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Abstract

This paper presents some recent developments in the field of wearable sensors and systems that are relevant to rehabili-

tation and provides examples of systems with evidence supporting their effectiveness for rehabilitation. A discussion of

current challenges and future developments for selected systems is followed by suggestions for future directions needed

to advance towards wider deployment of wearable sensors and systems for rehabilitation.
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Introduction

Rapidly changing demographics in the United States
and advancements in critical care treatments have led
to an increasing need for solutions that promote well-
ness management and rehabilitation outside of the clin-
ical environment. To be successful, any wellness or
rehabilitation interventions need to be multifaceted,
from addressing biological function at the cellular
level to community support at the personal level.
Providing effective rehabilitation is an increasingly
complex challenge because of the increased number of
individuals with multiple medical conditions and dis-
abilities and the subsequent reduction of access to pro-
viders.1 Recent advances in technology, including
wearable sensor systems,2 may significantly enhance
the effectiveness of rehabilitation interventions and
help to address health disparities.3

Disablement models are helpful for framing
how emerging technologies need to fit in a multifa-
ceted solution to be effective in rehabilitation inter-
ventions. Several different models define disability and
related concepts, including the Disablement Model
developed by Nagi,4 the International Classification
of Impairments, Disabilities and Handicaps,5 and its
current revision, International Classification of
Functioning, Disability and Health.6 However, they

all view overall disablement as a series of related con-
cepts describing the consequences or impact of a health
condition on a person’s body, their activities, and on
their societal participation.7 Understanding the context
of an individual’s disablement is key to optimizing the
use of recent advances in technology, including wear-
able sensor systems, for diagnostic, monitoring and
treatment applications.

In this paper, we define wearable technology as
‘‘devices that can be worn or mated with human skin
to continuously and closely monitor an individual’s
activities, without interrupting or limiting the user’s
motions’’.8 Wearable technology most commonly
refers to electronic technologies, but it can also include
products such as smart or advanced materials used in
clothing or protective equipment. There are three
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general use-cases for wearable devices: (1) prediction of
future events, (2) detection of anomalous, critical
events, and (3) diagnostic monitoring to improve
decision-making.9 This review focuses primarily on
technologies and examples for physical rehabilitation,
though this is often only part of an integrated rehabili-
tation approach that may include cognitive and psycho-
social rehabilitation.

There have been tremendous advances in the field of
wearable sensors for health monitoring, though the-
ories and evidence for using these sensors widely in
rehabilitation10 and how to best improve outcomes
through behavior change11 are lagging. Other chal-
lenges include societal issues such as expectations for
privacy and data security, technological issues such as
battery lifetime, and cultural barriers such as the con-
sumer’s perception of a stigma associated with using
medical devices for home-based clinical monitoring.12

This review aims to summarize some recent develop-
ments in the field of wearable sensors and systems rele-
vant to the field of rehabilitation and provide examples
of systems with evidence supporting their effectiveness.
Current challenges and opportunities for moving these
technologies forward for wider-use outside clinical
research settings are discussed, highlighting the technol-
ogies and evidence needed, and potential future devel-
opments that may alter current paradigms.

Current developments in wearable
technologies for rehabilitation

In this section, we present some illustrative examples of
techniques and applications of wearable technologies
and systems for rehabilitation. Virtual reality (VR) sys-
tems, functional electrical stimulation (FES), and activity
trackers are some of the current wearable technologies
being applied to rehabilitation. However, it is important
to realize that these advances are in the context of sys-
tems. As discussed by Wang et al.,13 interactive wearable
systems facilitating rehabilitation exercise programs are
often developed for specific health applications such as
patients with neurological conditions, musculoskeletal
conditions, chronic pulmonary impairment, or with
pain. Most systems are used for monitoring and provid-
ing rapid user feedback on posture and extremity move-
ments, and are not networked, smart, or designed for
continuous use. Designing these devices as non-obtrusive
and intuitive systems for longer-term home-use and
connecting these devices to internet services may dramat-
ically widen their range of applications.

Advanced wearable sensors

To date, accelerometers and inertial measurement units
are the most frequently used sensors in wearable

systems, and provide measurements that can be used
to track range of motion and performance.14 A large
number of studies using these sensors have focused on
upper body rehabilitation following stroke, and there is
some clinical evidence of small improvements, however
few randomized clinical trials have been carried out.13

Increasingly, these systems are interactive and provide
more than basic feedback and require less setup and
monitoring time by healthcare professionals. Under
development are a wider range of wearable sensor sys-
tems that may assist in home-based rehabilitation,
including body sensor networks, smart clothing, and
wearable cameras that provide complementary infor-
mation to these movement sensors.

Body-worn sensors now come in many shapes and
sizes, including chest-worn heart-monitoring straps,
headbands for brain-activity measuring electroenceph-
alograms (EEGs), posture-detecting monitors, baby
and pregnancy monitors for measuring vitals and
movement, and electronic patches.15 These sensors
can provide insights into heart rate, respiratory rate,
oxygen saturation and blood pressure, and can detect
vital sign abnormalities that provide important context-
ual information or provide feedback to the wearers. In
a study of 16 cardiac rehabilitation patients, a suite of
sensors tracking body movement was compared against
vital sign measures to track energy expenditure during
low-to-moderate intensity daily activities to develop a
predictive model for efficacy of beta-blockers.16 The
availability of consumer-grade devices with vital sen-
sors, such as smart watches17 and chest straps18 has
significantly reduced the barrier to incorporation of
these sensors in studies. However, challenges exist
with the calibration, accuracy, and sensitivity of these
devices for medical applications.

Smart clothing can be considered the ultimate wear-
able system, as it can integrate into everyday life as part
of a garment and/or footwear, and track or measure
physiological, contextual or biometric attributes. For
example, the Neofect’s RAPAEL Smart Glove19

allows people to rehabilitate their hands by wearing a
glove and using accompanying technology. This can be
used to recover from injuries, or to help with issues that
could arise from adrenoleukodystrophy or other neuro-
logical disorders. In a randomized clinical trial using a
four-week training program with the Smart Glove,
both Fugl–Meyer score and Jebsen–Taylor test scores
were improved and retained one month after training
completion.

Wearable cameras have been developed for training
clinicians and for remote rehabilitation consultation.
Chen et al.20 incorporated wearable cameras and
motion sensors in a rehabilitation exercise assessment
for knee osteoarthritis that enables the patient to self-
manage rehabilitation progress. Accuracy for exercise
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type classification was 97% and for exercise posture
identification was 88%, demonstrating feasibility of
the system for rehabilitation assessment. Emerging
technologies like 360� vision, VR, artificial intelligence,
deep learning, and computer vision will enhance the
wearable camera experience, expanding the devices’
use cases and applications.

Wearable sensor systems provide the opportunity to
not only evaluate rehabilitation as it occurs during
daily life activities but also to provide timely, meaning-
ful feedback to patients and their therapists. Such feed-
back can guide and motivate progressive skills practice
aimed at maximizing the recovery of motor function.
However, a number of challenges exist related to the
accuracy and reproducibility of these sensors, design
optimization, system integration, consideration of
user experience, the need for user education, and secur-
ing reimbursement.2 Underlying these challenges is the
need for stronger evidence on the longer-term effective-
ness of these sensor technologies for rehabilitation in
both clinical and home settings.

Virtual and augmented reality systems

Augmented reality (AR) headsets like Google Glass
and mixed reality systems such as the HoloLens, have
been deployed in several industrial and enterprise set-
tings, and there is growing interest in their use for
healthcare applications. These systems have become
increasingly complex, moving from overlaying digital
information towards positional tracking and depth sen-
sors to provide a more immersive experience, and
enabling interactions with holographic objects.
Increasing numbers of studies have shown positive
rehabilitation outcomes using the combination of
sensing technology and interactive gaming or VR envir-
onments.21,22 Munroe et al.23 designed an AR game to
provide home-based neurorehabilitation for children
with cerebral palsy. The system combines electromyog-
raphy electrodes and accelerometers in an armband
to provide data. A trained classifier determines
whether the target neuromotor performance of
the arm is achieved and the user moves a virtual
object through therapist-prescribed motions. In add-
ition, VR can help patients undergoing physical
rehabilitation as they imagine themselves performing
slow, simple movements while immersed. VR immer-
sion, coupled with the patient’s own visualization, is
believed to create brain patterns closer to actual
motor skills than visualization alone. This gives the
patient a huge advantage in healing. In a blinded ran-
domized controlled trial studying 59 stroke survivors,
McEwen et al.24 found that VR exercise intervention
for inpatient stroke rehabilitation improved mobility-
related outcomes.

There is significant potential for AR and VR systems
to enhance rehabilitation programs and to provide real-
time feedback to the patient and to their therapist.
However, there is limited evidence so far for the long-
term efficacy of these systems and whether they offer
sustained improvement over traditional approaches.
On the other hand, a recent review by Massetti
et al.25 would suggest that VR interventions yielded
improvement in motor functions, greater community
participation, and improved psychological and cogni-
tive function. As the technology of AR/VR systems
continues to improve, additional clinical studies are
needed to generate the evidence base demonstrating
the utility and efficacy of such systems for clinical
care and research in rehabilitation.26

Functional electrical stimulation

Traditionally, functional electrical stimulation (FES) or
neuromuscular electrical stimulators have been utilized
predominantly for stimulating lower and upper extrem-
ity functions. For many years, FES systems included a
battery-powered stimulator connected with lead wires
to the stimulating electrodes and a wired external trig-
ger to synchronize muscle contraction with the func-
tional activity.27 More recently, academic researchers
and commercial companies are developing wearable,
wireless FES systems.28–31 These systems are self-admi-
nistered and controlled by the patient. Having low pro-
file, they can be worn comfortably under clothing while
functioning in the home and the community.

Current research approaches to improve recovery of
connectivity of the brain’s motor network include
application of iterative algorithms32–35 and closed-
loop control of the desired level of the electrically
induced contraction of the target muscles.36–39

Appropriate closed-loop control design should enable
each patient to use their internal sensory-motor control
system and add FES only to complete whatever motion
the internal control failed to achieve, while walking or
using the paretic upper extremity. Examples of research
efforts to achieve a reliable, cost-effective, and durable
closed-loop control can be found mostly in engineering
publications and are still considered ‘‘proof of concept’’
or initial efficacy investigations.40–42 Attempts to
improve the resolution of FES-induced muscle contrac-
tion by using multiplexers and arrays of small elec-
trodes34,43 or manipulation of pulse parameters44 have
yielded some interesting discoveries and electronic
innovations. However, these research efforts have
failed so far to yield a viable commercial product in
rehabilitation medicine.

Using telemedicine and cloud data storage, research-
ers have successfully demonstrated continuous storage
of patients’ performance using FES combined with a
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motorized cycling system, accumulation of training
doses, and provision of uninterrupted communication
with clinicians.45 However, so far, most FES systems
are configured with very limited storage of performance
and compliance. The need to implement FES through-
out the continuum of care, from critical-care units to
home use, presents another key challenge for both
researchers and clinicians. Increasing home-based use
will need new algorithms capable of identifying and
storing essential data of performance, such as clinical
evidence of functional recovery, plateau, or regression,
compliance data, and online communication with clin-
icians. However, with the rapid development of similar
wearable systems, such FES systems are likely to be
available soon.

Current challenges and opportunities

A generally accepted assumption has been that more
data, and in particular data about daily life, will
improve the accuracy and reproducibility of healthcare
models, and enable more efficient remote monitoring.
It is presumed that this will, in turn, improve our ability
to delivery cost-efficient and effective care. However, in
practice, actionable information from wearable devices
is plagued by a number of issues. These include
concerns related to quality, battery lifetime, lack of
contextual information, privacy and security concerns,
as well as variable and proprietary algorithms for anno-
tating data streams. Additionally, many systems are
developed for the fitness market, rather than older
adults and rehabilitation.

The mix of research prototype devices, consumer-
grade, and clinical-grade wearable systems introduces
many challenges in determining efficacy. As a result,
there are concerns about validation, standardization,
and interoperability. When mixed with usability opti-
mized for early-adopters of technology, these concerns
provide a significant barrier for widespread adoption
and utilization of wearables for active living manage-
ment and as a routine part of rehabilitation.

This mix also introduces additional barriers such as
rapid technology obsolescence, use of proprietary data
processing algorithms and formats, and the ability to
scale technologies for larger cohorts and longer studies.
All these challenges slow progress towards generating a
rich evidence base for the effectiveness of these technol-
ogies for rehabilitation. Below we discuss three of these
challenges, followed by a brief description of three
potential areas of opportunity.

Power consumption

While wearable sensor systems can lead to ubiquitous
and personalized rehabilitation service for users, the

need for size reduction to ensure portability can
impose severe restrictions on battery capacity. Energy
harvesting or scavenging has been considered as one
approach to ensure that the useful features of a wear-
able sensor are not outweighed by the battery cost, size,
and weight. However, energy harvesting generally
suffers from low power output, making it a non-ideal
proposition to address the power requirement of the
wearable sensor components such as the accelerometer.
It has been shown that the power requirement of the
accelerometer ranges between 0.35 and 5 times the har-
vested kinetic power for detecting common human
activities with high accuracy.46

Khalifa et al.47 have shown that it may be possible to
infer human activities directly from the energy-harvest-
ing pattern, which would eliminate the need to use an
accelerometer. Their system uses kinetic energy harvest-
ing and leverages the fact that different human activities
produce different amount of kinetic energy that can be
leveraged for activity recognition. Initial tests have
shown that even though the new system (‘‘HARKE
or HAR Kinetic Energy’’) consumes 72% less energy
than the conventional accelerometer-based system, it
can classify human activities as accurately as the accel-
erometer-based human activity recognition (HAR).
Advances in energy-harvesting hardware have created
an opportunity for realizing battery-free wearables for
continuous and pervasive HAR, though these advances
have yet to be realized in widely available wearable
systems.

Measurement and validation

The calibration and validation of wearable technologies
is critical to obtaining accurate data from them.48

However, the field is still developing a common lan-
guage for measurement and evaluation of devices to
define performance, safety, and durability; this has con-
tributed to the challenges of rigorous calibration and
validation. For example, to establish the performance
of different devices in step counting, a well-defined and
reproducible system that replicates human walking is
needed. Additionally, access to the raw and processed
data is required to help determine whether variations
are due to hardware differences, such as accelerometers,
or due to the post-processing algorithms. However,
these necessarily narrow approaches to calibration do
not capture the complexity of daily life and the vari-
ation in gait and mobility. In general, there is reason-
able intra-class correlation for wearable devices,49

though there are limitations that have been highlighted
in a number of recent studies. For example, one study
noted that readings did not correlate with intensity of
exercise,50 and another noted that recorded steps for
some wearables fell to zero for speeds of 0.3–0.5 m/s.51
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Ethical and privacy issues

A large range of technology companies and start-up
ventures have sprung up to exploit data from sensors
such as accelerometers, gyroscopes, and pedometers,
breath sensing, heart-rate monitors, and calorie track-
ers for the potential commercial value. However, this
raises the delicate question of data ownership and
ethical aspects of data usage and interpretation.
Another aspect related to privacy is data leakage
about non-health-related issues. Spagnolli et al.52

administered a questionnaire including key dimensions
of the Technology Acceptance Model53,54 to 110
respondents (33 women). This questionnaire referenced
three devices (smart shirt, portable EEG system, and
eye-tracking glasses) and six usage scenarios (danger-
ous work, heavy work, sport, home care, research, and
retail). The study was able to identify several variables
as good predictors of device acceptance, such as per-
ceived usefulness, perceived comfort/pleasantness, facil-
itating conditions, and attitude towards technology.
The study also found that while respondents would
share information about their stress level, mental
states, and cognitive performance with physician,
psychologist, and partner, they were more comfortable
sharing their interests and preferences with friends and
partner. Additionally, non-experts seemed more con-
cerned about privacy than experts. Li et al.55 have
shown that in the privacy context, people make deci-
sions about adopting healthcare wearable devices based
on perceived risk–benefit ratios. Their study of 333
actual users of healthcare wearable devices showed
that people use different lenses to evaluate perceived
benefits and perceived risks. Thus, while the perceived
benefits were determined by perceived informativeness
and functional congruence, the perceived privacy risks
were informed by health information sensitivity,
personal innovativeness, legislative protection, and per-
ceived prestige.

Human-centered design

An area of opportunity is human-centered design.
Designing and developing persuasive, seamless technol-
ogies that engage users and reinforce positive behavior
on a daily basis is very challenging because of the
diverse range of user capabilities, motivations, and
desired outcomes.56,57 There is growing interest and
published examples of acceptance and usability studies.
For example, there are studies of Parkinson’s
patients,58 fall detection, and prediction in the home-
setting,59 vibration feedback of gait when using lower
limb prosthetics,60 and feedback on knee habilitation
exercises.61 There is a need for stronger human-
centered design approaches, developing interactive

systems by focusing on user needs and requirements
and applying best practices in usability and ergonomics.
If implemented properly, this has the potential to
significantly improve satisfaction and sustained use of
wearable technologies beyond initial short, incentivized
studies.

Personalized models

Human-centered design is focused on developing
systems that take into account important factors for
definable groups of users. In contrast, personalized
models consider the many nuances of the behaviors,
needs, and constraints of individual human beings.
Personalized systems and models can potentially
yield higher rates of adoption of wearable systems,
but there are many variables that need to be con-
sidered. The rapid rise of a smart and connected
health environment including wearable devices, elec-
tronic health records, and an integrated care environ-
ment has laid the groundwork for having personalized
prognostic and predictive models of health to inform
wellness and treatment planning. However, develop-
ment of accurate, personalized forecasting models
has been significantly hindered by the degree of
inter-individual variability, privacy and security con-
cerns, and inability to efficiently scale these models to
a community or national level. Currently, the focus of
most personalized models is on understanding and
promoting positive health behaviors while retaining
patient engagement. The intersection between these
behavior changes models and persuasive technology
design strategies is particularly of interest for wearable
devices.62 Personalized models may also assist with
other aspects of wearable technologies, including a
better understanding of intention,63 and how to imple-
ment and scale-up the computational framework.64

Collocated interactions

As wearable devices proliferate among groups of
individuals, as well as per individual, there has been a
growing need to understand interactions, both from a
social perspective and from the commercial utilization
perspective. Research activities have focused over the
last decade on studying scenarios ranging from individ-
ual to multiuser experiences and interactions.65–68

According to Lucero et al.69 while early research in
collocated interactions was centered on device develop-
ment, the current research has focused more on the
experience. They point to multi-player pervasive
games such as Blast theory’s ‘‘Can You See Me
Now?’’70 where there is interaction between players in
the virtual world and runners in the real world. There is
high interactivity with mobile devices, and the gaming
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platform enables a unique, embedded experience.
Lucero et al.69 have raised the interesting idea of
using proxemics, research focused on the culturally
dependent use of space and physical measures to
mediate and comprehend interpersonal interactions,71

for supporting mobile collocated interactions.
Such a vision would enable wearables to not only be
aware of individuals, but also be tuned to interpersonal
distances people naturally use in their social
interactions.

Future developments

Beyond these expected areas of opportunity, two
future developments may disrupt the current paradigm
for using wearables for rehabilitation. There is signifi-
cant interest in developing smart wearables, where the
loop is closed and automated feedback is given to the
wearer to mitigate risky behavior, reinforce learning, or
enable shared decision-making. These systems will
require a high degree of sensitivity and specificity for
each individual and will need to operate on models with
a high degree of predictive power. These systems
will need to collect much more information about the
local environment, the user’s psychological and
physiological state and track potentially invasive
information such as geolocation and social interactions.
The rapid development of integrated data infrastruc-
tures and complex algorithms running on multidimen-
sional datasets are enabling tentative exploration of
learning healthcare systems. The next decade should
show continued development of hybrid closed loop
systems providing complex feedback to someone
undergoing daily rehabilitation, automatically trigger
interventions in an independent living environment,
or enable shared decision-making in a managed care
facility.

A second area of potential disruption may come
through citizen science projects, where communities
and individuals hack devices and delve more deeply
into their data. Factors influencing this include data
portability standards such as the HL7’s Fast
Healthcare Interoperability Resource, rise of patient-
targeted websites on the internet, and the emergence
of disease-specific communities where individuals
share their experiences and data. All these factors
raise the potential for sharing and analysis of wearable
data outside the clinical setting. The extent of infor-
mation sharing on PatientsLikeMe72 and the emer-
gence of do-it-yourself community projects such as
Nightscout and the Open Artificial Pancreas73 high-
light the potential for community-driven research pro-
jects to influence future research directions in
rehabilitation research.

Conclusions

The evidence base for the efficacy of wearables is
expanding. However, this evidence is skewed towards
short-term physical rehabilitation training, neuro-
logical disorders, and rehabilitation after extremity
injuries and focused on secondary endpoints rather
than long-term outcomes. This evidence is also
skewed towards rehabilitation in a care setting and
involving a rehabilitation specialist. There is a need to
expand this evidence base by carrying out more efficacy
studies to support the longer-term use of wearable sen-
sors in a home-setting using self-guided approaches.

To advance our understanding of the use of these
systems in rehabilitation, further research and develop-
ment is needed to address issues of power consumption,
standardization, interoperability, measurement valid-
ity, privacy, and confidentiality. There are many proto-
type research systems tackling these issues, and there is
wide availability of clinical-grade, and consumer-grade,
wearables. However, the reliability and validity of
research and consumer-grade systems needs to be
more firmly established to support the conclusions
drawn from studies using these devices.

For wider-spread adoption of wearables for rehabili-
tation, understanding of end-use must go hand-in-hand
with technology development. Routine and longer-term
use of wearables introduces many challenges that are
not addressed in short clinical studies, such as durabil-
ity, power consumption, comfort and usability.
Therefore, to advance the use of wearable systems for
rehabilitation outside of the clinical setting, a system-
atic and integrated approach is needed to develop user-
centric systems for a wide range of rehabilitation
applications. Such an approach will motivate and
maintain engagement within the user community, and
demonstrate clear long-term health benefits.
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