse response. To do this, we canceled out the phase of the FMCW chirp, ϕ(f),
in the frequency domain. Since the sliding window resulted in a timing
synchronization offset, iΔTmodT, in the FMCW signal, it introduced an additional
phase offset in the frequency domain, �2πf ΔT

T i. We performed frequency domain

equalization to cancel both these phases to obtain

Ψði;jÞðf Þ ¼ e�jϕðf Þþj2πf ΔTT iY ði;jÞðf Þ ð3Þ
The time-domain impulse response of the acoustic channel was then obtained by
performing an inverse DFT to obtain

ψði;jÞðtÞ ¼
Xðf 0þFÞT

f¼f 0T

ej2πft=TΨði;jÞðf Þ ð4Þ

This impulse response represents the time of arrival of the various reflections from
the speaker to the microphone.

Since cardiac motion is minute, it can be drowned out by reflections
corresponding to coarse motion from distant locations. Therefore, we performed
echo suppression to eliminate the reflections arriving from the farther distances.
The impulse response at time t represents the total energy of the reflections that
arrive at time t. To reduce the effect of reflections from distant motion, we can zero
out the impulse responses at farther distances. Since our operational range was D
= 1 m, the round-trip time of arrival corresponding to this distance was Td= 2D/c,
where c is the speed of sound. Zeroing the signal after Td in the impulse responses
can lead to abrupt changes in the time domain and spectrum leakage in the
frequency domain. Instead, we pointwise multiplied ψ(i,j)(t) with a raised-cosine
window W(t) starting at time 0, with a roll-off factor of 1 and length Td. This
yielded the impulse response after multipath suppression

ψ̂ði;jÞðtÞ ¼ ψði;jÞðtÞWðt � Td=2Þ ð5Þ

We then performed a DFT on this impulse response to obtain Ψ̂
ði;jÞðf Þ.

Adaptive maximum-SINR beamformer. To motivate the need for an adaptive
beamformer, we must understand how breathing motion interferes with the minute
heart motion. The received acoustic signal at each microphone is a superposition of
reflections from various reflectors on the body, including the chest, abdomen, and
neck as well as reflections from static objects and noise. Assuming that breathing

Fig. 6 Example plots showing the time series of R–R intervals for cardiac patients, where red and blue lines represent our active sonar system and
ground truth, respectively. A–E five atrial fibrillation patients, F a patient with respiratory arrhythmia, and G, H two patients with sinus rhythm without
arrhythmia.
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and heartbeats result in a displacement of ~0.5 cm and 0.5 mm, respectively, this
results in a phase change of around 3.3 and a 0.3 radian in the acoustic signal.
Thus, the received acoustic signal in the complex domain can be represented as a
linear combination of complex numbers corresponding to two arcs, the respiration
arc, and the heartbeat arc, in addition to a constant complex offset from static
reflections and noise.

The complex numbers corresponding to the respiration arc have a repeating
motion along the arc, with a quasi-static respiration frequency (Rresp) of less than
20 cycles per minute (CPM) in adult humans. Projecting an ideal breathing signal
onto the real and imaginary components results in sinusoidal waves. However, the
breathing motion is not perfectly sinusoidal. As a result, while the majority of
breathing energy in the frequency domain is at Rresp and its second harmonic (<40
CPM), a nonnegligible portion of energy leaks into the higher frequencies that
correspond to heart motion.

A heartbeat arc in comparison is much smaller, and the moving trajectory along
each heartbeat arc can thus be approximated as a linear segment. Hence, the
projection of the motion along the arc onto the real or imaginary axis is
approximately linear to the motion itself. Human heartbeat motion has a mean
frequency (Rheart) between 60 and 150 CPM. However, the instantaneous heart
rate, which is the reciprocal of the R–R interval, is not necessarily quasi-static.

Without loss of generality, we can model the motion along the heartbeat arc as a
carrier wave at a frequency Rheart that is FM with a finite random signal s(t) that
changes the beat-to-beat interval. Since heartbeats have an average frequency of
Rheart, the modulating signal s(t) had a maximum bandwidth of B= Rheart/2. The
FM modulation signal can then be written as

FMðtÞ ¼ cosð2πRhearttþ δf
Z t

0
sðτÞdτÞ ð6Þ

Here, Δf is FM frequency deviation. The main assumption we make is that
variations in beat-to-beat intervals have a maximum frequency such that Δf <
Rheart/2. As a result, the modulated signal has a low modulation index as Δf

B < 1 and
is a narrow-band FM signal. Given Carson’s rule54, the spectrum of narrow-band
FM signals has only one main lobe, and the majority of the energy of the FM signal
falls inside Rheart ± B. Further, the spectrum has a long tail that is spread into
frequencies outside this range.

The preceding analysis demonstrates two main properties of breathing and
heart motion signals. First, a nonnegligible minority of the energy corresponding to
breathing and heart motion can leak between these frequency ranges. Since the
respiration motion is much larger than heartbeat motion, it introduces noise in the
60–150 CPM frequencies and can hide the heartbeat signal. As a result, band-pass
filtering does not help to extract heart rhythm from the active sonar signal. Instead,
we must design a beamforming algorithm. Second, most of the energy
corresponding to breathing and heart motion falls in nonoverlapping frequencies
of [0, 40] and [60, 150] CPM, respectively.

We leveraged both properties in the design of our maximum SINR beamformer.
Taking 30 s of blocks as training sequences, the beamformer combined the signal
across different microphones and frequencies in the impulse response to maximize
the heart signal while minimizing the breathing signal and noise (see
Supplementary Fig. 1). The frequency domain impulse response computed over the
ith block and jth microphone can be written as

Ψ̂
ði;jÞðf Þ ¼ αj;f S

ðrespÞ
i þ βj;f S

ðheartÞ
i þ Cj;f þ Ni;j;f ð7Þ

Here, SðrespÞi and SðheartÞi correspond to the respiration and heart motion
signal, α and β are the corresponding weights, Cj,f corresponds to the reflections
from the static objects in the environment, and N is the noise. At a high
level, the optimization problem aims to find the matrix H= [hj,f] such thatP

i
jðH�βÞSðheartÞi j2P

i
jðH�αÞSðrespÞi j2þVar ðH�NÞ is maximized, where A ⋅ B= ∑i,jAi,jBi,j and Var(⋅) denotes

the variance.
The structure of respiration and heart signals is unknown since it varies across

people and time. From the preceding analysis, the majority of the energy
corresponding to breathing and heart motion lie in nonoverlapping frequencies. So,
we instead used the energy in these frequency ranges as a proxy for breathing and

heart motion in the above optimization. Specifically, we denote SðiÞ ¼ H � Ψ̂ði;jÞðf Þ.
We designed three FIR filters: a low-pass filter Wresp with a cut-off frequency at 50
CPM, a band-pass filter Wheart with a pass band of 60–150 CPM, and a high-pass
filter Wnoise with a cut-off frequency at 150 CPM. We then computed the filtered
signals as

Ŝresp ¼ Wresp � S; Ŝheart ¼ Wheart � S; Ŝnoise ¼ Wnoise � S ð8Þ
Here, * is the convolution operation. We then used gradient ascent to maximize the
following objective function:

LðHÞ ¼ log ðjj<ðŜheartÞjj22 þ jj=ðŜheartÞjj22 þ k<ðŜheartÞ � =ðŜheartÞÞ � log ðŜrespŜ�resp þ Ŝnoise Ŝ
�
noiseÞ
ð9Þ

Here, ∣∣A∣∣2 is the 2-norm function of vector A, ℜ(⋅) and ℑ(⋅) represent the real and
imaginary part of a complex number, and S* denotes the conjugate of S. We also

used a hyperparameter k that constrained the level of coherence of the real (in-
phase) and imaginary (quadrature) parts of the heart signal, because they were both
linear projections of the same heart motion and hence should have a large
correlation. Note that although we used a band-pass filter here, it was not used
directly for signal extraction but only as a metric for approximating the SINR. After
computing H using gradient ascent, we extracted the heart rhythm signal Ŝheart.

Dropout and Regularization. To avoid local maximum, we introduced two
techniques during optimization. When random noise in any frequency-
microphone pair has dominant energy within the heart rate range, it may be
wrongly amplified while maximizing the objective function. We leveraged the fact
that, unlike random noise, heartbeat motion should exist in a majority of
frequency-microphones pairs. Hence, during the backward process in each
iteration of gradient ascent, we probabilistically chose the weight to update with a
probability p= 0.6, leaving the other weights unmodified.

The gradient ascent algorithm can also incorrectly converge to a local
maximum that appears to be an impulse-like signal, which can be caused by a
participant’s abrupt motion. The length of the heartbeat arc, however, should not
change abruptly over time because the skin displacement from each heartbeat is
proportional to the blood pressure or apical impulse. Thus, the resulting signal
should have a stable envelope. To enforce this, we introduced a regularization
penalty term that is the maximum of the heart signal, i.e., max jŜheartj. Thus, the
objective function we used in our gradient ascent algorithm is given by

LðHÞ ¼ �log ðjj<ðŜheartÞjj22 þ jj=ðŜheartÞjj22 þ k
X

j<ðŜheartÞ=ðŜheartÞjÞ
log ðŜresp Ŝ

�
resp þ Ŝnoise Ŝ

�
noise þ γmaxðŜheart Ŝ�heartÞÞ

ð10Þ

We implemented the gradient ascent algorithm using PyTorch55 with the
parameters k= 2, γ= 0.2. The step size was initially set to 1, and we halved the step
size if the objective function value did not increase every 100 iterations.
Convergence was met when the step size fell below 0.05. The gradient ascent
algorithm took an average of 2000 iterations to converge. The optimization was
performed over the first 30 s of data to compute the beamforming matrix, H, which
was then used to extract heart rhythms from the remaining data.

Finally, our algorithm does not use supervised learning in that it does not need
ground truth data. Our optimization is self-supervised, which means that the
inference for one person does not require ground truth training data for the person
or pretrained model on other people. The self-supervised model extracts the hidden
information (i.e., the R–R intervals) by optimizing the above objective function.
The reason we use self-supervision is that different body shapes, positions, and the
surrounding environments make a supervised model difficult to generalize. Instead,
we identify the beamforming weights that maximize the signal strength of the heart
rhythm motion by solving our optimization problem, without the need for any
ground truth training data.

Heartbeat segmentation. After the beamforming process converged and H was
obtained, we extract the heart signal, Sheart, by applying a high-pass filter above
50 CPM to the real and imaginary parts of the resulting beamformed signal, S. We
used a high-pass filter instead of a band-pass filter to preserve the high-frequency
information and improve temporal resolution in the heartbeat signal.

We next segmented this complex signal into individual heartbeats. The
challenge here is imperfect beamforming, which leaves residual interference from
respiratory motion that modulates the heart signal. This introduces a rotation to
the heartbeat signal, which changes the projection ratio between the real and
imaginary components. Thus, we cannot always observe heartbeats only on the real
(in-phase) or imaginary (quadrature) components (Fig. 2). Choosing local peaks
from the absolute values of Sheart does not work since the residual noise from the
high-pass filter creates fake peaks; a more restrictive band-pass filter could reduce
this noise but would also reduce temporal resolution.

We designed a segmentation algorithm that finds both the segmenting points
and the rotation of each segment simultaneously. Our intuition was that the shapes
of consequent heartbeat arcs were similar after accounting for temporal scaling due
to different R–R intervals and a rotation between them due to residual breathing
motion. The algorithm finds the segmenting point and the corresponding rotation
transformation for each segment, where one segment post rotation is most similar
to its previous segment after scaling to be the same duration. Unlike prior
segmentation approaches23,46, our algorithm is noniterative, accounts for rotations,
and relies on comparison only between adjacent segments.

To measure the distance metric between segments si and si+1, we first
normalized their lengths to the longer segment using linear interpolation (see
Supplementary Algorithm 1). The best rotation was then computed by minimizing
the mean square error between si and the rotated si+1. This rotation is given by

sðrotÞiþ1 ¼ siþ1

ffiffiffiffiffiffiffiffiffiffiffi
sis

�
iþ1

siþ1s
�
i

s
ð11Þ

Given two complex vectors x and y with L elements each, the rotation angle, θ, that
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minimizes the mean square error

E ¼
XL
i¼1

ðxi expðjθÞ � yiÞðxi expðjθÞ � yiÞ� ¼
XL
i¼1

xix
�
i � xiy

�
i expðjθÞ � x�i yi expð�jθÞ þ yiy

�
i

ð12Þ

This can be computed by setting the first derivative to 0 as follows:

dE
dθ

¼
XL
i¼1

�jxiy
�
i expðjθÞ þ jx�i yi expð�jθÞ ¼ 0 ð13Þ

Thus, an optimal rotation is given by

expðjθÞ ¼
ffiffiffiffiffiffiffi
x�y
y�x

s
ð14Þ

The distance metric between two segments was then defined as

dðsi; siþ1Þ ¼
jjsi � sðrotÞiþ1 jj22
jjsi þ sðrotÞiþ1 jj22

ð15Þ

Once we identified each beat segment, we chose its midpoint as the timing for the
corresponding heartbeat, which we then used to compute the heart rate and R–R
intervals.

Synchronizing different data streams. To compare the heart rate and R–R
intervals computed by our algorithm to the ground truth from the ECG and PPG
sensors, we needed to synchronize both data streams and match their corre-
sponding heartbeats. We first corrected the initial timing offsets using two steps.
Initially, we started the sensor tracking on the smartphone ~5 s after we turned on
the acoustic signal recording using a manual timer. Then, before processing, we
offset each acoustic recording by 5 s to achieve a coarse synchronization with the
ground truth. To accurately match the start timings, the alignments were manually
examined and adjusted to match the first heartbeat across data streams. The timing
of each beat was extracted from the acoustic recordings using our algorithms, and
the heart rate was calculated by counting the number of beats within 1 min. The
manual alignment is carefully performed to match the first heartbeats to minimize
errors for the remaining heartbeats in each data stream.

Another well-known challenge encountered when comparing R–R intervals
across data streams is that any missed heartbeat in one of the data streams can
affect all subsequent R–R intervals since synchronization is lost; this results in our
comparing R–R intervals across data streams that are not synchronized with each
other56,57. To perform this matching across the ground truth annotations of the
heartbeats and our algorithm output, we first matched each R–R interval segment
for both data streams. Say, ti and t0i are beat timings in ground truth annotations
and our algorithm output, respectively. For each beat i in the ground truth
annotations, we find the beat f(i) in the algorithm output where jti � t0f ðiÞj is the
smallest. Similarly, for each beat j in the algorithm output, we find the g(j) in the
ground truth annotation where jtgðjÞ � t0jj is the smallest. We matched R–R
intervals where starting and ending beats mutually matched each other across the
two streams, i.e., where g(f(i))= i and g(f(i+ 1))= i+ 1, and no other heartbeats
matched the beats in the R–R intervals. Using this matching process, 86.7% of R–R
intervals were matched across healthy participants and cardiac patients. This is a
similar fraction to that reported in prior work comparing R–R intervals between
Apple watch and the gold standard ECG56. Excluding unmatched R–R intervals,
however, might lead to more optimistic results since the mismatch is likely due to
poor signal quality. To understand the effect of this exclusion, we included all the
R–R intervals for the healthy cohort and compared the two data streams using the
interpolation method in ref. 58. The excluded intervals above, follow the error types
4 and 5 in ref. 58, where M intervals in our results correspond to N ≠M intervals in
the ground truth. We interpolated them into max(M,N) intervals evenly. This
increased the absolute median error from 28 to 32 ms and the 90th percentile error
from 75 to 89 ms.

Statistics and reproducibility. We analyzed heart rate and R–R intervals using
standard statistical methods using Python (Python Software Foundation, Delaware,
USA) and the figures were generated using Python Matplotlib library. We com-
puted the bias error (mean of the errors), precision error (standard deviation of the
errors), MAE (median value of the absolute errors), and 90th percentile error
(value below which 90% of the absolute errors fall when sorted). We plotted all data
points in scatter points and showed the limits of agreement as two times the
standard deviation. The ICC and CCC were calculated using the equations outlined
in refs. 59 and 60, respectively.

For clinical variables of interest, continuous variables were reported as the
mean ± standard deviation, and categorical variables were reported as the number
(percentage). Statistical analysis was performed using SAS University Edition (SAS
Institute, Cary, NC, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data required to interpret the results are included in the manuscript. Supplementary
Data 1–3 include raw data points to produce Figs. 3–5.

Code availability
We wrote custom C++ code using generic audio drivers for data collection using our
customized smart speaker prototypes. We wrote custom Python code for signal
processing using common open-source libraries such as NumPy and PyTorch. Code for
the data collection and signal processing is available upon request with a noncommercial
license.
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