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Abstract: Traffic sensing is one of the promising applications to guarantee safe and efficient traffic
systems in vehicular networks. However, due to the unique characteristics of vehicular networks,
such as limited wireless bandwidth and dynamic mobility of vehicles, traffic sensing always
faces high estimation error based on collected traffic data with missing elements and over-high
communication cost between terminal users and central server. Hence, this paper investigates the
traffic sensing system in vehicular networks with mobile edge computing (MEC), where each MEC
server enables traffic data collection and recovery in its local server. On this basis, we formulate the
bandwidth-constrained traffic sensing (BCTS) problem, aiming at minimizing the estimation error
based on the collected traffic data. To tackle the BCTS problem, we first propose the bandwidth-aware
data collection (BDC) algorithm to select the optimal uploaded traffic data by evaluating the priority
of each road segment covered by the MEC server. Then, we propose the convex-based data recovery
(CDR) algorithm to minimize estimation error by transforming the BCTS into an l2-norm minimization
problem. Last but not the least, we implement the simulation model and conduct performance
evaluation. The comprehensive simulation results verify the superiority of the proposed algorithm.

Keywords: traffic sensing; bandwidth-aware; vehicular networks; mobile edge computing; traffic
state estimation

1. Introduction

Traffic sensing is one of the promising applications in vehicular networks, which is critical to
guarantee traffic system in safety and efficiency. Traditionally, vehicles driving on the road are regarded
as mobile sensors [1,2] and periodically upload related traffic data to the access point (AP), such as
cellular base station (BSs) and roadside unit (RSU), via wireless communication. Based on the collected
traffic data, the traffic state of the whole urban area can be estimated and monitored, which is the
fundamental to many emerging intelligent transportation systems, such as autonomous intersection
control [3], traffic emergency warning [4], and adaptive path planning [5]. However, when vehicle
density becomes intensive and network scale becomes large, periodically data uploading will impose
high requirement on wireless bandwidth and computation resource. Furthermore, due to the limited
wireless bandwidth and the highly dynamic vehicle mobility, traffic sensing always faces missing and
inaccurate traffic data, which can badly degrade the system performance. Therefore, it is still not trivial
to design an effective and efficient traffic sensing system in dynamic vehicular networks.

In the last decade, traffic sensing in vehicular networks has attracted great attention from the
academic field. Traffic sensing system consists of two major mechanisms: data collection and data
recovery. For data collection, some researchers [6,7] used the deployment of traffic camera distributed
among the urban city to capture the traffic state of each road segment. However, this method requires
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the deployment of traffic cameras in the whole sensing area, which takes over-high deployment cost
and can only be applied in some developed cities. Furthermore, some researchers [8] proposed a
traffic sensing architecture, where vehicles equipped with types of sensing devices are regarded as
mobile sensors and collect traffic data along their driving path. In particular, [9,10] used vehicles as
road probes for collecting traffic data independently, which compresses the collected data based on
compressive sensing theory and uploads them in every time period for bandwidth saving. However,
due to the random mobility of vehicles, it is difficult to select the optimal probing vehicles and control
the distribution of covered road segments. Then, some researchers [11–13] proposed a cooperative data
selection strategy, where traffic data of multiple vehicles is aggregated via multi-hop vehicle-to-vehicle
communication and finally uploaded by a seed vehicle. In particular, coding technique is used
during data transmission for reducing the amount of data transmission. Though covering more
sensing area, this method takes long transmission delay and tolerates data loss during multi-hop
Vehicle-to-Vehicle (V2V) communications. On the other hand, compressive sensing technique is
commonly adopted in data recovery of traffic sensing in vehicular networks. Specifically, the insight
principle [14,15] is to construct a sparse matrix by finding out temporal and spatial correlation between
missing data and available data and recover the missing data by solving the norm minimization
problem. However, currently, these solutions suffer from high estimation error when the missing data
increases. Furthermore, when the network scale of sensing area becomes large, the communication
and computation cost also increase dramatically.

Recently, mobile edge computing (MEC) [16,17] has become one of the most promising paradigms
by offloading resources at the network edge, especially in vehicular networks. In particular, each MEC
server installed along the roadside, owns computation and communication capabilities, which can
undertake local service computing for vehicles via wireless communication without the help of
remote cloud. For traffic sensing, the MEC service architecture provide the chance of flexible data
collection strategy and efficient data recovery at local server, which alleviates much pressure on the
central cloud and backbone networks. Specifically, the MEC server can control the data selection
strategy, which provides possibility of flexible data selection among mobile vehicles within limited
bandwidth constraint. Furthermore, the data recovery is implemented at the MEC server, which brings
computation offloading at network edge and reduces extra transmission cost between terminal users
and cloud servers.

Based on the above motivation, this paper investigates a traffic sensing architecture in MEC-based
vehicular networks. Specifically, each MEC server is distributed along the roadside and responsible
for monitoring the road-level traffic state in its service range. In particular, traffic state of each road
segment covered by the MEC server, which is defined as the section of segment between two adjacent
intersection point, is monitored. In such an architecture, the large-scale sensing area can be divided
into multiple sub-areas and the traffic sensing of each sub-area is implemented at each MEC server
independently. However, it is still challenging to apply such a service architecture for traffic sensing in
vehicular networks. The first challenge is that how to select the optimal partial traffic data under limited
wireless bandwidth. In particular, the traffic features of each road segment differ from each other,
including vehicle density and average speed, and may change dynamically over time. Unbalanced data
collection among multiple road segments may also degrade estimation accuracy. Then, the second
is that how to recover or estimate the missing elements based on the collected traffic data, especially
when the traffic data of some road segments is totally missing. The third is that the optimization
model considering both traffic data collection and recovery is formulated as a non-linear mixed integer
programming model, which is typically NP-hard and cannot be directly solved in an efficient way.

Based on the above observation, this paper is dedicated to solving the above-mentioned problem.
As far as we know, it is the first work to investigate the traffic sensing in the MEC-based vehicular
networks, including both data collection and recovery, by considering the heterogeneous network
characteristics of MEC servers. The contributions of this paper are outlined as follows.
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• First, we propose an MEC-based service architecture for traffic sensing system in vehicular
networks, where each MEC server is responsible for managing the data upload of vehicles in its
service range and estimating the traffic state based on collected data set.

• Second, we formulate the problem of bandwidth-constrained traffic sensing (BCTS) by
synthesizing the heterogeneous capacities of MEC servers and dynamic mobility features of
vehicles, which aims at minimizing the estimation error between the original traffic state and the
estimated traffic state.

• Third, to tackle the BCTS problem, we propose two algorithms for data collection and data
recovery, respectively. First we propose a bandwidth-aware data collection (BDC) for selecting
the optimal upload data set by adaptively capturing the temporal and spatial correlation of traffic
data base on historical data set. Furthermore, we propose a convex-based data recovery (CDR)
algorithm to estimate the full traffic state in the whole sensing area by transforming the BCTS
problem into a norm minimization problem.

• Fourth, we implement the system model by integrating the realistic traffic data with real-world
map, as well as the proposed algorithm. The comprehensive simulation result shows the
superiority of the proposed algorithms compared with two competitive algorithms under
various circumstances.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
presents the MEC-based service architecture. Section 4 formulates the BCTS problem. In Section 5,
we propose the data collection and recovery algorithms. In Section 6, we build the simulation model
and evaluate the algorithm performance. Finally, Section 7 concludes this paper and discusses the
future work.

2. Related Work

The traffic sensing system is supposed to consist of two major mechanism: data collection and data
recovery. We will introduce the related work in the two aspects. First, data collection of traffic sensing
in vehicular network is generally classified into two categories, non-cooperative data collection and
cooperative data collection, respectively. Specifically, [9,18] are non-cooperative strategy, in which each
vehicle is regarded as an individual road probe for independent data acquisition and then compressed
the collected data by itself for data upload in every fixed time period. Lin et al. [9] designed a real-time
compressive sensing (CS) approach, which allows vehicles to collect and compress data in real time
and can recover the original data accurately and efficiently. Alasmary et al. [18] identified the sparsity
of the vehicle tracking information and proposed a compressed sensing information recovery scheme.
The proposed scheme reduces the amount of data exchanged due to vehicle tracking packets while
providing a robust information reception at the receivers. However, this type of data processing
imposes high requirement of computation on vehicles. On the other hand, for cooperative data
collection, the traffic data of multiple vehicles is aggregated via multi-hop V2V transmission [19–21].
Liu et al. [20] proposed a novel scheme called compressive sensing-based data collection (CS-DC),
which can efficiently collect spatially correlated data in vehicular networks. In particular, CS-DC can
efficiently reduce communication overhead with low computation and less communication control.
Wang et al. [19] proposed a compressive sensing-based approach (CSM) to monitor in vehicular
networks. In particular, the CSM can make a balanced tradeoff between communication cost and
estimation accuracy and guarantee estimation accuracy over the highly dynamic network. However,
when the vehicular topology changes dramatically, cooperative data collection may result in long
transmission cost and data loss during multi-hop V2V communication. Except for the vehicle-centric
data collection method, the data collection in vehicular networks can also rely on fixed devices such as
APs or RSU [9,22,23]. The APs and RSUs can provide more reliable data collection for specific area
since they are fixed. However, when the wireless bandwidth becomes bottlenecks, especially in the
case of high vehicle density, they still lose some traffic data, which also result in inaccuracy traffic
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evaluation. In this paper, we will investigate the efficient data collection strategy for the MEC server,
which aims at capturing the major traffic features when wireless bandwidth is not sufficient.

Data recovery in traffic sensing is used for estimating the erroneous or missing data occurred
during the data collection. Xu et al. [24] analyzed the compressibility of road state data and proposed
a method of road traffic state estimation based on compressed sensing. Chen et al. [25] developed a
novel decomposition technique to accurately decompose a network matrix into a low-rank matrix, a
sparse anomaly matrix, an error matrix, and a small noise matrix, which is used for removing noisy
data. Li et al. [26] proposed a new approach based on compressive sensing to large-scale traffic sensing
in urban areas, which mines the extensive real trace datasets of taxis in an urban environment with
principal component analysis and reveals the existence of hidden structures with sensory traffic data
that underpins the compressive sensing approach. However, these solutions cannot guarantee the
estimation accuracy when the portion of missing data is high. Based on the above observation, this
work innovatively proposes a traffic sensing strategy, which consists of both bandwidth-area data
collection and convex-based data recovery strategy, which can intelligently select the traffic data with
the most dominant traffic features in a bandwidth-constrained scenario and achieve low estimation
error based on a dedicated designed gradient descent method.

3. System Model

In this section, we present the service architecture for traffic sensing system in MEC-based
vehicular networks. Typically, as shown in Figure 1, the service architecture consists of three layers:
vehicle layer, MEC layer, and cloud layer. In the vehicle layer, the whole traffic sensing area is divided
into sub-areas and each sub-area is exactly covered and monitored by a MEC server. In particular,
there exists no overlap between different sub-areas. The traffic state of each sub-area is evaluated in
road segment level. Specifically, the road segment is defined as the road section between two adjacent
intersections. The traffic state of each road segment is determined by the mobility features of dwelling
vehicles. In the MEC layer, the MEC server is responsible for offloading traffic sensing task in its local
server, which includes data collection and data recovery. Accordingly, the MEC server owns a wireless
AP and a computation server. As shown in Figure 1, the MEC server can have heterogeneous wireless
interfaces, such as RSU with Dedicated Short Range Communication (DSRC), BS with (3G, 4G and 5G)
cellular interface, which is commonly adopted in the relevant literature [27]. Furthermore, the wireless
bandwidth of a wireless AP is defined as the maximum amount of data can be uploaded per time unit,
which limits the amount of uploaded vehicle data in the sub-area. The heterogeneity of the wireless
APs is characterized by different wireless bandwidths. Then, the computation server is responsible for
recovering the realistic traffic state by processing the collected data set with missing data. In cloud
layer, the central cloud is responsible for monitoring the traffic states in the system level by collecting
the estimated traffic states from the MEC layer via wired connection. This paper assumes that the
wired bandwidth is sufficient to support data exchange between the MEC layer to the cloud layer.
Such an MEC-based architecture is also adopted for other data services in vehicular networks in the
relevant literature [17,28]. In fact, the reliability issue is not considered in this paper. Similar to [29],
this paper assumes that the proposed service architecture is reliable to support the traffic sensing
solution implemented at individual MEC server.

The detail processing procedure of the MEC server consists of two components: data collection
and data recovery, which is shown in Figure 2. On one hand, the MEC server makes data collection
strategy, which includes the collected road segment selection and the wireless bandwidth allocation.
In this paper, we assume that the data collection strategy is determined in offline phase based on
historical collected data set. Second, the MEC server can receive the data upload request by overhearing
the beacon message broadcast by the vehicle. The beacon message includes the required bandwidth
as well as the ID of road segment associated with the vehicle. It is reasonable that the vehicle can
sense the ID of dwelling road segment based on the GPS data. Third, the MEC server will check
whether the ID of road segment is selected or not. If the ID is not matched, the MEC server will reject



Sensors 2019, 19, 3547 5 of 20

the request. Otherwise, it goes to step four. Fourth, the MEC server further checks that whether the
required bandwidth can be satisfied or not. If the condition is not satisfied, the MEC server will reject
the request. Otherwise, the MEC server will allocate the bandwidth for the vehicle. Fifth, the MEC
server is ready for receiving the uploaded vehicle data. If the data is uploaded successfully, the MEC
server will update the allocation bandwidth for the corresponding road segment. Otherwise, the
allocation bandwidth will not be updated. During the data collection procedure, the MEC server only
cares the amount of uploaded data in road segment level without managing the mobility of individual
vehicle. On the other hand, for data recovery, the MEC server must estimate the realistic traffic state
based on the collected traffic data of the sub-area. First, the MEC server computes the measured traffic
state of each road segment. Furthermore, by designing the dedicated data recovery mechanism, the
MEC server estimates the realistic traffic state based on the measured traffic state.
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Figure 1. Service Architecture of Traffic monitoring in MEC-based Vehicular Networks.
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Sensors 2019, 19, 3547 6 of 20

4. Problem Formulation

4.1. Preliminary

Let M be the set of MEC servers. Each MEC server m ∈ M is characterized by three-tuple
(pm, Rm, Wm). Specifically, pm and Rm represents the location and the set of covered road segment
of m, respectively. In particular, Wm is the maximum bandwidth owned by m, which is defined as
the maximum amount of data can be uploaded per time unit in its service range. Therefore, for each
vehicle v, the uploaded vehicle data dv is characterized by four-tuple (idv, pv, vv, tv), which indicates
the identity, the location, the velocity and the time stamp, respectively.

4.2. Bandwidth-Constrained Traffic Sensing

In this section, we formulate the problem of Bandwidth-constrained traffic sensing (BCTS)
in detail.

First, we derive the formulation for evaluating the traffic state of each road segment ri ∈ Rm,
m = 1, 2, 3, ..., M. Due to different sampling rates of vehicles, it is difficult to track the traffic state with
a consistent time stamp. Therefore, we divide the time interval into multiple time periods with fixed
length and evaluate the traffic state at the scale of time period. Therefore, we define the set So(i, j) as
the realistic traffic data set of vehicles on road segment ri ∈ Rm at each time period tj, which is defined
as follows.

So(i, j) = {dv | ||pv − pi|| ≤ ρ1, ||tv − tj|| ≤ ρ2} (1)

where ρ1 and ρ2 are two predefined thresholds. Based on Equation (1), the realistic traffic state of
each road segment ri ∈ Rm at each time period tj, denoted by xo

ij, is defined as the average speed of
dv ∈ So(i, j), which is formulated as follows.

xo
ij =

∑
∀dv∈So(i,j)

vv

||So(i, j)|| (2)

Therefore, we can acquire the realistic traffic state matrices Xo
m, ∀m ∈ M, which is expressed

as follows. 
xo

11 ... ... xo
1T

xo
21 ... ... xo

2T
... ... ... ...

xo
Rm1 ... ... xo

RmT

 (3)

when the wireless bandwidth is sufficient, all the traffic data can be uploaded, then Xo
m, m = 1, 2, ..., M

can be easily computed by Equation (2).
However, in fact, the amount of uploaded data is always constrained by the limited wireless

bandwidth. Then, ||Im|| × ||T|| indicator matrix of MEC server m, where each bm(i, j) ∈ Bm indicates
whether road segment ri at tj is selected for traffic data collection or not, which is defined as follows.

bm(i, j) =

{
1, i f (ri, tj) is selected
0, otherwise

(4)

Furthermore, Sc(i, j) denotes the collected traffic data set of road segment ri ∈ Rm at each time
period tj. Therefore, Sc(i, j) is the subset of So(i, j), i.e., Sc(i, j) ⊂ So(i, j). Therefore, the total amount
of collected data set of m ∈ M at each time period tj cannot exceed the communication capacity of m
(denoted by Wm), which is formulated as follows.

Rm

∑
i=1

T

∑
j=1

bm(i, j) · ||Sc(i, j)|| ≤Wm, ∀m ∈ M (5)
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Similarly, we can compute the collected traffic state matrix Xc
m, m = 1, 2, ..., M based on Equation (2).

However, there exist missing elements, Xc
m always deviates greatly from the realistic traffic state matrix

Xo
m. Therefore, we must derive the estimated traffic matrix X̂m based on Xc

m. The estimation function
of mapping from Xc

m to X̂m is generalized as follows.

X̂m = f (Xc
m) (6)

Based on the above analysis, given realistic traffic data set So(i, j), the optimization problem is
formulated as follows.

min ∑
∀m∈M

||Xo
m − X̂m||2

S.T.
Rm

∑
i=1

T

∑
j=1
||Sc(i, j)|| · bm(i, j) ≤Wm, ∀m ∈ M

X̂m = f (Xc
m), ∀m ∈ M

Sc(i, j) ⊂ So(i, j), bm(i, j) ∈ {0, 1}, ∀ri ∈ Rm, m ∈ M, j = 1, 2, .., T

(7)

As we can see, it is a non-linear mixed integer programming problem, which is a known
Non-deterministic Polynomial (NP)-hard problem. Furthermore, since the original matrices Xm,
m = 1, 2, ..., M cannot be known in advance and the estimation function f is not determined , the
optimization model cannot be directly solved in the form of Equation (7). non-deterministic polynomial

5. Algorithm Design

In this section, we propose two algorithms for data collection and recovery, respectively. These two
algorithms are based on singular value decomposition (SVD). Hence, before elaboration, we first
introduce the principle of singular value decomposition.

5.1. Compressive Sensing-Based Singular Value Decomposition

Singular Value Decomposition [30] is a basic tool for matrix decomposition, which can decompose
a m× n matrix X into the multiplication of three matrices.

X = U∆VT (8)

where U is a m × m unitary matrix (i.e., UUT = UTU = I) and V is an n × n unitary matrix
(i.e., VVT = VTV = I), and ∆ is an m × n diagonal matrix containing the singular values σi of X,
and σi+1 ≤ σi. The rank of a matrix is the number of rows or columns that are linearly independent,
and its value is equal to the number of non-zero singular values.

For simplicity, let P = U∆1/2 and Q = VT∆1/2, then the singular value decomposition of X
(defined in Equation (8)) can be transformed into the product of two matrices P and Q, formulated
as follows.

X = U∆V = PQT (9)

furthermore, we denote the ith row vector of P and the jth row vector of Q as pi and qj, respectively.
Then, the element xij ∈ X can be represented by piqj

T .

5.2. Bandwidth-Aware Data Collection Algorithm

In this section, we propose the bandwidth-aware data collection (BDC) algorithm. The principle of
BDC is to evaluate the temporal and spatial correlation of road segments based on historical collected
data set. Given the historical data set Spre(i, j), ∀ri ∈ Rm, m ∈ M, j = 1, 2, ..., T, then Xpre

m can be
computed based on Equation (2).

Based on SVD method (defined in Equation (8)), Xpre
m can be decomposed as follows.
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Xpre
m = Upre

Rm×Rm
∆pre

Rm×TVpre
T×T (10)

where σi+1 of ∆ is supposed to contain the hidden structure of the traffic state. The magnitude of the
hidden structure is supposed to be proportional to the value of σi+1. We maintain the K largest singular
values of ∆ as well as the corresponding K row vectors of Upre and K row vectors of Vpre. After that,
we can acquire three matrices Upre

Rm×K and ∆pre
K×K and Vpre

K×T . Therefore, the traffic state matrix can be
approximated as follows.

Xpre′
m = Upre

Rm×K∆pre
K×KVpre

K×T = Ppre′Qpre′ (11)

where Ppre′ = Upre
Rm×K∆1/2

K×K and Qpre′ = ∆1/2
K×KVK×T .

Based on Equation (11), this paper evaluates the correlation magnitude of each road segment
ri ∈ Rm at each time period tj. For each element xpre

ij in Xpre, we replace xpre
ij by 0 and compute

estimation of xpre′

ij as ppre′

i qpre′

j . Then, we define the priority of the element as follows.

Gm(ri, tj) =
|xij − x

′
ij|

xij
=
|xij − p

′
iq
′
j
T |

xij
(12)

Based on Equation (12), high value of Gm(ri, tj) indicates that the difference between xprev
ij and

xprev′

ij is large and therefore the traffic data of road segment ri at tj has high priority to be collected.
For validation, we compare the priority of four different road segments, respectively. Specifically,
we recover the value of x

′
ij under the condition of missing the information of road segment ri and

compute Gm(ri, tj) based on Equation (12). The related setup is referred to Section 6. Figure 3 shows
the priority of four missing road segments under different time periods. It is observed that the trend of
the four curves differs from each other, which reveals different correlation magnitude of elements in
Xpre. For instance, in general, the priority of road segment 29 maintains at the highest level among the
four curves, which indicates that the traffic data of road segment 29 has higher priority to be collected
compared with other road segments. Furthermore, we define average estimation error (AEE) as the
difference between the estimated and original traffic matrix, which is formulated in Equation (17).
The detailed definition of AEE is referred to in Section 6. Figure 4 shows the AEE of four sets of
road segments with varying k largest priority, where k changes from 20 to 60. When k increases, the
AEE decreases. It is because that more road segments provide larger amount of collected traffic data.
However, it is observed that even k is small (i.e., k = 20), the priority of the curve still maintains at a
preferable level (i.e., 0.17), which gives an inspiration that low estimation error can still be achieved
based on the traffic data with high priority even when the wireless bandwidth is constrained.

Therefore, the procedure of the BDC algorithm is described as follows. First, for each ri ∈ Rm at
each tj, the priority of each ri at each tj is computed based on Equation (12). The detailed procedure is
shown in lines 1∼10 of Algorithm 1. Second, the priority of road segments at each time period tj is
sorted in the descending order and the indexes are stored in the index matrix I. The detailed procedure
is shown in in lines 11∼17 of Algorithm 1 . Third, for each time period tj, the collected data set Sc

m(i, j)
of each road segment ri is determined iteratively in the order of I(:, j). In particular, let lupload and Tle f t
denote the maximum number of elements in Sc

m(i, j) and the remaining communication capability, then
the number of uploaded data item for ri in tj is determined by L = min(Tle f t, lupload).For each road
segment ri is selected, where i ∈ I(:, j), we set bm(i, j) to 1 and then randomly select L elements from
So(i, j) as Sc

m(i, j). Accordingly, xc
ij can be computed based on Sc

m(i, j) by Equation (2). The detailed
procedure is shown in lines 18∼31 of Algorithm 1. It is observed that the procedure of Step 1 of BDC
algorithm can be implemented in offline phase since priority of the road segment is determined based
on historical data set. Furthermore, the time complexity of Step 2 is O(T), where T is the scheduling
period. When the scheduling period T is considered to be a constant, then the time complexity of BDC
can be regarded as a constant, which indicates that BDC can be implemented at each MEC server in an
efficient way.
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Algorithm 1 The Bandwidth-aware Data Collection (BDC) Algorithm

Input: Historical data set Sprev(i, j),∀ri ∈ Rm, m ∈ M, j = 1, 2, ..., T
Output: The collected traffic state matrix Xm and indicator matrix Bm, ∀m ∈ M
Step 1: determine the selection priority of the road segments (Offline Phase)
1: Compute Xprev

m based on Equation (2), ∀m ∈ M
2: Set priority matrix Gm = [0]Rm×T
3: for each ri ∈ Rm do

4: for j from 1 to T do

5: Xprev′
m ← Xprev

m
6: xprev′

ij ← 0
7: Decompose Xprev′

m as Pprev′
m and Qprev′

m based on Equation (11)
8: xprev′

ij ← pprev′

i qprev′

j
9: Compute Gm(ri, tj) based on Equation (12)

10: end for
11: end for
12: Set index matrix I = ∅
13: for j from 1 to T do

14: tmp← the jth column row vector of Gm
15: Sort elements of tmp in descending order
16: tmp_index ← the index vector of sorted elements in tmp
17: I ← [I, tmp_index]
18: end for
Step 2: allocate wireless bandwidth and collect vehicle data (Online Phase)
19: for j from 1 to T do

20: Tle f t = Wm
21: for each i ∈ I(:, j) do

22: Set bm(i, j) = 1
23: L = min(Tle f t, lupload)
24: if L > 0 then

25: Sc(i, j)← randomly select L elements from So(i, j)
26: Compute xc

ij by Equation (2)
27: else

28: break
29: end if
30: Tle f t = Tle f t − L
31: end for
32: end for
33: Output Xc

m and Bm

Figure 3. The priority of multiple road segments under different time periods.
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Figure 4. The AEE of four sets of road segments under different time periods.

5.3. Convex-Based Data Recovery Algorithm

In this section, we propose the convex-based data recovery (CDR) algorithm to derive the
estimated traffic state matrix X̂m based on the collected traffic state matrix Xc

m. Since the objective
function (defined in Equation (7)) cannot be directly computed, we transform the optimization model
as follows.

min rank
(

P̂Q̂T)
s.t. Bm.×

(
P̂Q̂T) = Xc

m
(13)

however, it is still difficult to solve the optimization model defined in Equation (13), since rank
minimization of matrix is a non-convex problem. However, when PQ satisfies the restricted
isometry property (RIP) condition [19,31], Equation (13) can be transformed into a l2-norm
minimization problem.

min λ(||P̂||2 + ||Q̂||2) + ||Bm.× (P̂Q̂)− Xc
m||2 (14)

however, when the matrix satisfies the RIP condition, the estimated value x̂ij is supposed to be
relatively smaller than xo

ij. Therefore, in this paper, we add a complementary factor CmΩm to each
element x̂ij. Specifically, Ωm is formulated as follows.

Ωm =

∑
∀xc

ij∈Xc
m ,xc

ij 6=0
xc

ij

∑
∀xc

ij∈Xc
m ,xc

ij 6=0
1

(15)

then, for each m ∈ M, Cm is defined as the ratio of the number of collected road segments and the total
number of road segments, which is defined as

Cm =

∑
∀xc

ij∈Xc
m ,xc

ij=0
1

T × Rm
(16)

The procedure of the CDR algorithm consists of three steps, shown in Algorithm 2, which is
illustrated as follows. In the first step, we initialize the related parameters, including the Cm, Ωm, and
two matrices P̂ and Q̂, which is shown in lines 1∼6 in Algorithm 2. The rank of P̂ and Q̂ is determined
by rank factors r. Second, we perform the gradient descend method to achieve the minimum value
of Equation (14) in an iterative way. During the iteration, the regularization coefficient λ is used for
preventing the over-fitting of the estimated data and the learning rating lr is used for controlling
the process speed of estimating the traffic state matrix data. The stop condition is that the difference
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between pre_e and e is smaller than a predefined threshold ρ3. After that, we can acquire the estimated
traffic matrix X̂m. Third, for each element x̂ij ∈ X̂m, we add the complementary factor CmΩm to x̂ij,
i.e., x̂i,j = x̂i,j + Ωm · Cm. Then, we can acquire the final estimated traffic state matrix X̂m for MEC
server m ∈ M. The effect of three parameters related to Algorithm 2 will be investigated in detail in
Section 6. Additionally, it is observed that the CDR algorithm can be implemented and performed at
each individual MEC server independently. It is observed that the time complexity of Algorithm 2
is dominated by the procedure in the while loop, shown in lines 7∼21, whose time complexity is
O(t||Rm|| · ||T||). Specifically, t, ||Rm|| and ||T|| are the iteration number, the number of covered road
segments and the scheduling period. In fact, it is verified in Section 6 that the CDR can converge when
the iteration number t is small. Therefore, the time complexity of Algorithm 2 is linear to ||Rm||, i.e.,
linear to the number of covered road segments.

Algorithm 2 The Convex-based Data Recovery (CDR) Algorithm

Input: Collected traffic state matrix Xc
m, indication matrix Bm, regularization coefficient λ, rank factor

r, and learning rating lr
Output: Estimation matrix X̂m

1: P̂← a m× r matrix generated by standard normal distribution
2: Q̂← a m× r matrix generated by standard normal distribution
3: Compute Ωm based on Equation (15)
4: Compute Cm based on Equation (16)
5: Initialize e_di f f = 2
6: pre_e = 0
7: while e_di f f > ρ3 do

8: for i from 1 to Rm do

9: for j from 1 to T do

10: q̂i = q̂i + lr · (e · p̂j − λq̂i)
11: p̂j = p̂j + lr · (e · q̂i − λ p̂j)
12: end for
13: end for
14: e = λ(‖ P̂ ‖2 + ‖ Q̂ ‖2)+ ‖ Bm.× (P̂Q̂T)− Xc

m ‖2

15: if pre_e > e and index > 0 then

16: e_di f f = pre_e− e
17: P̂← P̂
18: Q̂← Q̂
19: pre_e← e
20: end if
21: end while
22: X̂m ← P̂Q̂T

23: for i from 1 to Rm do

24: for j from 1 to T do

25: x̂i,j = x̂i,j + Ωm · Cm
26: end for
27: end for
28: Output X̂m

6. Performance Evaluation

6.1. Setup

In this section, we implement the simulation model based on the system architecture presented in
Section 3. Specifically, the simulation model is built on the realistic taxis traces from 8 am to 8 pm, 1 and
2 October 2016, in Chendu City, Sichuan Province, China, which is downloaded from Didi Chuxing
GAIA Initiative accessed on [32]. The format of traffic data item is shown in Table 1. The speed of the
vehicle is computed by the longitude and altitude of two adjacent sampled traffic data item.
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Table 1. The data format of each traffic data item

Field Driver ID Time stamp Altitude Longitude
Type String String String String
Example jkkt 1,501,584,540 104.04392 104.04392
Description Desensitization Unix time stamp, second GCJ-02 coordinate GCJ-02 coordinate

The data set of the first day is used for evaluating the priority of road segments and the data
of the second day is used for traffic data collection and evaluation. In statistics, the total number of
taxis is 30,000. The sampling rate is [0.25,0.5] per second, which indicates that the vehicle periodically
requests for data upload in every 2∼4 s. The simulation area is the core district within the second
ring road of Chengdu City, as shown in Figure 5. The mapping method from the traffic data to the
road segment in the real-world map is based on the literature [33]. The whole area is divided into
three sub-areas and each sub-area is monitored by a MEC server, which manages around 60∼80 road
segments. Furthermore, the communication capacity of each MEC server is defined as the maximum
number of traffic data item uploaded by vehicles per time unit, whose default value is set to [2600,3080]
data items per minute.

Figure 5. Simulation model.

For performance comparison, we implement one data collection strategy and one data recovery
strategy. The data collection strategy is the data random collection (DRC) strategy, which randomly
selects Sc(i, j) from So(i, j) within the constraint of limited wireless bandwidth. The data recovery
algorithm is K-Nearest Neighbor (KNN) with Mean [34]. Accordingly, we implement two competitive
algorithms, DRC + CDR and BDC + KNN with MEAN, respectively. Besides, for performance
evaluation, we define the average estimation error (AEE) to evaluate the magnitude of estimation error,
which is defined in Equation (17). Specifically, high value of AEE represents that the difference between
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estimated traffic state and the realistic one is higher, which indicates that the algorithm achieves low
estimation accuracy.

AEE =

Rm
∑

i=1

T
∑

j=1
|xo

i,j − x̂i,j|

Rm
∑

i=1

T
∑

j=1
xo

i,j

(17)

6.2. Simulation Results

6.2.1. Effect of Parameters

In this section, in order to acquire the best system performance, we test the effect of three critical
parameters related to the proposed algorithm, which are regularization coefficient λ, rank factor r and
learning rate lr, respectively. The initial values of λ, r, and lr are set to 0.02, 100, and 0.005. When we
test one of the parameters, the other two are set to the initial values.

First, we conduct the performance evaluation of the proposed algorithm under different
regularization coefficients, which changes from 0.001 to 1.25. In particular, Figure 6 shows the AEE
curves of the proposed algorithm under six different communication capacities. It is observed that the
shape of the six curves are similar and the AEE of the six curves decrease at first and then increases
slowly, which indicates that there exists a point with the minimum value of AEE. Therefore, we set the
value of λ to 0.07.

Figure 6. The AEE of the proposed algorithm under different regularization coefficients.

Second, we conduct the performance evaluation of the proposed algorithm under different
rank factors, which changes from 1 to 150. In particular, Figure 7 shows the AEE curves of the
proposed algorithm under six different communication capacities. It is observed that six curves
maintain a straight line, which indicates that the proposed algorithm is not sensitive to the rank factors.
Therefore, in the simulation, we set the value of rank factor to 100.

Thirdly, we conduct the performance evaluation of the proposed algorithm under different
learning rates, which changes from 0.001 to 0.1. In particular, Figure 8 shows the AEE curves of the
proposed algorithm under six different communication capacities. It is observed that the AEE of the
proposed algorithms first decreases and then increases slowly. In particular, the minimum value of lr
is achieved when lr achieves 0.005. Therefore, in the simulation, we set the value of lr to 0.005.
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Figure 7. The AEE of the proposed algorithm under different rank factors.

Figure 8. The AEE of the proposed algorithm under different learning rates.

6.2.2. Effect of Communication Capacity

Figure 9 shows the AEE of the three algorithms under different communication capacities.
With decreasing communication capacity, the AEE of the three algorithms increases. It is because
lower communication capacity brings lower amount of collected data, which provides less useful
information for traffic recovery. Furthermore, the AEE of BDC + CDR is lower than that of RDC + CDR
in all cases, which validates the effectiveness of BDC. Then, the BDC + CDR also achieves lower AEE
than BDC + KNN with Mean, which indicates that the CDR can achieve higher estimation accuracy
under the same data collection strategy.

Figure 9. The AEE of three algorithms under different communication capacities.

Furthermore, to validate the convergence efficiency of the CDR, Figure 10 compares the e_di f f
under different communication capacities. In particular, e_di f f is defined as the difference of e (shown
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in line 14 in Algorithm 2) between two adjacent iterations. It is observed that the e_di f f converges to
the zeros point efficiently across all the cases. In particular, the stop criterion is satisfied before the
iteration number achieves 60, which indicates that the maximum iteration number can be considered
to be a small constant. Therefore, this set of simulation results validates the efficiency and superiority
of the proposed algorithm against heterogeneous communication capacities.

(a) Wm = (650, 770) (b) Wm = (1300, 1540)

(c) Wm = (2600, 3080) (d) Wm = (3900, 4620)

(e) Wm = (5200, 6160) (f) Wm = (5850, 6930)

Figure 10. The e_di f f of the proposed algorithm under different communication capacities.

6.2.3. Effect of Covered Road Segment Number

Figure 11 shows the AEE of the three algorithms under different numbers of covered road
segments. Specifically, the number of covered road segments is determined by the service range of
MEC server. In this set of simulation, the communication capacity of each MEC server is fixed to
1600 uploaded traffic data items per minute. It is observed that the AEE of three algorithms increases
gradually with the increasing number of covered road segments. It is because the required amount of
traffic data has exceeded the communication capacity of the MEC server. However, the BDC + CDR
achieves much lower AEE than BDC + KNN with Mean, which indicates that the BDC + CDR still
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can find out better correlation between the missing data and collected traffic data. Additionally,
the performance gap between BDC + CDR and DRC + CDR becomes larger with increasing number of
covered road segments, which indicates that the proposed data collection strategy can play a critical
role when the communication capacity becomes the bottleneck.

Furthermore, to test the algorithm efficiency, Figure 12 compares the time cost of the three
algorithms under different numbers of covered road segments. It is observed that the time cost of three
algorithms increases with increasing the number of covered road segments. In particular, the time
cost of proposed algorithm is almost the same to Random select + CDR, which verifies the efficiency
of the BDC algorithm. Furthermore, the BDC + KNN achieves the least time cost. It is because the
KNN estimates the missing traffic state by only averaging the traffic state of road segments with small
cosine similarity but the CDR is based on measured traffic state matrix. However, the gap between
the BDC + KNN and the proposed algorithm is small, and the proposed algorithm achieves much
lower AEE than BDC + KNN. Additionally, the time cost of the proposed algorithm is linear to the
number of covered road segments, which validates the time complexity analysis of Algorithm 2 in
Section 5. Therefore, this set of simulation results show the adaptiveness of the proposed algorithm
against different scales of traffic sensing areas.

Figure 11. The AEE of three algorithms under different numbers of covered road segments.

Figure 12. The time cost of three algorithms under different numbers of covered road segments.

6.2.4. Effect of MEC-Based and Centralized Architectures

Additionally, we also compare the performance of the proposed algorithm under two types
of architectures, MEC-based and centralized architectures. As shown in Table 2, The AEE of the
proposed algorithm under two architectures maintains almost at the same level, which indicates
that the proposed algorithm can perform well against different scales of traffic evaluation matrix.
Furthermore, Figure 13 shows the time cost of the proposed algorithm under both MEC-based and
centralized architectures. It is observed that the time cost of the MEC-based architecture is much smaller
than the centralized architecture. It is because that in MEC-based architecture, the traffic estimation
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problem is decomposed into multiple subproblems and solved in parallel way, which greatly reduces
the required computation resources. This set of simulation results validates the scalability of the
proposed algorithm as well as the advantage of the MEC-based architecture.

Figure 13. Time cost of the proposed algorithm under MEC-based and centralized architectures.

Table 2. Estimation error comparison between MEC-based and centralized architectures.

Communication Capacity [5850,6930] [5200,6160] [3900,4620] [2600,3080] [1300,1540] [650,770]

MEC-based architecture 0.10185 0.11081 0.13002 0.14193 0.17738 0.23793
Centralized architecture 0.09587 0.10683 0.12986 0.1416 0.17181 0.23663

6.2.5. Effect of Additive Noise

Figure 14 compares the AEE of the proposed algorithm under different magnitudes of additive
noise. Specifically, we add the white Gaussian noise to the original data set and perform traffic state
estimation based on the contaminated data. The white Gaussian noise is represented by G(u, δ),
where u and δ is the mean and standard deviation. As the average speed of vehicles is 35 km/h in
statistics, G(0, 3.5), G(0, 7) and G(0, 15) represents 10%, 20% and 40% noise added to the original data,
respectively. As shown in Figure 14, when the communication capacity is high, white Gaussian noise
does not affect the AEE too much even with 40% noise. When the communication capacity reduces,
white Gaussian noise can increase the AEE greatly and results in low accuracy of traffic estimation.
Therefore, it is necessary to add some denoising approach [35] to filter the noise from the collected data
set, which is caused by uncorrelated factors, such as the parking vehicle along the roadside and other
outlier measurements. However, it is observed that when the magnitude of noise is less than 20%, the
proposed algorithm can still work well when the communication capacity is high. Therefore, this set of
simulation results shows the reliability of the proposed algorithms against noisy data on the condition
of high communication capacity.

Figure 14. The AEE of the proposed algorithm under different magnitudes of additive noise.
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7. Conclusions and Future Work

This paper investigated the traffic sensing system in MEC-based vehicular networks, where each
MEC server is equipped with wireless AP and computation server is responsible for collecting the
traffic data of each road segment and recovering the traffic state matrix based on the collected traffic
data. On this basis, we formulated the bandwidth-constrained traffic sensing (BCTS) problem by
synthesizing the heterogeneous communication capacities of MEC servers and the dynamic mobility
features of vehicles, which aims at minimizing the AEE. To tackle the BCTS problem, we first proposed
the BDC algorithm, which selects the optimal collected data set by evaluating the priority of each road
segment while satisfying bandwidth constraint. In particular, the priority function is designed based
on SVD, which can effectively capture the hidden structure of collected traffic state matrix. For data
recovery, we proposed the CDR algorithm to minimize estimation error by transforming the BCTS
into an l2-norm minimization problem. A gradient descend method is proposed to derive the solution
in an efficient way. Last but not the least, we implemented the simulation model based on realistic
vehicular traces and implemented the proposed algorithms as well as two competitive algorithms.
The comprehensive simulation results verify the superiority of the proposed algorithm in a wide range
of service scenarios.

For future work, we would like to establish a more realistic traffic sensing system by incorporating
traffic state estimation of marginal road segments, which are not covered by any MEC servers.
Therefore, the potential cooperation between adjacent MEC servers would be investigated to infer
the traffic state of uncovered road segment based on the knowledge of neighboring road segments.
Additionally, the proposed algorithm is not suitable for the rare exceptional practical cases, such as
suddenly opening or closing a road section and traffic accident. Detecting, modelling, and recovering
traffic state in these extreme cases needs series of extra mechanisms, which will also be incorporated in
our future work.
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