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Abstract

Dicer is an RNase Il which processes two classes of cellular small RNAs: the microRNAs (miRNA)
and short interfering RNAs (siRNA). Previously, we observed that over-expressed HIV-1 Tat
protein can suppress the processing of small RNAs inside cells. Here, we have investigated the
requirements for Tat interaction with Dicer. We report that Tat-Dicer interaction depends on
RNA, requires the helicase domain of Dicer, and is independent of Tat's transactivation domain.

Findings

The cell's RNA interference (RNAi) machinery is involved
in either the inhibition of gene expression by sequence-
specific cleavage of mRNAs or translational silencing of
targeted RNAs [1-3]. One component of the RNAIi
machinery is Dicer, an ATP-dependent RNase III, which
processes two classes of small RNAs: microRNA (miRNA)
and short interfering RNA (siRNA) [4]. In the cytoplasm,
Dicer recognizes a pre-miRNA, a short hairpin structure
containing an imperfect stem, and generates small mature
miRNA duplexes of 21 to 25 nucleotides. Pre-miRNAs
originate from nuclear pri-miRNAs which are RNA
polymerase II transcribed cellular transcripts that are proc-
essed by another RNase I1I protein, Drosha. Processed pre-
miRNAs are shuttled from the nucleus into the cytoplasm
by the exportin-5 protein.

In the cytoplasm, a Dicer-miRNA complex recognizes a
dsRNA binding protein called TRBP (for "TAR RNA bind-
ing protein"). TRBP connects Dicer-miRNA into the RNA
induced silencing complex (RISC) through interaction
with the argonaute 2 (Ago-2) protein [5,6]. Within RISC,
one strand of the miRNA duplex is retained and serves as
a guide RNA for base-complementary recognition of RNA-

targets. It is currently thought that miRNA-RISC captures
target transcripts through guide RNA - target RNA base
complementarity; the target RNA is subsequently transla-
tionally silenced by sequestration into ribosome-free cyto-
plasmic compartments called processing bodies (P-
bodies) [7,8]. Because miRNA-RISC mediated transla-
tional inhibition of target mRNA does not require perfect
miRNA-mRNA complementarity, one miRNA is in princi-
ple capable of silencing the translation of more than one
hundred cellular transcripts [9]. In this respect, eucaryotic
miRNAs are reasoned to be potentially capable of regulat-
ing the protein expression of more than 30 % of cellular
genes [10]. In addition to its role in miRNA processing,
Dicer also recognizes dsRNAs which originate from
viruses, transgenes or transposons and cleaves them into
small duplexes of 18 to 21 nucleotides called siRNA [11].
Like miRNAs, one strand of siRNAs is incorporated into
RISC to be used as a guide sequence [12]. siRNA-guided
RISC requires perfect complementarity with target mRNAs
to promote not translational silencing but ribonuclease-
mediated degradation of targeted transcripts.

It has been proposed that mammalian cells may use RNAi

as a defense against infection by viruses [13-15]. However,
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because most viral infections seem to progress efficiently
in cells, one surmises that many viruses have developed
stratagems to evade or suppress the cell's RNAi machinery
[13,16,17]. Several extant observations are consistent with
an RNAI thrust-and-parry interplay between the cell and
the virus. For example, HIV-1 infection appears to down
regulate the cell's miRNA processing [18], perhaps by
encoding a partially effective suppressors of RNAi process-
ing [16,19]. HIV-1 can also mutate its coding sequence to
evade base-pair complementarity driven RNAi [20]. Addi-
tionally, HIV-1 can encode small si-/mi- RNA-like decoys,
such as TAR RNA, which can squelch TRBP making this
critical factor unavailable for authentic si-/mi- RNA
processing [21,22].

We previously suggested that the HIV-1 Tat protein can act
to suppress si-/mi- RNA processing [19]. In our experi-
ments, over-expression of Tat in cells reduced the effi-
ciency of shRNA-mediated RNAi. We also noted that Tat
can inhibit Dicer activity in vitro. This activity of Tat was
separate from its trans-activation function since a trans-
activation inactive TatK4 1A mutant still retained suppres-
sion of RNA silencing (SRS) activity [19]. Here, we charac-
terized the requirements for over-expressed Tat to interact
with Dicer.

Tat interaction with Dicer requires RNA

We assayed Tat interaction with Dicer by transfecting
293T cells with myc-tagged Dicer (pDicer-myc) in the
absence or presence of flag-tagged Tat (pTat-flag) (Figure
1). Cell extracts were immunoprecipitated with anti-myc
beads, and analyzed by Western blotting. As shown in fig-
ure 1, Tat co-immunoprecipitated (co-IP) with Dicer (lane
2). To assess better Tat/Dicer interaction, we conducted
the co-IP using two Tat point-mutants. The TatK51A
mutant previously was found to have little suppressive
effect on Dicer activity while being proficient for viral
transactivation; the TatK41A mutant did moderate Dicer
activity while being deficient in Tat's transcriptional trans-
activation activity.

We expressed Tat, TatK51A and TatK41A comparably (Fig-
ure 1A, lower panel), and we also expressed myc-Dicer
equally in each of the transfections (Figure 1A, upper
panel). When Dicer was immunoprecipitated, we found
that the recovery of the various Tat proteins was different.
Tat K41A and Tat co-immunoprecipitated similarly with
Dicer (Figure 1A, lanes 2 and 4); however, Tat K51A repro-
ducibly co-immunoprecipitated less effectively (Figure
1A, lane 3). These results suggest that the association
between Tat and Dicer as assayed by co-IP correlates with
the ability of the former to moderate the activity of the lat-
ter.

http://www.retrovirology.com/content/3/1/95

Because Tat and Dicer are both RNA-binding proteins, we
wondered next if their interaction required RNA. To
address this question, lysates from cells transfected with
myc-Dicer and Tat proteins were divided into two groups
prior to immunoprecipitation. One group was treated
with RNase A while the other group was not (Figure 1B).
Without RNase treatment (Figure 1B, lanes 1 to 4), Tat
and TatK41A interacted well with Dicer while TatK51A
did less well; however, after RNase treatment, none of the
Tat proteins was able to co-immunoprecipitate with Dicer
(Figure 1B, lanes 6, 7 and 8). As a control, the amounts of
the Tat proteins in the lysates were verified to be
unchanged after RNase treatment (Figure 1B, right lower
panel). Furthermore, TRBP, whose interaction with Dicer
is RNA independent [23], co-immunoprecipitated with
Dicer comparably regardless of RNase treatment (com-
pare anti-TRBP, Figure 1B left to right). Hence, Tat and
TRBP interact differently with Dicer; the former requires
RNA while the latter does not. It remains not known
whether a specific form of RNA (i.e. pre-miRNA) or gen-
eral cellular RNAs suffice to mediate Dicer and Tat interac-
tion. This requirement needs to be investigated further.

Dicer's helicase domain is required for interaction with Tat
We next characterized the region in Dicer needed for Tat
interaction. Co-immunoprecipation assays were per-
formed using flag-tagged Dicer mutants deleted progres-
sively from the N-terminus to encompass the DEAD
domain (ADEAD), the Helicase domain (AHelicase), the
Domain of Unknown Function 283 (ADUF), and the PAZ
domain (APAZ) (Figure 2A, B) [23]. Each of the mutants
expressed well after co-transfection with Tat into 293T
cells, and all were immunoprecipitated equivalently using
anti-flag beads (IP: anti-flag; lanes 1-6, top panel, Figure
2A). By contrast, when co-immunoprecipitation of Tat
was assessed, only wt Dicer and ADEAD Dicer mutant (IB:
anti-Tat; Figure 2A, middle panel; lanes 2 and 3), but not
AHelicase, ADUF nor APAZ mutants (Figure 2A, lanes 4,
5, 6), associated with Tat. These results suggest that
removal of Dicer's helicase domain abolished its ability to
co-immunoprecipitate Tat.

We performed two controls for the above experiment.
First, we checked that Tat was equally expressed in the
lysates of all the transfections (Figure 2A, lanes 8 - 12).
Second, we verified that Dicer co-IP'd Ago2. Dicer- Ago2
interaction is dependent on Dicer's RNase III domain
located in its C-terminus [24]; and in our experiments,
Ago2 co-immunoprecipitated wt Dicer and all the Dicer
RNase IIT domain-containing mutants (Figure 2A; bottom
panel, lanes 1 - 6).

We noted with interest that while the interaction of Tat
and Dicer is RNA dependent (Figure 1), the presence of
Dicer's C-terminal dsRNA binding domain in the above
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Tat co-immunoprecipitation with Dicer requires RNA. A) 293T cells were transfected with pcDNA-Dicer-myc (lane
I) or cotransfected with pcDNA-Dicer-myc and pcDNA-wtTat-flag (lane 2) or Tat point mutants, TatK4 1A or TatK51A (lane
3 and 4). 48 hours later, cell lysates were immunoprecipitated with anti-myc beads overnight at 4°C. Dicer-immunoprecipitates
were assessed by Western blotting using anti-myc (top panel) and co-immunoprecipitated Tat was detected using anti-flag
(middle panel). As a control, the amounts of wt Tat and Tat mutants were verified in total cell lysates (lower panel). B) Co-
immunoprecipitation analyses of transfected samples after no treatment (lane | to 4) or treatment with 50 pug/ml of RNase A
(lanes 5 to 8). In addition to immunoblotting for Dicer and Tat, presence of TRBP in the immunoprecipitations was also ana-

lyzed.
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Dicer's helicase domain is required for co-immunoprecipitating Tat. A) Co-immunoprecipations were performed
after transfection of Dicer mutants deleted from the N-terminus progressively to encompass the DEAD domain (ADEAD), the
helicase domain (AHelicase), the Domain of Unknown Function 283 (ADUF), and the PAZ domain (APAZ) as schematically
illustrated in panel B. Cell lysates (lanes 7 to 12) and immunoprecipitations using anti-flag beads were characterized by immu-
noblotting using anti-flag (upper panel), anti-Tat (middle panel) or anti-Ago2 (bottom panel). B) Schematic illustration of the
Dicer mutants and summary of the co-immunoprecipitation between Dicer and Tat and Dicer and TRBP.

Dicer mutants was insufficient for Dicer to co-immuno-  results is that rather than a simple protein-RNA-protein
precipitate Tat. Intriguingly, Dicer's helicase domain was  bridging interaction, there are additional protein-protein
previously found to be required to interact with both  contact points between Tat and the helicase region of
TRBP and PACT [23]. One interpretation of the collective ~ Dicer which specifies association inside a cell. That Tat,
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Figure 3

Tat's transactivation domain Tat (1-45) does not pull-down Dicer from cell lysates. A) Purified GST-Tat and four
Tat-deletion mutants, described in B, were used for GST pull down assays of cell lysates from myc-Dicer transfected 293T
cells. GST, GST-Tat and GST-Tat mutants were first verified by immunoblotting using anti-GST. The pulled-down of Dicer was
analyzed by immunoblotting using anti-myc antibody. B) Schematic illustration of Tat mutants and summary of the pull-down

results.

TRBP and PACT all impinge at Dicer's helicase region
raises a possibility that these factors may interfere and
compete with each other functionally for limiting contact
at this locale. Potential competition between Tat and
TRBP or Tat and PACT, two key components of miRNA
pathway, remains to be further characterized. While under
our current experimental conditions no decrease in TRBP
recovery was observed after Tat co-IP with Dicer (Figure
1B), whether more notable competition could be seen

upon escalated titration of Tat expression remains to be
evaluated.

Tat's trans-activation domain is dispensable for Dicer-
association

We next characterized the region in Tat required to associ-
ation with Dicer. We performed GST-pull down assays
since we had access to a large number of GST-Tat deletion
mutants and because our immunoprecipitation of Tat
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proteins was uneven with differently deleted Tat mutants.
Using GST-Tat mutants that included Tat's transactivation
domain (Tat 1-45), or Tat's basic region (Tat 1-60), or
GST-Tat mutants that were deleted in their transactivation
domain but retained their middle regions (Tat 20-72, Tat
30-72; Figure 3B), we assessed pull-down of Dicer using
purified GST-Tat and four GST-Tat-deletion mutants.
Control GST did not capture Dicer, while GST-Tat (Figure
3A, lane 1), GST-Tat 1-60, GST-Tat 20-72 and GST-Tat
30-72 did pull down Dicer (Figure 3A, lanes 4-6). Inter-
estingly, GST-Tat 1-45 did not pull-down Dicer. These
results agree with previous findings that the trans-activa-
tion domain of Tat does not account for physical and
function interplay with Dicer [25].

Here we have characterized some of the requirements for
Tat-Dicer physical association. We found that Tat-Dicer
interaction requires RNA, although simple protein-pro-
tein bridging by RNA does not seem to be a sufficient
explanation. Dicer-Tat interaction also requires Dicer's
helicase domain and a portion of Tat's 30-72 amino
acids. Whether the latter requirements imply direct pro-
tein-protein contact remains to be established.

List of abbreviations
Ago-2 argonaute 2

miRNA microRNA

RNAi RNA interference

siRNA short interfering RNA
TRBP TAR RNA binding protein
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