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s and candidate drugs in
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Abstract
Background: Hepatocellular carcinoma (HCC) is the third cancer-related cause of death in the world. Until now, the involved
mechanisms during the development of HCC are largely unknown. This study aims to explore the driven genes and potential drugs in
HCC.

Methods: Three mRNA expression datasets were used to analyze the differentially expressed genes (DEGs) in HCC. The
bioinformatics approaches include identification of DEGs and hub genes, Gene Ontology terms analysis and Kyoto encyclopedia of
genes and genomes enrichment analysis, construction of protein–protein interaction network. The expression levels of hub genes
were validated based on The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, and the Human Protein Atlas.
Moreover, overall survival and disease-free survival analysis of HCC patients were further conducted by Kaplan–Meier plotter and
Gene Expression Profiling Interactive Analysis. DGIdb database was performed to search the candidate drugs for HCC.

Results: A total of 197 DEGs were identified. The protein–protein interaction network was constructed using Search Tool for the
Retrieval of Interacting Genes software, 10 genes were selected by Cytoscape plugin cytoHubba and served as hub genes. These 10
genes were all closely related to the survival of HCC patients. DGIdb database predicted 29 small molecules as the possible drugs for
treating HCC.

Conclusion:Our study provides some new insights into HCC pathogenesis and treatments. The candidate drugsmay improve the
efficiency of HCC therapy in the future.

Abbreviations: DEG = differentially expressed gene, DFS = disease-free survival, GEO = gene expression omnibus, GEPIA =
Gene Expression Profiling Interactive Analysis, GO = Gene Ontology, HCC = hepatocellular carcinoma, HPA = The Human Protein
Atlas, KEGG = Kyoto encyclopedia of genes and genomes, LIHC = liver hepatocellular carcinoma, OS = overall survival, PPI =
protein–protein interaction, STRING = search tool for the retrieval of interacting genes/proteins, TCGA = The Cancer Genome Atlas.
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1. Introduction
Hepatocellular carcinoma (HCC) is one of the major health
problems worldwide.[1,2] It affects more than half a million
people worldwide every year, with about a 30% 5-year survival
rate.[3,4] Although a variety of therapies have been used to treat
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HCC in the past few decades, the treatment effect is still
unsatisfactory due to postoperative recurrence and drug
resistance. Increasing evidence has shown that the molecular
pathogenesis of HCC may be closely associated with living
environment and genetic factors, such as P53 inactivation, several
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oncogene activation, and gene mutation.[5,6] However, the
precise mechanisms underlying HCC development and progres-
sion remain unclear.
Recently, the rapid development of high-throughput RNA

microarray analysis has allowed us to better understand the
underlying mechanisms and general genetic alterations involved
in HCC occurrence and metastasis. RNA microarrays have been
extensively applied to explore HCC carcinogenesis through gene
expression profiles and the identification of altered genes.[7–9]

Meanwhile, many large public databases such as The Cancer
Genome Atlas (TCGA), and Gene Expression Omnibus (GEO)
can be performed to screen the differentially expressed genes
(DEGs) related to the initiation and progression of HCC from
microarray data.
Most HCC patients have a relatively long latent period,

therefore manyHCC patients are in the intermediate or advanced
stage when first diagnosed, in which case radical surgery is no
longer desirable.[10] However, many chemotherapies are often
with unsatisfactory curative effects and some severe side effects.
For example, sorafenib shows a 3-month median survival benefit
but is related to 2 grade 3 drug-related adverse events namely
diarrhea and hand-foot skin reaction.[11] At present, the disease-
free survival (DFS) and overall survival (OS) of HCC patients
remained relatively short, highlighting the importance of
developing new drugs.
In the study, 3 mRNA expression profiles were downloaded

(GSE121248,[12] GSE64041,[13] and GSE62232[14]) from the
GEO database to identify the genes correlated to HCC
progression and prognosis. Integrated analysis included identify-
ing DEGs using the GEO2R tool, overlapping 3 datasets using a
Venn diagram tool, GO terms analysis, KEGG biological
pathway enrichment analysis, protein–protein interaction (PPI)
network construction, hub genes identification and verification,
construction of hub genes interaction network, survival analysis
of these screened hub genes, and exploration of candidate small
molecular drugs for HCC.
2. Materials and methods

2.1. Data collection

HCC and adjacent normal tissue gene expression profiles of GSE
121248, GSE64041, and GSE62232 were downloaded from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/).[15] The
microarray data of GSE121248 was based on GPL571 Platforms
(Affymetrix Human Genome U133 Plus 2.0 Array) and included
70 HCC tissues and 37 normal tissues (Submission date: October
15, 2018). The GSE64041 data was based on GPL6244
Platforms (Affymetrix Human Gene 1.0 ST Array) and included
60 biopsy pairs from HCC patients, 5 normal liver biopsies
(Submission date: December 10, 2014). The data of GSE62232
was based on GPL571 Platforms (Affymetrix Human Genome
U133 Plus 2.0 Array) and included 81HCC cancer tissues and 10
normal liver tissues (Submission date: October 9, 2014). The
above datasets meet the following criteria: they used tissue
samples from human HCC tissues and adjacent or non-tumor
liver tissues; each dataset involved more than 90 samples.
2.2. DEGs identification

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to
screen the DEGs in HCC tumor tissues and non-tumor liver
2

tissues.[16] Adjusted P values (adj. P)< .05 and jlogFCj>1 were
set as the cutoff criterion to select DEGs for every dataset
microarray, respectively.[17] Then, the overlapping DEGs among
these 3 datasets were identified by the Venn diagram tool (https://
bioin fogp.cnb.csic.es/tools/venny/). Visual hierarchical cluster
analysis was also performed to display the volcano plot of DEGs.
2.3. GO and KEGG pathway enrichment analysis

To explore the functions of these DEGs, the DAVID database
(https://david.ncifcrf.gov/) was used to perform GO term analysis
at first.[18] Then we submitted these DEGs, including 54
upregulated genes and 143 downregulated genes, into the
Enrichr database to perform KEGG pathway enrichment
analysis. GO term consisted of the following 3 parts: biological
process, cellular component, and molecular function. Adj.
P< .05 was regarded as statistically significant.
2.4. Construction of PPI network and screening of hub
genes

PPI network is the network of protein complexes due to their
biochemical or electrostatic forces. The Search Tool for the
Retrieval of Interacting Genes (STRING) (https://string-db.org/
cgi/input .pl/) is a database constructed for analyzing the
functional proteins association network.[19] The screened DEGs
had been submitted to the STRING database, and all PPI pairs
with a combined score of >0.4 were extracted. The degree of all
nodes was calculated by Cytoscape (v3.6.1) plugin cyto-
Hubba.[20] In the study, these genes with the top 10 highest
degree values were regarded as hub genes.
2.5. Validation of hub genes

To validate the mRNA expression level of the hub genes in HCC,
the Gene Expression Profiling Interactive Analysis (GEPIA)
database was used to show the difference in the mRNA
expression level of each hub gene between the liver hepatocellular
carcinoma (LIHC) and non-cancerous liver samples.[21] After-
ward, the protein expression levels of the hub genes in normal
and HCC tissues were visualized through The Human Protein
Atlas (HPA) database that contains immunohistochemistry-
based expression data for about 20 common types of cancers.[22]
2.6. Genetic alterations of hub genes

The LIHC dataset (TCGA, PanCancer Atlas) including the data
of 348 samples was selected to analyze the genetic alterations of
hub genes using the cBioPortal database. This database allows for
visualization, analysis, and downloading a lot of cancer genomic
datasets.[23] These genomic alterations included gene mutations,
copy number variations, deep deletion, mRNA expression z-
scores (RNA Seq V2 RSEM) with a z-score threshold of ±2.0,
and protein expression z-scores. According to the online
instructions of cBioPortal, the analysis on DFS and OS was also
carried out.
2.7. Survival analysis for hub genes

Kaplan–Meier plotter is extensively applied to explore the roles
of more than 54,000 genes in OS based on 13,316 tumor samples
from GEO, the European Genome-phenome Archive, and TCGA
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datasets including 364 patients with liver cancer. The relation
between OS and hub genes expressed in patients with liver cancer
was determined by the Kaplan–Meier survival analysis.[24]

Moreover, the relation between DFS and these genes expressed
in LIHC patients was explored through the online tool GEPIA
database. The lower and upper 50% of gene expression were set
as the standard for analysis. In the present study, HCC patients
were divided into 2 groups based on themedian expression values
of the hub genes. Log-rank P< .01 was regarded as statistically
significant.
2.8. Drug-hub gene interaction

The screened hub genes were also regarded as promising targets
for searching drugs through the DGIdb database (http://dgidb.
genome.wustl.edu/).[25] This database has drug–gene interaction
data from 30 disparate sources such as ChEMBL, DrugBank,
Ensembl, NCBI Entrez, PharmGKB, and literature in NCBI
PubMed. Drugs supported by no less than 2 databases or
PubMed references were validated as the candidate drugs. The
final list only contained the drugs that have been approved by the
Food and Drug Administration. Additionally, the identified
target gene network was constructed through the STITCH
database (http://stitch.embl.de/), a software that also incorporat-
ed drug–gene relationships.[26,27]
3. Results

3.1. Identification of DEGs

According to GSE121248 dataset analysis, 943 DEGs were
successfully identified, including 325 upregulated and 618
downregulated genes. For GSE64041 dataset, 289 DEGs were
observed, including 87 upregulated and 202 downregulated
genes. For GSE62232 dataset, 1355 DEGs were identified,
involving 817 upregulated and 538 downregulated genes. Venn
analysis was performed to examine the intersection among the 3
DEGs profiles. Then, 197 DEGs were identified from the 3 profile
datasets (Table 1). Obviously, 54 DEGs were significantly
upregulated (Fig. 1A), while 143 DEGs were markedly down-
regulated (Fig. 1B) in HCC tissues. These 197 DEGs were plotted
in Fig. 1C, where the red and green dots represented the
upregulated and downregulated DEGs, respectively. In addition,
Table 1

The common DEGs of 3 gene expression profiles.

DEGs

Upregulated (54) SPINK1; TPX2; EDIL3; ASPM; FLVCR1; AKR1B10; GINS1; SRX
TXNRD1; SPARCL1; CDC6; FAM72A; MAP2; AURKA; BUB1
SQLE; KIF20A; UBD; RRAGD; CD200; ITGA6; LCN2; MELK;
ECT2

Downregulated (143) TUBE1; BBOX1; XDH; SDS; CXCL14; IGF1; DPT; CYP39A1; SL
FCGR2B; F9; BCO2; ACSM3; CYP2C19; C3P1; LPA; CD5L;
DNASE1L3; ALDH8A1; NAT2; C7; BCHE; SAA2-SAA4; AKR
CYP3A43; SLC38A4; DBH; FBP1; ADH4; OIT3; MT1M; SLC
MT1G; SLC19A3; PGLYRP2; TENM1; INS-IGF2; CYP2C8; S
KCND3; PPP1R3B; LY6E; ITGA9; OLFML3; CNDP1; FCN3; G
CLRN3; MT1H; CLEC4M; NPY1R; ESR1; TDO2; VIPR1; IGFB
THRSP; CYP4A11; STAB2; HGFAC; ADGRG7; OGDHL; PZP;
GLS2; HABP2; APOF; ANGPTL1; PTGIS; GRAMD1C; SLC7A

DEGs= differentially expressed genes.
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the mRNA expression level of these 197 DEGs was visualized in
the form of a heatmap using data profile GSE64041 (Fig. 1D).

3.2. Functional enrichment analysis of DEGs

GO annotation and KEGG pathways enrichment analysis were
conducted through the DAVID database and Enrichr database,
respectively. The top 10 enriched GO term and KEGG pathways
were showed in Table 2. As shown in Table 2, GO biological
process analysis revealed that these 197 DEGs were significantly
enriched in the oxidation-reduction process, organic acid
metabolic process, carboxylic acid metabolic process, and
oxoacid metabolic process. The top 4 significantly enriched
cellular components terms included extracellular space, extracel-
lular region part, extracellular region, and pronucleus. For GO
molecular function analysis, the top 4 significantly enriched terms
were monooxygenase activity, oxidoreductase activity, heme
binding, and iron ion binding. Additionally, the top 4 markedly
enriched pathways for these 197DEGsweremetabolic pathways,
tryptophan metabolism, chemical carcinogenesis, and caffeine
metabolism.
3.3. PPI network construction and hub genes identification

The STRING database was performed to determine the PPI
network among the 197 DEGs. The PPI network including 197
nodes (genes) and 968 edges (interactions) was constructed
through the STRING database (see Fig. S1, Supplemental Digital
Content, http://links.lww.com/MD2/A456, which shows the PPI
network constructed). The PPI enrichment P value<1.0�10�16.
Ten genes with the highest degree scores were regarded as the hub
genes by applying the Cytoscape (v3.6.1) plugin cytoHubba. The
results revealed that forkhead box M1 (FOXM1) was the hub
gene with the highest connectivity degree, followed by aurora
kinase A (AURKA), cyclin A2 (CCNA2), cyclin-dependent kinase
inhibitor 3 (CCKN3), marker of proliferation Ki-67 (MKI67),
enhancer of zeste 2 polycomb repressive complex 2 subunit
(EZH2), cell division cycle 6 (CDC6), cyclin-dependent kinase 1
(CDK1), cyclin B1 (CCNB1), Topoisomerase (DNA) II alpha
(TOP2A) (Table 3).
Using cytoHubba software, the PPI network of the screened 10

hub genes was constructed, which had a strong interaction
among each other (Fig. 2A). The interaction network of 10 hub
Gene symbol

N1; KPNA2; ANLN; NQO1; FOXM1; EZH2; CCNB2; RBM24; PRC1; CDK1; TOP2A;
B; DLGAP5; NMRAL1P1; LEF1; MKI67; CAP2; DTL; GPC3; CCL20; ROBO1; SPP1;
SLC7A11; ITGA2; CCNA2; CDKN3; BUB1; NUF2; NCAPG; UBE2T; CENPF; NUSAP1;

C25A47; PROZ; C8A; ZG16; MBL2; SLC10A1; SLCO1B3; PRG4; CYP1A2; UROC1;
GHR; CLEC1B; TAT; LIFR; BHMT; COLEC10; VNN1; LYVE1; STEAP3; SHBG;
1D1; CXCL12; GNMT; C1orf168; GPD1; CRHBP; EHD3; WDR72; IDO2; BDH2;
39A5; CETP; SRD5A2; ADRA1A; PBLD; SRPX; CYP4A22; KLKB1; GNAO1; ENO3;
TEAP4; IL13RA2; SPP2; IGHM; MT1F; FETUB; MFSD2A; HHIP; APOA5; CYP2B7P;
BA3; PDGFRA; CLEC4G; PHGDH; CYP2B6; CCBE1; FXYD1; PCK1; KMO; ANK3;
P3; PLAC8; HAMP; DCN; IL1RAP; RDH16; CYP8B1; TMEM27; AFM; HPGD; LPAL2;
SLCO4C1; FREM2; BMPER; AADAT; GPM6A; HGF; MOGAT2; CYP3A4; EPHX2;
2

http://dgidb.genome.wustl.edu/
http://dgidb.genome.wustl.edu/
http://stitch.embl.de/
http://links.lww.com/MD2/A456
http://www.md-journal.com


Figure 1. Identification of common DEGs from GSE121248, GSE64041, and GSE62232 datasets. Venn diagram of (A) upregulated and (B) downregulated DEGs
based on the 3 GEO datasets. (C) Volcano plot of the 197 DEGs. Red, upregulation; green, downregulation. The intersecting areas represent the commonly altered
DEGs. (D) The heatmap of 197 DEGs using data profile GSE64041 as a reference. The t test was used to analyze DEGs, with the cutoff criteria of jlogFCj>1.0 and
adj. P< .05. DEGs=differentially expressed genes, GEO=Gene Expression Omnibus, logFC= log-fold change.
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genes and their related genes was also identified by the FunRich
software (Fig. 2B).[28] The hub genes and their related genes could
be enriched in many biological pathways through the enrichment
functions of the FunRich tool. KEGG analysis established that
markedly enriched pathways for the hub genes included
progesterone mediated oocyte maturation, cell cycle, cellular
senescence, oocyte meiosis, p53 signaling pathway, viral
carcinogenesis, lysine degradation, and gap junction (Fig. 2C).

3.4. Validation of hub genes in HCC

First, a differential analysis on the mRNA expression levels of
FOXM1, AURKA, CCNA2, CCKN3, MKI67, EZH2, CDK1,
4

CCNB1, and TOP2A, between HCC and non-tumor liver tissues
was conducted through the GEPIA database. As shown in
Figure 3, the mRNA expression levels of (Fig. 3A) FOXM1,
(Fig. 3B) AURKA, (Fig. 3C) CCNA2, (Fig. 3D) CCKN3, (Fig. 3E)
MKI67, (Fig. 3F) EZH2, (Fig. 3G) CDC6, (Fig. 3H) CDK1,
(Fig. 3I) CCNB1, and (Fig. 3J) TOP2A were significantly
upregulated in HCC tissues (P< .01) compared to those in
normal liver tissues. These findings were consistent with the
obtained GEO microarray data.
Moreover, the protein expression levels of these hub genes in

HCC were validated through the HPA database. Obviously, the
protein expression levels of FOXM1, AURKA, CCNA2, MKI67,
EZH2, CDC6, CDK1, CCNB1, and TOP2A were not observed



Table 2

Functional and pathway enrichment analysis of the common DEGs.

Category Term Count P value

GOTERM_BP_FAT GO:0055114∼oxidation-reduction process 41 5.26E-13
GOTERM_BP_FAT GO:0006082∼organic acid metabolic process 38 4.31E-12
GOTERM_BP_FAT GO:0019752∼carboxylic acid metabolic process 36 6.26E-12
GOTERM_BP_FAT GO:0043436∼oxoacid metabolic process 36 7.41E-12
GOTERM_BP_FAT GO:0032787∼monocarboxylic acid metabolic process 29 2.30E-11
GOTERM_BP_FAT GO:1901565∼organonitrogen compound catabolic process 19 1.22E-07
GOTERM_BP_FAT GO:0008202∼steroid metabolic process 16 4.69E-07
GOTERM_BP_FAT GO:0019373∼epoxygenase P450 pathway 6 1.22E-06
GOTERM_BP_FAT GO:0040007∼growth 29 1.47E-06
GOTERM_BP_FAT GO:0017144∼drug metabolic process 7 2.15E-06
GOTERM_CC_FAT GO:0005615∼extracellular space 44 1.16E-07
GOTERM_CC_FAT GO:0044421∼extracellular region part 80 2.66E-06
GOTERM_CC_FAT GO:0005576∼extracellular region 90 4.40E-06
GOTERM_CC_FAT GO:0045120∼pronucleus 4 8.52E-04
GOTERM_CC_FAT GO:1903561∼extracellular vesicle 55 0.001147
GOTERM_CC_FAT GO:0043230∼extracellular organelle 55 0.001157
GOTERM_CC_FAT GO:1990777∼lipoprotein particle 5 0.001538
GOTERM_CC_FAT GO:0034358∼plasma lipoprotein particle 5 0.001538
GOTERM_CC_FAT GO:0005887∼integral component of plasma membrane 36 0.001686
GOTERM_CC_FAT GO:0070062∼extracellular exosome 54 0.001780
GOTERM_MF_FAT GO:0004497∼monooxygenase activity 15 1.39E-11
GOTERM_MF_FAT GO:0016705∼oxidoreductase activity 16 9.28E-10
GOTERM_MF_FAT GO:0020037∼heme binding 14 7.03E-09
GOTERM_MF_FAT GO:0005506∼iron ion binding 15 1.06E-08
GOTERM_MF_FAT GO:0046906∼tetrapyrrole binding 14 1.52E-08
GOTERM_MF_FAT GO:0019825∼oxygen binding 8 1.68E-06
GOTERM_MF_FAT GO:0048037∼cofactor binding 14 1.88E-05
GOTERM_MF_FAT GO:0016614∼oxidoreductase activity 10 3.18E-05
GOTERM_MF_FAT GO:0008395∼steroid hydroxylase activity 6 3.67E-05
GOTERM_MF_FAT GO:0016709∼oxidoreductase activity 6 1.35E-04
KEGG_PATHWAY hsa01100:Metabolic pathways 34 1.49E-04
KEGG_PATHWAY hsa00380:Tryptophan metabolism 6 2.58E-04
KEGG_PATHWAY hsa05204:Chemical carcinogenesis 7 0.001024
KEGG_PATHWAY hsa00232:Caffeine metabolism 3 0.002033
KEGG_PATHWAY hsa00830:Retinol metabolism 6 0.002271
KEGG_PATHWAY hsa00982:Drug metabolism – cytochrome P450 6 0.002967
KEGG_PATHWAY hsa00591:Linoleic acid metabolism 4 0.008281
KEGG_PATHWAY hsa00590:Arachidonic acid metabolism 5 0.011650
KEGG_PATHWAY hsa01130:Biosynthesis of antibiotics 9 0.011704
KEGG_PATHWAY hsa04115:p53 signaling pathway 5 0.016021

DEGs= differentially expressed genes, GO=Gene Ontology, KEGG=Kyoto encyclopedia of genes and genomes.
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or low in normal liver tissues, but medium or high expression
levels of these hub genes were detected in HCC tissues (see Fig.
S2, Supplemental Digital Content, http://links.lww.com/MD2/
Table 3

Top 10 hub genes with higher degree of connectivity.

Gene symbol Gene description Degree

FOXM1 Forkhead box M1 36
AURKA Aurora kinase A 34
CCNA2 Cyclin A2 34
CDKN3 Cyclin-dependent kinase inhibitor 3 34
MKI67 Marker of proliferation Ki-67 34
EZH2 Enhancer of zeste 2 polycomb repressive complex 2 subunit 33
CDC6 Cell division cycle 6 33
CDK1 Cyclin-dependent kinase 1 33
CCNB1 Cyclin B1 33
TOP2A Topoisomerase (DNA) II alpha 33

5

A457, which demonstrates protein expression levels of these hub
genes in HCC). Unfortunately, the protein expression levels of
CDKN3 were not explored because of pending cancer tissue
analysis in the HPA database. In brief, these present results
showed that mRNA and protein expression levels of these hub
genes were overexpressed in HCC tissues.
3.5. Survival analysis of the hub genes in HCC

To further explore the relationship between the 10 hub genes and
HCC, OS, and DFS analysis of the 10 hub genes were performed
by Kaplan–Meier plotter, and the GEPIA database. As showed in
Figure 4, high expression levels of FOXM1, AURKA, CCNA2,
CDKN3,MKI67, EZH2, CDC6, CDK1, CCNB1, and TOP2A in
LIHC patients were related to poor OS. The unfavorable DFS
was also significantly shown in LIHC patients with high
expression levels of the 10 hub genes (see Fig. S3, Supplemental

http://links.lww.com/MD2/A457
http://links.lww.com/MD2/A457
http://www.md-journal.com


Figure 2. Interaction network and KEGG analysis of the hub genes. (A) The top 10 hub genes in the PPI network were screened by Cytoscape (v3.6.1) plugin
cytoHubba. The 10 hub genes are displayed from red (high degree value) to yellow (low degree value). (B) The PPI network of the 10 hub genes and their related
genes, created by the FunRich software. (C) KEGG pathway enrichment analysis of the 10 hub genes. KEGG=Kyoto encyclopedia of genes and genomes, PPI=
protein–protein interaction, STRING=search tool for the retrieval of interacting genes.
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Digital Content, http://links.lww.com/MD2/A458, which illus-
trates DFS of LIHC patients overexpressed the 10 hub genes).

3.6. Drug-hub gene interaction

Using the DGIdb database to explore drug-gene interactions of
the 10 hub genes, 29 drugs for possibly treating HCC were
matched and determined (Table 4). Promising targeted genes of
these drugs include AURKB, EZH2, and TOP2A. The final list
only included these drugs which were approved by Food and
Drug Administration, and several drugs have been tested in
clinical trials. Paclitaxel was considered a potential drug for
cancer therapy due to its inhibition of AURKA and TOP2A.
6

Etoposide, an inhibitor of TOP2A, could inhibit the development
of cancer by inducing DNA damage. Using the STITCH
database, we constructed downstream networks of AURKA,
EZH2, and TOP2A to investigate the additional effects caused by
inhibitors of these genes. Our models showed that AURKA
inhibition might have a possible influence on TPX2, microtubule
nucleation factor (TPX2), cell division cycle 20 (CDC20), tumor
protein p53 (TP53), cell division cycle 25B (CDC25B),
baculoviral IAP repeat-containing 5 (BIRC5); EZH2 inhibition
might have possible influence on histone deacetylase 1 (HDAC1),
BMI1 proto-oncogene, polycomb ring finger (BMI1), YY1
transcription factor (YY1), DNA methyltransferase 3 alpha
(DNMT3A), DNA methyltransferase 3 beta (DNMT3B), DNA

http://links.lww.com/MD2/A458


Figure 3. Validation of themRNA expression levels of (A) FOXM1, (B) AURKA, (C) CCNA2, (D) CCKN3, (E) MKI67, (F) EZH2, (G) CDC6, (H) CDK1, (I) CCNB1, and (J)
TOP2A in LIHC tissues and normal liver tissues using GEPIA database. These 10 box plots are based on 369 LIHC samples (marked in red) and 160 normal
samples (marked in gray).

∗
P< .01 was considered statistically significant. LIHC= liver hepatocellular carcinoma.
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methyltransferase 1 (DNMT1), RB binding protein 4 (RBBP4),
embryonic ectoderm development (EED); TOP2A inhibition
might have a possible influence on DNA topoisomerase I (TOP1),
DNA topoisomerase II beta (TOP2B), ubiquitin C (UBC),
proliferating cell nuclear antigen (PCNA), small ubiquitin-like
modifier 1 (SUMO1), and SUMO2 (see Figs. S4–S6, Supplemen-
tal Digital Content, http://links.lww.com/MD2/A459, http://
links.lww.com/MD2/A460, http://links.lww.com/MD2/A461,
which shows downstream networks of AURKA, EZH2, and
TOP2A respectively). So far, few inhibitors of AURKA, EZH2,
and TOP2A have been tested for HCC therapy. Some of these
drugs were even not regarded as anti-cancer drugs (such as
levofloxacin and dexrazoxane). These data could provide new
insights for targeted therapy in HCC patients.
4. Discussion

In the present study, bioinformatics analysis was performed to
identify the potential key genes and biological pathways in HCC.
Through comparing the 3 DEGs profiles of HCC obtained from
the GEO database, 54 upregulated DEGs and 143 down-
regulated DEGs were identified respectively (Fig. 1). Based on the
degree of connectivity in the PPI network, the 10 hub genes were
screened and ranked, including FOXM1, AURKA, CCNA2,
CDKN3, MKI67, EZH2, CDC6, CDK1, CCNB1, and TOP2A.
These 10 hub genes were functioned as a group and may play a
7

key role in the incidence and prognosis of HCC (Fig. 2A). HCC
cases with high expression of the hub genes exhibited significantly
worse OS and DFS compared to those with low expression of the
hub genes (Fig. 4, Fig. S3, http://links.lww.com/MD2/A458).
Additionally, 29 identified drugs provided new insights into
targeted therapies of HCC (Table 4).
Retinol metabolism, arachidonic acid metabolism, tryptophan

metabolism, and caffeine metabolism were most markedly
enriched for HCC through KEGG pathway enrichment analysis
for 197 DGEs. Metabolic alterations clearly characterize HCC
tumors.[29,30] Currently, the rapid development of metabolomics
that allows metabolite analysis in biological fluids is very useful
for discovering new biomarkers. Lots of new metabolites have
been identified by metabolomics approaches, and some of them
could be used as biomarkers in HCC.[31]

According to the degree of connectivity, the top 10 genes in the
PPI network were regarded as hub genes and they were validated
in the GEPIA database, UCSCXena browser, and HPA database.
Many studies reveal that the fork-head box transcription factor
FOXM1 is essential for HCC development.[32–34] Over-expres-
sion of FOXM1 has been exhibited to be strong relative to poor
prognosis and progression of HCC.[35,36] Hepatic progenitor
cells of HCC have been identified in the chemical carcinogenesis
model, they express cell surface markers CD44 and
EpCAM.[32,37] Interestingly, deletion of FOXM1 causes the
disappearance of those cells in the tumor nodules, showing that

http://links.lww.com/MD2/A459
http://links.lww.com/MD2/A460
http://links.lww.com/MD2/A460
http://links.lww.com/MD2/A461
http://links.lww.com/MD2/A458
http://www.md-journal.com


Figure 4. OS of the 10 hub genes overexpressed in patients with liver cancer was analyzed by Kaplan–Meier plotter. FOXM1, log-rank P= .00036; AURKA, log-
rank P= .0011; CCNA2, log-rank P= .00018; CDKN3, log-rank P= .0066; MKI67, log-rank P= .00011; EZH2, log-rank P=6.8e-06; CDC6, log-rank P=3.6e-06;
CDK1, log-rank P=1.1e-05; CCNB1, log-rank P=3.4E-05; and TOP2A, log-rank P= .00012. Data are presented as Log-rank P and the hazard ratio with a 95%
confidence interval. Log-rank P< .01 was regarded as statistically significant. OS=overall survival.
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Table 4

Candidate drugs targeting hub genes.

Number Gene Drug Interaction types Score
∗

PubMed ID

1 AURKA PACLITAXEL – 2 12559175
2 AURKA TAMOXIFEN – 2 24166501
3 AURKA FLUOROURACIL – 2 25924824
4 CCNA2 ETHINYL ESTRADIOL – 2 9806355
5 EZH2 DOXORUBICIN – 2 25605023
6 EZH2 VORINOSTAT – 2 25605023
7 EZH2 DABRAFENIB – 2 27135738
8 EZH2 SULFINPYRAZONE – 2 28135237
9 TOP2A TENIPOSIDE Inhibitor 12 8702194;16271071;17361331;17514873;11752352;

16480143;9426516
10 TOP2A ETOPOSIDE Inhibitor 12 8823806;9485461;8870683;9494516;9426516
11 TOP2A VINCRISTINE – 10 9494516
12 TOP2A DOXORUBICIN Inhibitor 4 –

13 TOP2A NORFLOXACIN Inhibitor 2 11752352
14 TOP2A VALRUBICIN Inhibitor 6 11752352;16019763
15 TOP2A LEVOFLOXACIN Inhibitor 2 11752352
16 TOP2A ENOXACIN Inhibitor 4 18471102;11752352;10089819
17 TOP2A DAUNORUBICIN – 3 9494516
18 TOP2A OFLOXACIN Inhibitor 2 2847647
19 TOP2A PEFLOXACIN Inhibitor 2 11752352
20 TOP2A AMSACRINE Inhibitor 12 1322791;8823806;10691026;8519659;8632768; 11006484;11716434;

11752352;11473732;1311390
21 TOP2A PODOFILOX Inhibitor 9 16061385;1334447;10783066;11752352;1845848;1331331
22 TOP2A DEXRAZOXANE – 2 12911317
23 TOP2A MITOXANTRONE Inhibitor 13 10451375;11004693;18687447;11752352; 9631585;9494516;

11278845;9426516
24 TOP2A LOMEFLOXACIN Inhibitor 2 11752352
25 TOP2A EPIRUBICIN Inhibitor 6 14728934;16234514;17639997
26 TOP2A DACTINOMYCIN – 2 9494516
27 TOP2A FINAFLOXACIN Inhibitor 2 25808831
28 TOP2A IDARUBICIN – 2 –

29 TOP2A HYDROQUINONE – 2 15833037
∗
The score is the combined number of database sources and PubMed references supporting a given interaction.

Chen et al. Medicine (2021) 100:39 www.md-journal.com
FOXM1 is critical for the CD44 and EpCAM positive HCC
cells.[32] The hepatic cancer stem cells in human HCC lines also
depend on FOXM1, because deletion of FOXM1will lead to loss
of these cancer stem cells.[32] FOXM1 is a critical downstream
factor of many cancer signaling pathways, such asWnt/b-catenin
signaling.[38] Moreover, FOXM1 stimulates the expression
of some multifunctional genes, like c-Myc, Oct4, Sox2, and
Nanog.[39,40]

AURKA is a mitotic serine/threonine kinase that regulates cell
mitosis, cell division, and cell cycle progression.[41] AURKA
overexpression has been observed in HCC.[42] And AURKA
overexpression has been closely relative to the aggressive tumor
characteristics,[43] poor prognosis,[44] and drug resistance[45] of
HCC. AURKA was regulated by c-Myc which contributes to
cancer progression in HCC.[46] Alisertib, an inhibitor of AURKA,
could inhibit cell viability and induce apoptosis in HCC cells.[47]

Wang et al showed genetic variations of AURKA may be a
reliable biomarker for the development of HCC.[48] Our study
also indicated that increased expression levels of AURKA were
relative to the unfavorable OS and DFS in HCC patients.
CCNA2[49] and CCNB1[50] are 2 members of the cyclin family,

which regulate cell proliferation and apoptosis, and have been
closely related to cancer progress and patients’ survival.
CCNA2[51] and CCNB1[52,53] have been identified in various
types of tumors. CCNA2 was overexpressed in human HCC
tissues.[54]Moreover, it was reported that CCNA2was relative to
9

a decrease in OS for HCC patients, based on the survival and
expression data from TCGA.[55] Liu et al revealed that CCNB1
was highly expressed in HCC tissues compared with normal liver
tissues.[56] In addition, the overexpression of CCNB1 was
correlated to poor OS and DFS in HCC patients by bioinformat-
ics analysis.[57] Our study also revealed that HCC patients with a
high expression level of CCNA2 or CCNA2 exhibited worse OS
and DFS compared to those with a low expression level.
CDKN3 gene is involved in cell mitosis by modulating CDK1/

CDK2 dephosphorylation, and its overexpression correlates with
unfavorable survival in several cancers.[58] For HCC, CDKN3
not only promotes cell proliferation but also correlates with
tumor pathological grade negatively.[59] CDK1, a member of the
Ser/Thr protein kinase family, plays an essential role in the
control of the eukaryotic cell cycle by modulating the centrosome
cycle. CDK1 has been extensively investigated in ovarian cancer
and colorectal cancer.[60,61] However, little is known about the
role of CDK1 in HCC carcinogenesis. A recent study has found
that metformin can significantly inhibit the proliferation of HCC
cells and effectively reduce the expression of CDK1.[62] In the
present study, the high expression of CDK1 is associated with
unfavorable OS and DFS in HCC patients.
The maker of proliferation Ki-67 expresses in all phases of the

cellular cycle over than G0 phase.
[63] MKI67 protein expression

in carcinomas has been intensively investigated, and the MKI67-
positive cell rate has been shown to be associated with clinical-

http://www.md-journal.com
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pathological features and even clinical outcomes in various
cancers, including HCC.[64] In a study of patients undergoing
surgical resection for HCC, higher levels of MKI67 expression in
tumor tissue were associated with a higher tumor grade and early
tumor recurrence.[65] Furthermore, staining for MKI67 and P53
are widely used to predict the clinical outcomes of HCC patients
after resection and liver transplantation.[66]

EZH2 is a member of the polycomb group (PcG) protein
family, which modifies transcription at the epigenetic level by
regulating histone and DNA methylation.[67,68] Lots of studies
have shown that many tumor suppressor genes are suppressed by
EZH2 in malignancies and that EZH2 dysregulation plays a
crucial role in carcinogenesis.[69,70] In our study, the expression
of EZH2 was higher in HCC tumor tissue, and the high
expression of EZH2 was associated with unfavorable OS and
DFS in HCC patients.
CDC6 plays a critical role in the initiation of DNA replication.

As cells enter the G1 phase, CDC6 binds to the origin recognition
complex and initiates the assembly of the pre-replicative complex
(pre-RC) with chromatin licensing and DNA replication factor 1
and mini-chromosome maintenance proteins.[71,72] Once phos-
phorylated by CDKs at the G1/S phase, CDC6 is released from
the pre-RC and then DNA is licensed for replication. Growing
evidence have suggested that deregulation of CDC6 may
contribute to cancer initiation and progression.[73] Overexpres-
sion of the CDC6 protein has been observed in different types of
cancer.[74] Our study reveal that the expression of CDC6 was
higher in HCC tumor tissue and the high expression of CDC6
was related to unfavorable OS and DFS in HCC patients.
TOP2A, is a key nuclease that facilitates the temporary

cleavage and ligation cycle of DNA.[75] In all forms of
topoisomerases, TOP2A is predominantly involved in proliferat-
ing cells and overexpressed in a variety of cancers (such as breast
cancer, urinary bladder cancer, and ovarian carcinoma).[75] For
HCC, bioinformatics analysis showed that overexpression of
TOP2A was common in HCC tumor tissues relative to those in
normal liver tissues.[76] Moreover, Wong et al found that the high
expression of TOP2A was correlated with microvascular
invasion, advance histological grading, chemotherapy resistance,
and poor survival rate.[77] In our study, the expression of TOP2A
was higher in HCC tumor tissue compared to normal liver tissue,
and associated with unfavorable OS and DFS in HCC patients.
A list of 29 drugs with potential therapeutic efficacy against

HCC was identified through the DGIdb database. Among the 10
hub genes, the potential gene targeting the drugs are AURKB,
EZH2, and TOP2A. In Table 3, most of the drugs were inhibitors
of AURKB, EZH2, and TOP2A. Some researchers also have
identified similar molecules, such as phenoxybenzamine, emetine,
and fendiline, which may be effective drugs against HCC.[78]

Meanwhile, there are some existing clinical trials based on these
molecules.[79,80] However, only a few of them have been used for
HCC.More studies and clinical trials were needed to identify and
explore the effective drugs for HCC. Nevertheless, the present
study might push new valuable insights into the individualized
and targeted therapy for HCC, and the identified conventional
drugs were of potential new use.
5. Conclusions

In summary, the study identified commonly changed 197 DEGs
in HCC through using integrated bioinformatics analysis,
including 54 upregulated DEGs and 143 downregulated DEGs.
10
And 10 hub genes(FOXM1, AURKA, CCNA2, CDKN3,
MKI67, EZH2, CDC6, CDK1, CCNB1, and TOP2A) might
play important roles in HCC. The expression of the hub genes
was revealed to be increased in HCC, and the overexpression
level predicted a poor prognosis. The 10 hub genes might
function as novel markers and/or targets for the early HCC
detection, prognostic judgment, and targeted therapy of HCC.
Additionally, a number of drugs targeting the hub genes were
identified, and they could be potentially utilized for the treatment
of HCC patients. This study provided a powerful basis for HCC
studies, and further experimental studies were needed.
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