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Motor imagery is one of the classical paradigms which have been used in brain-computer interface and motor function recovery.
Finger movement-based motor execution is a complex biomechanical architecture and a crucial task for establishing most
complicated and natural activities in daily life. Some patients may suffer from alternating hemiplegia after brain stroke and lose
their ability of motor execution. Fortunately, the ability of motor imagery might be preserved independently and worked as a
backdoor for motor function recovery. .e efficacy of motor imagery for achieving significant recovery for the motor cortex after
brain stroke is still an open question. In this study, we designed a new paradigm to investigate the neural mechanism of thirty
finger movements in two scenarios: motor execution and motor imagery. Eleven healthy participants performed or imagined
thirty hand gestures twice based on left and right finger movements. .e electroencephalogram (EEG) signal for each subject
during sixty trials left and right finger motor execution and imagery were recorded during our proposed experimental paradigm.
.e Granger causality (G-causality) analysis method was employed to analyze the brain connectivity and its strength between
contralateral premotor, motor, and sensorimotor areas. Highest numbers for G-causality trials of 37± 7.3, 35.5± 8.8, 36.3± 10.3,
and 39.2± 9.0 and lowest Granger causality coefficients of 9.1± 3.2, 10.9± 3.7, 13.2± 0.6, and 13.4± 0.6 were achieved from the
premotor to motor area during execution/imagination tasks of right and left finger movements, respectively. .ese results
provided a new insight into motor execution and motor imagery based on hand gestures, which might be useful to build a new
biomarker of finger motor recovery for partially or even completely plegic patients. Furthermore, a significant difference of the
G-causality trial number was observed during left finger execution/imagery and right finger imagery, but it was not observed
during the right finger execution phase. Significant difference of the G-causality coefficient was observed during left finger
execution and imagery, but it was not observed during right finger execution and imagery phases. .ese results suggested that
different MI-based brain motor function recovery strategies should be taken for right-hand and left-hand patients after
brain stroke.

1. Introduction

EEG-based brain-computer interfaces (BCIs) have been
used for building an advanced communication or control

pathway between brain and computer using noninvasive
measurements [1, 2]. Several classical BCI paradigms were
developed for helping handicapped people to interact with
the environment by controlling a smart home, robotic arm,
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and a wheelchair using brain activity based on event-related
potential (ERP) such as the P300 wave [3, 4] or based on
steady-state visually evoked potential (SSVEP) [5] and
motor imagery [6, 7].

.e mental process during motor execution or motor
imagery has been widely used for building BCI systems in
several domains [8–10]..is mental process has also showed
the potential applications in the rehabilitation field for
patients who suffered from brain strokes [11, 12]. .ese
patients who lost some motor functions after brain stroke
might be able to reactivate some brain areas such as sen-
sorimotor area [13] by using BCI based on motor imagery as
one of the most effective surrogate motor training methods
[14]. When patients perform or imagine hand gestures or
finger movements during rehabilitation exercise sessions,
they activate more areas of the brain and therefore maximize
the neuroplastic benefits..ese kinds of movement require a
greater overall activation of muscle contraction and there-
fore probably require the firing of a greater number of
cortical cells. Furthermore, the sophisticated movements of
fingers are important to accomplish many complex tasks in
daily life. Unfortunately, the patient who suffered contra-
lateral hemiparesis after brain stroke lose the ability of
moving their fingers which means they lose the ability of
motor execution [15, 16]. Stroke is a kind of impaired ce-
rebrovascular diseases. .e number of patients who suffered
from this disease in recent years was about 2 million per
year, age standardized incidence is about 21/6250, and 70%∼
80% of stroke patients have different degrees of movement
disorders. Based on the motion, performing physical therapy
is helpful for the recovery of motor function in patients with
cerebral apoplexy but requires patients to have a certain
ability of independent movement. Most stroke patients have
poor exercise ability in the early rehabilitation stage, during
which exercise imagination therapy can play an important
role [17, 18]. However, the ability of motor imagery might be
a useful option for restoring and recovering the motor
functions [19, 20]. Which kind of motor imagery strategy is
more suitable according to the patients’ condition, e.g.,
subject-dependent recovery protocol, and which kind of
feature is more suitable to evaluate subject-dependent motor
function can be evaluated and can be employed to build a
neurofeedback system to improve the motor recovery
protocol. Whether the brain connectivity can be used as an
effective feature for motor function evaluation and motor
recovery is found. .e efficacy of motor imagery for neural
prosthetics control and motor recovery after brain stroke is
still very much an open question.

Beta-band activities play an important role in motor
imagery. In previous research papers, researchers noticed
that event-related desynchronization occurs during left
hand, right hand, foot, and tongue motor imagery tasks
[21–23]. .ey showed a significant usage of beta-band ac-
tivities for motor recovery in stroke patients [17–24].

Brain function is increasingly understood to be a result
of extensively interconnected neurons which means the
brain connection reflects the brain function such as de-
cision-making [25–27] and motor function recovery [28–
31]. Asymmetry also exists in the perspective of functional

connectivity [32]. It has been shown that right-handed
subjects who completed the motor imagination tasks with
the right hand had more effective connections between the
auxiliary motor area and other brain regions than those who
completed the motor imagination tasks with the left hand
and so on. .is lateralization of the cerebral cortex may be
related to the asymmetry of the brain structure of right-
handed subjects [33].

To investigate the brain connectivity during finger motor
execution andmotor imagery tasks, a new EEG experimental
paradigm using thirty finger gestures was designed. Right-
handed subjects only participated in the proposed experi-
ment. First, they were instructed to watch a short video and
mimic the finger movements by performing the movements.
Second, they were asked to imagine the finger movements
for sixty trials for each movement. However, we investigated
beta-band activity of EEG signals which was recorded and
extracted from both scenarios: motor execution and motor
imagery. Also, the Granger causality (G-causality) analysis
method was applied to calculate the brain network between
contralateral primary motor area, premotor area, and pri-
mary sensory area. G-causality coefficients of motor exe-
cution and imagery under left-hand and right-hand
conditions were computed and analyzed. G-causality is the
most adopted criterion for causal inference in brain re-
cordings knowing that the number of G-causality over many
trials or observation epochs means how many times sta-
tistically significant brain connection was built and the
coefficients of G-causality indicate the strength of the brain
connections. Using these G-causality characteristics, we
were able to investigate the efficacy of motor imagery of
finger movements using noninvasive measurements and
compare it with motor execution.

2. Method

2.1. Data Recording and Experimental Paradigm. For re-
ducing signal interferences, EEG experiments were held in
the electromagnetic shielding room (Figure 1) at Beijing
Anding Hospital, Capital Medical University, China. .is
study was approved by the Ethics Committee of North China
University of Science and Technology, Hebei Province,
China (Number: 2019002). All participants provided written
informed consent. Eleven healthy people (7 males and 4
females) were recruited to participate in this study. All of
them are right-handed and have no experience in motor
execution and/or motor imagery EEG-based BCI experi-
ments. Chirality is determined by the Edinburgh handedness
inventory (EHI). EHI produces scores ranging from − 100
(strongly left handed) to 0 (unbiased handedness) and 100
(strongly right handed). .e average score of handedness of
the subjects is 90.84, and the standard deviation is 5.79. .e
average age of them is 25 years (the range is from 22 to 27).

.e subjects were instructed to sit down on a com-
fortable chair in front of the computer screen which was
about 50 cm away from their eyes. Before the experiment, a
clear explanation of the framework of experimental para-
digm was given to the subjects. .e experimental paradigm
was designed by using E-prime which is a software package
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used to design and run simulation experiments, with a focus
on psychological and cognitive science.

.e 128 EEG channels were recorded during two sce-
narios: motor execution and motor imagery of finger
movements by using EGI signal acquisition system (Brain
products, Germany). .e sampling rate was 1000Hz, where
oversampling produced no significant changes in timing and
amplitude. As recording setting, EEG signals were band
passed from 0.1Hz to 50Hz and saved with the Net Station
system, as shown in Figure 1. We removed high frequency
bands such as high and low gamma bands because it is hard
to get them in a single trial using noninvasive measurements
such as EEG.

In the beginning of each session, a clear guideline of the
proposed experiment was shown in the screen to guide the
subjects andmake themmore familiar with the experimental
paradigm process..e subjects were able to understand fully
the experimental paradigm and complete the whole in-
structions more attentively. .e subjects could take few
minutes’ rest after each session.

For each trial, the finger gestures during execution and
imagery phases were arranged within 15 s, containing three
instructions or tips of 2 seconds for each task, gesture video
of 3 s, finger motor execution of 3 s, and motor imagery of
3 s. Task tip 1 indicates that the video will start. One of thirty
finger movements was shown randomly during the gesture
video time. Task tips 2 and 3 indicated the subjects to
perform or imagine the same finger movement at motor
execution and motor imagery phases, respectively. .en, the
subject can take a rest at a duration from 6 seconds to 8
seconds. .en, the next trial will be conducted (Figure 2).

2.2. Brain Region of Interest Selection. In this research, the
difference between motor execution and motor imagery was
investigated. .e premotor area, primary motor area, and
primary sensory area might be the most relevant brain areas
during performing and imagining a finger movement. .e
position of 128 channels is shown in Figure 3. Due to the low
spatial resolution of EEG signals, two electrodes E13 and E20
and E112 and E118 were averaged to calculate the brain

activities of the left and right premotor area, respectively,
according to location of the premotor area in previous EEG-
TMS research [34]. .e electrodes E36 correspond to the left
motor areas. .e electrodes E104 correspond to the primary
right motor areas. .e electrodes E52 correspond to the left
primary sensory areas. .e electrodes E92 correspond to the
right primary sensory areas.

2.3. EEG Data Processing. .e EEGLab toolbox [35] was
used for the preprocessing phase of raw EEG data. In this
phase, we have checked the quality of EEG signals by
checking the signal-to-noise ratio. .en, the bad channels
with obvious artifacts (e.g., clear muscles artifact or strong
blink) were removed using EEGLab functions and were not
included in results analysis. However, few trials only were
not recorded correctly. In our proposed experiment, 60 trials
of EEG signals for each subject were recorded for left and
right finger movements during motor execution and motor
imagery phases. .e numbers of valid trials of each subject
are shown in Table 1.

.e 128 EEG signals were down sampled from 1KHz to
500Hz for reducing data size. .en, the baseline of EEG
signals was reset called baseline drift [36]. .ere are several
methods to remove baseline drift, such as the median fil-
tering method [37], wavelet transform method [38], high-
pass filtering method [39, 40], and curve fitting method [41].
In this paper, weighted least squares- (WLS-) [42] based
local linear regression method is employed to fit the original
data of each segment to zero. Figures 4 and 5 show EEG
signals before and after removing baseline drift, respectively.

.e ICA method was used to remove the artifact in EEG
signals such as eye movements (EOG signal) per session. At
first, EEG signals were decomposed by ICA, and the limited
number of components was determined through the
whitening stage of PCA. .e ICA decomposed components
in spatial distribution map of each EEG signal are shown in
Figure 6, respectively. It was clear that the energy of the
second component was mainly concentrated in the area
around the eyes, which was consistent with the EOG signal
area in the prefrontal cortex. .us, artifact of the eye

(a) (b)

Figure 1: Experiment setup of real-time recording of EEG signals during performing or imagining finger movements. We can see in this
picture, two subfigures from left to right: the experimental electromagnetic shielding room and the data collection and analysis platformNet
Station (i.e., real-time streaming, recording, and some preprocessing of multichannel EEG data) and experimental paradigm interface.
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movement can be removed from EEG signals by deleting the
second component.

After removing the eye movements’ artifacts, the beta-
band activities (14–30Hz) during − 0.5 to 3 second periods of
the motor execution and imagery onset were feature selected
for Granger causality brain connectivity calculation.

2.4. Granger Causality Brain Connectivity Calculation.
.e Granger causality analysis model is based on the
autoregressive model, which depends on the time priority of
signals and can be used to measure the degree of mutual
influence between signals. And it can be used to explore the
temporal relationship between regions of interest in order to
reveal the directional information flow between brain re-
gions. .e Granger causality analysis model was already
used for computing the brain connection of decision-
making and motor recovery [25–29], which showed that the
Granger causality analysis is effective for analyzing the brain.

Given the two wide-sense stationary time series X and Y,
which have constant means and variances. If the predictive
effect of the variable X by using the past information of X
and Y is better than the predictive effect using the past
information of X significantly, then the variable X is the

Granger cause by the variable Y [43]. .e autoregressive
model of X can be calculated by the following equation.

Constrained regression model:

Xt � α0 + 

p

i�1
αiXt− i + εx. (1)

Unconstrained regression mode (u):

Xt � α0 + 

p

i�1
αiXt− i + 

q

i�1
βiYt− i + εy, (2)

where α0 represents the constant term; p and q are the
maximum lag number of variables X and Y, respectively; and
εx and εy denoted residuals of constrained and un-
constrained regression models, respectively. .e Bayesian
information criterion (BIC), Akaike information criterion
(AIC), and experiential method are usually used to calculate
the lag number of the regression model. In the study, the
max lag of X and Y was set to 20.

.e sum of squared residuals of constrained regression
models can be calculated by the following equation:

RSSr � (p + 1)ε2x. (3)

Gesture execution and
imaginary phase

(15 sec)
Rest

(6–8 sec)

Next 
trial

Time

Play gesture
video

(3 sec)
Task tips 2

(2 sec)
Motor execute 

(3 sec)
Task tips 3

(2 sec)
Motor imagery

(3 sec)

Time

�e sequence of the experiment

EEG data collection

Aircra� Shear No Crane

�e experiment
guideline

(response key)

Each
trial
Start

Task tips 1

Right

Finger snap Grasp

Squeeze

�at place

OkayPinch

Hit

(2 sec)

Figure 2: .e experimental paradigm. .e gesture execution and imaginary phase contains three task tips and three duration of playing
gesture video (3 seconds), motor execution, and imagery (2 seconds), in which each of thirty finger movements were used. .irty finger
movements are okay, no, begun to refer, phase modulation, crane, right, scope, aircraft, geometry, crowded, scissors, cut, there, kneading,
clap, planer, money, broom, fan, double, frost, question marks, grip, rain, circuitous, approximately equal to, blame, recruit, at noon, and
catch.
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.e sum of squared residuals of unconstrained re-
gression models can be calculated by the following equation:

RSSur � (p + 1)ε2y. (4)

.en, the F test was applied to confirm the statistics
significant of the residuals:

F �
RSSr − RSSur( /p

RSSur/(T − p − q − 1)
, (5)

where T is the number of sample size which used to estimate
X. p and q are the maximum lag number in the regression
model. If the signification is confirmed, variable Y Granger
causes variable X.

Table 1: Number of valid trials.

Left finger execution Left finger imagery Right finger execution Right finger imagery
Subject 1 55 53 58 56
Subject 2 54 50 52 54
Subject 3 56 56 49 53
Subject 4 50 48 54 54
Subject 5 56 58 52 54
Subject 6 46 52 54 50
Subject 7 54 54 56 56
Subject 8 58 58 56 58
Subject 9 53 54 57 55
Subject 10 53 54 53 57
Subject 11 30 44 58 55
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Figure 3: .e EEG electrode position of 128 channels. Using the EGI signal acquisition system Net Station (Brain product, Germany), 128
EEG channels were recorded.
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According to the definition of Granger, the causality
coefficient of Y on X can be calculated as

FY⟶X � ln
var εx( 

var εy 
. (6)

Noted that there exists two kinds of Granger causality
interrelations FX⟶Y and FY⟶X, but FY⟶X ≠ ±FX⟶Y.

In this study, EEG signals which were recorded from
contralateral premotor, primary motor, and primary sensory
area in motor execution and imagery experiment were set as
X and Y, and Granger causality relation was calculated trial
by trial.

For example, EEG signal in the premotor area was set as
Y, and EEG signal in the motor area was set as X. If FY⟶X,
we noted this relationship as Granger causality from the
premotor to motor area.

.ere are six Granger causality relations between con-
tralateral different brain areas: from premotor to motor,
from premotor to sensory, from motor to sensory, from
motor to premotor, from sensory to premotor, and from
sensory to motor. Because some trials do not have any static
significant relation, the number of Granger causality trials
was computed. .en, the Granger causality coefficient of
significant Granger causality trials was calculated.

3. Result

.eG-causality result of one trial from premotor to motor is
shown in Figure 7. In Figure 7(a), the beta-band activities of
premotor and motor EEG signals are shown. In Figure 7(b),
the original motor EEG and predicted signal only from
motor EEG and predicted signal from premotor EEG and
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Figure 4: Representative EEG signals before baseline drift. .ere is a total of 128 channels of data. .e figure shows the EEG waveform of
1–20 channels.
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Figure 5: EEG signals after baseline drift. .ere is a total of 128 channels of data. .e figure shows the EEG waveform of 1–20 channels.

6 Journal of Healthcare Engineering



motor EEG are shown, respectively. From Figure 7(c), the
predicted error reduced by using premotor EEG and motor
EEG. .us, significant Granger causality exists in this trial.

.e number of trials which has Granger causality re-
lation during left finger execution, left finger imagery, right
finger execution, and right finger imagery experiment is
shown in Tables 2–5, respectively. .e bold number showed
the highest number of Granger causality trial between the
premotor to motor area. .e number of trials from right
premotor to motor area was 37± 7.3 (mean± standard de-
viation), from premotor to sensory area was 29.7± 11.3,
from motor to sensory area was 27.8± 10.6, from motor to
premotor area was 23.5± 7.9, from sensory to premotor area
was 23.4± 7.5, and from sensory to motor area was
28.5± 12.9 during left finger execution.

A two-way ANOVA is then applied to analyze the
number of Granger causality trials between different brain
areas. .e number of Granger causality from right premotor
to right motor area is significantly higher than from right
motor to right premotor and from right sensory to right
premotor area (F10,5 � 4.51, p � 1.8 × 10− 3), and no other
significant differences are observed between the number of
Granger causality trials between brain areas during the left
finger execution phase.

.e number of Granger causality from the right pre-
motor to right motor area is significantly higher than that
from the right sensory to right premotor area (F10,5 � 2.41,

p � 4.92 × 10− 2), and no other significant differences are
observed between the number of Granger causality between
brain areas during the left finger imagery phase.

No significant differences are observed between the
number of Granger causality between the whole brain areas
(F10,5 �1.99, p � 9.67 × 10− 2) during the right finger exe-
cution phase.

.e number of valid Granger causality trials from left
premotor to left motor area, left motor to left sensory area,
and left premotor to left sensory are significantly higher than
that from right sensory to right premotor area (F10,5 �11.03,
p � 3.44 × 10− 7), from left motor to left motor area is sig-
nificantly higher than left motor to left premotor area, and
no other significant differences are observed between the
number of Granger causality between brain areas during the
right finger imagery phase.

.e Granger causality coefficient of the Granger cau-
sality trial during left finger execution, left finger imagery,
right finger execution, and right finger imagery experiment
is shown in Tables 6–9, respectively. .e bold number
showed the lowest Granger causality coefficient between the
premotor to motor area. .e number of trials from right
premotor to motor area was 9.1± 3.2, from premotor to
sensory area was 13.9± 0.6, from motor to sensory area was
13.8± 0.7, from motor to premotor area was 14.1± 0.5, from
sensory to premotor area was 13.6± 0.7, and from sensory to
motor area was 13.2± 0.8 during left finger execution.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18
+

–

Figure 6: Spatial distribution map of ICA decomposition components. After ICA processing, 18 independent components are obtained,
which can be seen as eye electrical components from the second component.
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A two-way ANOVA is then applied to analyze the
Granger causality coefficient between different brain areas.
.e Granger causality coefficient from right premotor to
right motor area is significantly lower than other brain areas
(F10,5 � 23.09, p � 6.16 × 10− 12), and no other significant
Granger causality coefficient differences are observed be-
tween brain areas during the left finger execution phase.

.e Granger causality coefficient from right premotor to
right motor area is significantly lower than other brain areas
(F10,5 � 6.03, p � 1.93 × 10− 4), and no other significant
Granger causality coefficient differences are observed be-
tween brain areas during the left finger imagery phase.

No other significant Granger causality coefficient dif-
ferences are observed between brain areas (F10,5 � 0.89,
p � 0.49) during the right finger execution phase.

No other significant Granger causality coefficient dif-
ferences are observed between brain areas (F10,5 � 0.39,
p � 0.85) during the right finger imagery phase.

4. Discussion

.e brain areas involved in motor execution and motor
imagery were investigated by using fMRI [44–46] and PET
[44]. Stephan et al. suggested that imaginative motion ac-
tivated medial and lateral premotor areas, anterior cingulate
areas, and ventral motor anterior areas..emotor execution
associated with imaginative movement leads to additional
activity in the left primary sensory cortex and premotor area,
the premotor cingulate area, and the rostral portion of the
left superior parietal cortex [44]. Porro et al. also supports
the hypothesis that motor imagery and motor execution are
involved in overlapping neural networks in peripheral
cortical regions [45]. Ehrsson et al. demonstrated that
voluntary motion images of fingers, toes, and tongue acti-
vated specificmotion representations of corresponding body
parts especially in the lateral primary motor cortex [46].
.ese researches showed that the motor execution and
motor imagery of finger movement shared some common
brain areas and can be distinguished in premotor areas.
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Figure 7: Granger causality result of one finger movement trial.

Table 2: .e number of Granger causality trials in left finger
execution.

From
To

PMA right MA right SA right
PMA right NAN 37± 7.3 29.7± 11.3
MA right 23.5± 7.9 NAN 27.8± 10.6
SA right 23.4± 7.5 28.5± 12.9 NAN
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Motor imagerymay serve as a potential motor training to the
rehabilitation of motor control [47] for the patients who
suffered from severe upper limb contralateral hemiparesis
after brain stroke [48, 49].

In this paper, we investigated the neural mechanism of
thirty finger movements in two scenarios: motor execution
and motor imagery using the G-causality analysis model.
Eleven subjects joined the experiment and performed and
imagined left and right finger gestures. EEG signals were
recorded simultaneously during motor execution and
movement imagery tasks. Beta-band activities of primary
motor area, premotor area, and primary sensory area were
the most relevant selected feature and then analyzed. We
aimed to investigate whether the Granger causality relation
can be used for motor function evaluation and motor
recovery.

Previous magnetoencephalography studies observed
clear movement-related power decreases in the alpha (8–
13Hz) and beta (13–30Hz) band to 0.5 s during bilateral
hand movements in both scenarios: motor execution and
motor imagery. In addition, a clear postmovement beta
rebound between 0.5 and 1 s was observed when someone
moves his/her bilateral hands [50]. .us, the beta-band EEG
signals from − 0.5 to 3 seconds of the motor execution and
imagery onset were feature selected and analyzed.

We mainly investigated the number of Granger causality
trials and Granger causality coefficient between different
brain areas during finger motor execution and imagery
experiment. .e highest number of Granger causality trials
37± 7.3, 35.5± 8.8, 36.3± 10.3, and 39.2± 9.0 was achieved
from premotor to motor area during left motor execution
and imagery and right finger motor execution and imagery,
respectively, as shown in Tables 2–5.

.ese results suggested the most important connection
in motor function was from premotor to motor area, which
is consistent with previous research on the neuronal pop-
ulation activity model [51]. It suggested Granger causality
results were related to motor function and might be used as
an efficient feature for motor function evaluation.

Hammer et al. showed the neurons in premotor and
motor area activities in the neuronal population level
according to the balance of excitatory and inhibitory syn-
aptic input. In addition, significant difference of the Granger
causality trial number was observed during left finger exe-
cution and imagery and right finger imagery, but not ob-
served during the right finger execution phase.

Meanwhile, the lowest Granger causality coefficients
9.1± 3.2, 10.9± 3.7, 13.2± 0.6, and 13.4± 0.6 were achieved
from premotor to motor area during left motor execution
and imagery and right finger motor execution and imagery,
respectively, as shown in Tables 6–9. Significant difference of
the Granger causality coefficient was observed during left
finger execution and imagery, but not observed during right
finger execution and imagery phase.

Table 3: .e number of Granger causality trials in left finger
imagery.

From
To

PMA right MA right SA right
PMA right NAN 35.5± 8.8 29.3± 8.8
MA right 27.1± 9.2 NAN 28.3± 10.7
SA right 25.5± 7.4 31.4± 12.4 NAN

Table 4: .e number of Granger causality trials in right finger
execution.

From
To

PMA left MA left SA left
PMA left NAN 36.3± 10.3 34.5± 8.2
MA left 24.5± 10.9 NAN 30.5± 9.3
SA left 25.6± 9.6 31.8± 9.4 NAN

Table 5: .e number of Granger causality trials in right finger
imagery.

From
To

PMA left MA left SA left
PMA left NAN 39.2± 9.0 36.1± 7.7
MA left 24.2± 5.7 NAN 33.1± 9.1
SA left 22.3± 5.6 31.4± 7.4 NAN

Table 6: Granger causality coefficient of left finger execution.

From
To

PMA right MA right SA right
PMA right NAN 9.1± 3.2 13.9± 0.6
MA right 14.1± 0.5 NAN 13.8± 0.7
SA right 13.6± 0.7 13.2± 0.8 NAN

Table 7: Granger causality coefficient of left finger imagery.

From
To

PMA right MA right SA right
PMA right NAN 10.9± 3.7 14.0± 0.6
MA right 14.0± 0.4 NAN 13.9± 0.7
SA right 13.5± 0.9 13.3± 0.5 NAN

Table 8: Granger causality coefficient of right finger execution.

From
To

PMA left MA left SA left
PMA left NAN 13.2± 0.6 13.4± 0.9
MA left 13.6± 0.7 NAN 13.6± 1.1
SA left 13.7± 0.9 13.7± 0.6 NAN

Table 9: Granger causality coefficient of right finger imagery.

From
To

PMA left MA left SA left
PMA left NAN 13.4± 0.6 13.4± 0.8
MA left 13.7± 0.8 NAN 13.6± 1.0
SA left 13.6± 0.8 13.5± 0.6 NAN
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Several researches showed the significant difference in
the brain cortex between left-handed and right-handed
subjects. Male right handers showed a significant deeper
central sulcus on the left hemisphere than on the right in
previous research study [52]. .e asymmetry of central
sulcus depth is significantly different between left-handed
and right-handed individuals in the contralateral hemi-
sphere [53]. In addition, when right-handed subjects per-
formed motor tasks with their right hand, the activation
intensity of the cortex in the left hemisphere of the brain was
higher than that in the right hemisphere [54–56].

.e results in this study also suggested the significant
differences between left and right finger motor Granger
connection and coefficient may be caused by the reason that
all of participants in this study were right-handed. .ese
results also suggested that different MI-based brain motor
function recovery strategy should be taken for right-hand
subjects and left-hand patients to build an efficient motor
recovery protocol after brain stroke. .e left-hand subjects
should be enrolled to confirm the results in the future. In the
future study, we would like to measure the Granger causality
in the contralateral motor, motor, and sensorimotor areas of
the right and left hemispheres of patients with stroke and
then calculate the Granger causality intensity between the
brain areas. .e efficacy of the motor imagery paradigm
might be obtained by the Granger causality model com-
paring heal people with patients.

.ere are some limitations in this research. Only beta-
band activity of EEG signals was calculated to build the brain
network. Compared with ECoG signals, the gamma activity
in EEG signals was not so clear and high quality [1, 57]. .e
alpha band and gamma band were not included although
beta-band activity was known to reflect motor function well.
Although these areas including the main parts of motor
functions are still not enough for free voluntary movement
[58, 59], the brain network in present work only focus on left
and right sides of the primary motor area, premotor area,
and primary sensory area, in totally six points. More areas
should be considered, and the brain connectivity should be
more investigated in the future work.
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