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Transcription addiction: can we garner the Yin and
Yang functions of E2F1 for cancer therapy?

P Meng1 and R Ghosh*,1,2,3,4

Classically, as a transcription factor family, the E2Fs are known to regulate the expression of various genes whose products are
involved in a multitude of biological functions, many of which are deregulated in diseases including cancers. E2F is deregulated
and hyperactive in most human cancers with context dependent, dichotomous and contradictory roles in almost all cancers.
Cancer cells have an insatiable demand for transcription to ensure that gene products are available to sustain various biological
processes that support their rapid growth and survival. In this context, cutting-off hyperactivity of transcription factors that
support transcription dependence could be a valuable therapeutic strategy. However, one of the greatest challenges of targeting
a transcription factor is the global effects on non-cancerous cells given that they control cellular functions in general. Recently,
there is growing realization regarding the possibility to target the oncogenic activation of transcription factors to modulate
transcription addiction without affecting the normal activity required for cell functions. In this review, we used E2F1 as a
prototype transcription factor to address transcription factor activity in cancer cell functions. We focused on melanoma
considering that E2F1 executes critical functions in response to UV, an etiological factor of cutaneous melanoma and lies
immediately downstream of the CDKN2A/pRb axis, which is frequently deregulated in melanoma. Further, activation of E2F1 in
melanomas can also occur independent of loss of CDKN2A. Given its activated status and the ability to transcriptionally control a
plethora of genes involved in regulating melanoma development and progression, we review the current literature on its
differential role in controlling signaling pathways involved in melanoma as well as therapeutic resistance, and discuss the
practical value of weaning melanoma cells from E2F1-mediated transcription dependence for melanoma management.
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Facts

� Cancer cells are addicted to transcription to maintain
enhanced survival needs

� E2F1 transcriptionally regulates many biological functions
deregulated in cancers

� E2F1’s role in survival and death is context dependent
� Deregulation of CDKN2A/pRb axis highlights the

importance of E2F1 in melanoma

Open Questions

� Are the biological functions of a transcription factor different
in normal versus cancer cells?

� Is it possible to realistically tease out oncogenic function
from the normal function of transcription factors?

� Is it possible to therapeutically target transcription factors?

E2F1’s Early History and Role in Cancer

In 1986, E2F was identified as a cellular transcription activator
binding to adenovirus E2 promoter.1 Since then, eight
mammalian family members have been identified. On the
basis of their ability to regulate downstream target genes, they
are classified into two groups, activators (E2F1-3) or
repressors (E2F4-8; see Figure 1).2 As the archetype
member, E2F1 is the most thoroughly investigated. The
ability to promote cell cycle progression through timely
regulation of genes required for DNA synthesis at the G1/S
boundary, and contribute to apoptosis induction by cooperat-
ing with p53 or p73 makes E2F1 a special member of this
family.3 E2F1 has typical domains for its transcription factor
activity including, DNA-binding domain (DBD) next to the N
terminus, and transactivation domain (TAD) located in the C
terminus (shown in Figure 1). Between these two domains is
the homo–hetero dimerization domain, which is important for
its dimerization with DNA-binding protein, DP1. In addition,
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there are distinct domains responsible for its regulation and
degradation such as the cyclin A binding site near the nuclear
localization signal and the pRb binding domain juxtaposed
with the p14ARF binding region, both of which are in the TAD.
Binding of the former prevents binding of the latter and
consequential degradation.4 E2F1 executes most of its
biological functions through its transcription activator ability.
E2F1 is known to upregulate several genes involved in cell
cycle, DNA synthesis and replication, checkpoint control,
DNA damage and repair, apoptosis, autophagy, self-renewal,
development and differentiation, and so on.3,5–9 (shown in
Figure 2). However, E2F1 also has transcription-independent
activities that facilitate DNA repair or induce autophagy and
apoptosis.10–12 E2F1 knockout animals develop normally,
display testicular atrophy, exocrine gland dysplasia, and
exhibit maturation stage defect in thymocyte apoptosis
suggesting a role for E2F1 in apoptosis.13,14 The role of
E2F1 in recruiting other transcription factors and co-factors
has not been thoroughly investigated and certainly deserves
more attention, which is more than likely to increase the
biological complexity of E2F1.

E2F1 have been found to be deregulated in many types of
cancers (see Table 1), including hepatocellular carcinoma,
non-small-cell lung carcinoma (NSCLC), cervical cancer,
glioblastoma, pancreatic cancer, renal, breast, and ovarian
cancer.2 E2F1 has contradictory roles in cancer. For example,
E2F1 knockout mice develop reproductive tract sarcomas,
lung adenocarcinomas, and lymphomas.13 Contrastingly, the
upregulation of E2F1 has been associated with inactivation of
the tumor suppressor Von Hippel–Lindau (VHL) gene, and
key mutations underlying renal cancer.15 Although VHL may
regulate E2F1 in HIF-dependent and -independent ways,15

E2F1 overexpression in high-grade clear cell renal cell
carcinoma tissues is known to contribute to activation of
matrix metalloproteinase (MMP) 2 and MMP9, which sug-
gests a role in tumor progression.16 Although high expression
of E2F1 in VHL-defective renal cancer is associated with

senescence and has been suggested to be protective in the
context of renal cancer, caution is warranted in designating
E2F1 as oncogene or tumor suppressor gene for which clearly
more extensive investigation is required.17 In lung cancer,
highly significant association between E2F1 and the ATP-
binding cassette sub-family G member 2 has been found
implying that E2F1 could temper response to chemo-
therapeutic drugs.18 Interestingly, E2F1 overexpression is
frequently found in NSCLC and E2F1-inducible miR-449 has a
tumor suppressive role19 although, there is no correlation
between E2F1 protein expression and clinical outcome
including progression-free survival.20 Considering the
double-edged role of E2F1 in regulating cellular growth and
death homeostasis, the actual effects that E2F1 may have on
human malignancies can be difficult to predict.

Post-Translational Modifications of E2F1 Controls its
Activities

Phosphorylation. Cells regulate protein functions and
transmit signals through transient control of phosphoryla-
tion/dephosphorylation. Published studies show that regula-
tion of E2F1 availability and activity are highly dependent on
multiple post-translational modifications. As shown in
Figure 3, progression through the cell cycle is dependent
on E2F1 status and fate, which are intimately tied to cell
cycle progression. The motifs and their corresponding
modifications control E2F1’s fate perfectly in normal cells.
Thus, after pRb is hyperphosphorylated, phosphorylation of
E2F1 at Serine-332 and -337 by cyclin D/cdk4/6 complex at
the G1/S transition point increases E2F1 stability and
prevents pRb binding. Sequential acetylation of E2F1 at
Lysine-117, 120, and 125 further stabilizes E2F1 and
increases DNA-binding ability of E2F1/DP heterodimer. In
late S phase, cdk2 recruited by cyclin A phosphorylates E2F1
at Serine-375, which causes the release of DP protein and
reduces DNA-binding ability of E2F1 itself. This process
facilitates the binding of p14ARF to the carboxyl terminus of
E2F1 and promotes subsequent binding of the ubiquitin
protein ligase p45skp2 to the amino terminus, which leads to
the degradation of E2F1 in S–G2 phase.4 The importance of
these post-translational modification sites is also reflected in
regulating E2F1’s fate under stress. For example, in
response to DNA damage, ATM/ATR kinases phosphorylate
E2F1 at Serine-31, which allows E2F1 accumulation
probably by inhibiting binding and or degradation through
p45skp2. During this process, 14-3-3t, a phospho-serine-
binding protein, may have an important role. 14-3-3t has
been found to interact with ATM-phosphorylated E2F1 during
DNA damage to inhibit its ubiquitination.21 Besides, it
regulates the expression of several E2F1 apoptotic targets,
including p73, Apaf-1, and caspases.22 E2F1 is also
phosphorylated by CHK2 at serine-364, which causes
protein stabilization and transcriptional activation.23

Considering that ATM can be transcriptionally regulated by
E2F1 leading to CHK2 phosphorylation, the ATM-CHK2-
E2F1 axis may form a positive feedback loop in response to
genotoxic stress and regulate apoptosis in damaged
cells.24,25 E2F1 functions in a positive feedback loop by
binding to the promoter of the phosphatase inhibitor, CIP2A

Figure 1 Functional domains of E2F transcription factor family. On the basis of
their ability to regulate downstream target genes, E2F family members are classified
into two groups, activators (E2F1-3a) or repressors (E2F3b-8). As transcription
factors, they all have the DBD, NLS, DD (dimerization domain), TAD, NES (nuclear
exclusion signal; modified from Chen et al.2)
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that inhibits E2F1’s phosphorylation on serine-364 to inhibit
p53-mediated senescence.26

Other modifications. Acetylation-mediated regulation of
E2F1 is complicated as E2F1 has been reported to interact

with multiple histone acetyltransferases (HATs), including
PCAF, CBP/p300, Tip60, and GCN5 to execute different
roles.27–30 SIRT1/PCAF interaction controls the E2F1/p73
apoptotic pathway in response to DNA damage.31 Depletion
of CBP and p300 inhibits binding of E2F1 to BRCA1 and
RAD51 promoters, key genes of homologous recombination.
Association of E2F1 with Tip60 or GCN5 is involved in
nucleotide excision repair.32,33 Although in most cases,
acetylation of E2F1 by HATs is related to apoptosis or
DNA repair, it is also involved in the angiogenic process
through VEGF stimulation,34 which further increases the
complexity of the roles of E2F1. Besides phosphorylation and
acetylation, studies show that E2F1 is epigenetically regu-
lated through methylation. Lysine-185 was the first methyla-
tion site found on E2F1, which is methylated by SET9 and
demethylated by LSD1.35 Methylation destabilizes E2F1
during DNA damage and prevents activation of its proapop-
totic target p73, whereas demethylation has the opposite
role.35 Work by Cho et al.36 showed that methylation of
arginine-111 and 113 by protein arginine methyltransferase 5
(PRMT5) reduces E2F1 stability. In PRMT5-depleted cells,
there is enhanced E2F1 and apoptosis, and decreased
growth.36 Another antagonistic methylation site, arginine-
109, methylated by PRMT1, contributes to increased protein
half-life and E2F1-dependent apoptosis.37

Figure 2 E2F1 regulates several biological functions. E2F1 is known to
upregulate many genes involved in cell cycle, DNA synthesis and replication,
checkpoint control, DNA damage and repair, apoptosis, autophagy, self-renewal,
development and differentiation, and so on.3,5–9 E2F1 also represses antiapoptotic
genes or survival pathways to induce apoptosis. Downregulation of E2F1 is related
to senescence considering its role in promoting cell cycle progression

Table 1 Differential expression and levels of E2F1 in various cancers are associated with different functions and outcomes

Human cancer E2F1 expression Biological functions

Bladder cancer Controversial in publications Low E2F1 reactivity in tumor caused increased risk of progression to
metastasis;84 expression correlated with proliferation in superficial
TCCs85

Breast cancer Increase85–87 Poor survival and prognostic indicator;85–87 overexpression induced
apoptosis in human breast cancer cells88

Cervical cancer Increase; gene amplification89–91 Aberrant cell cycle regulation;92 mediates overexpression of emerging
markers for detection of high-grade cervical disease93 mediates
miRNAs in response to HPV E794

Colon cancer Decrease2,11

overexpression in lung and liver
metastases of human colon cancer95

Inversely associated with tumor growth;85,96 upregulates c-Myc and
p14ARF and induces apoptosis in colon cancer cells97

Esophageal cancer Increase; gene amplification98 Poor survival;99,100 positively associated with cell proliferation but not
apoptosis;101 however, positively correlates with apoptosis and
inversely correlates with cell proliferation in adenocarcinomas of
Barrett esophagus102

Gastric adenocarcinoma Increase103–105

Higher expression in early stage I–II
and lower expression in later
stages106

Adenovirus-mediated E2F1 overexpression induces apoptosis;107

overexpression suppresses tumor cell proliferation108,109

GI stromal cancer Increase110 Increased cell proliferation and adverse prognosis110,111

Glioblastoma Increase112 Overexpression increases chemosensitivity113

Hepatocellular carcinoma (HCC) Increase; gene amplification114–116 Correlated with enhanced tumor cell apoptosis;114 tumor-promoting
roles in HCC cell lines or mouse models117–121

Lung cancerNSCLC Increase;122,123 gene amplification124 Growth-promoting factor associated with poor prognosis;125 over-
expression induces apoptosis126

SCLC Increase100,127 Involved in tumorigenesis by activation of EZH2 oncogene EZH2128–130

Melanoma Increase; gene amplification42,47 Overexpression induces apoptosis and growth inhibition;73,131–133

induces autophagy;11 controls proliferation by regulating AKT phos-
phorylation;66 associated with progression and metastasis50

Oral SCC Increase134 Associated with increased overall survival135

Ovarian cancer Increase136–138 Overexpression induces apoptosis in human ovarian cancer cells;88

mediates cell cycle deregulation in high-grade serous ovarian
carcinomas;136 determines balance between proliferation and cell
death139

Pancreatic ductal carcinoma Increase140 Tumor promoting and poor survival;59 overexpression induces
apoptosis and increases chemosensitivity in pancreatic cancer
cells60,61

E2F1 and transcription addiction
P Meng and R Ghosh

3

Cell Death and Disease



CrossTalk between post-translational modifications.
Multiple post-translational modification sites have been
observed, yet there are still many unanswered questions
regarding the precise roles of these modifications in
controlling the contradicting functions of E2F1. First, is there
crosstalk between these sites? Phosphorylation by ATM/
ATR and Chk1/Chk2 kinases, together with acetylation, has
a positive role in E2F1 stability and activity under DNA
damage conditions. Methylation at lysine-185 inhibits acet-
ylation and phosphorylation at distant sites and stimulates
ubiquitination and subsequent degradation.35 Interestingly,
pre-acetylated or pre-phosphorylated E2F1 is poorly methy-
lated, suggesting that the cooperation between phosphoryla-
tion and acetylation may exclude lysine methylation. Second,
how does crosstalk between the modification sites control
E2F1’s biological role? The competition between PRMT1
and PRMT5 for E2F1 methylation may provide some
answers. Although PRMT1 methylation increases E2F1
half-life and augments the expression of E2F1-dependent
proapoptotic genes, PRMT5 methylation inhibits expression
and favors proliferation. In cells with DNA damage, increased
PRMT1 binding and methylation hinders the binding and
methylation by PRMT5. Accordingly, apoptosis is induced.
Cyclin A binding prevents PRMT1 binding but not PRMT5.
The latter methylates E2F1 at arginine-111 and 113, which
further affects the accessibility of PRMT1. Therefore, cells
are directed to enter the proliferative cycle. This methylation
mark is recognized by the Tudor domain protein p100-TSN,
which further suppresses apoptosis.37 Collectively, these
lines of evidence partly explain the relevance of post-
translational modification and switch of E2F1’s activity
towards regulating cell survival or apoptosis. However,
further studies including in vivo modeling will be required to
test whether these cell culture observations can be validated.
Moreover, whether these post-translational modification sites
have any clinical relevance is an intriguing question.
Although several studies have examined the clinical rele-
vance of E2F1 through assessment of message and protein

levels of human tumor samples, there is a dearth of
information regarding the post-translational modification
status in clinical samples. Given the importance of post-
translational modification in regulating E2F1’s activity
and biological effects, it is important that future studies
examine the clinical relevance of various post-translational
modifications of E2F1.

E2F1 in Melanoma

Malignant melanoma is infamous for its aggressiveness, high
metastatic potential, and resistance to standard cancer
therapies like radiation or chemotherapy.38 Although histori-
cally speaking, E2F1 has been associated with oncogenic
function in melanoma, more recent evidence suggests that it
is more complex in that it can differentially promote or inhibit
biological functions associated with primary or metastatic
phenotype. Loss of E2F1 and E2F2 expression is a tumor
suppressive mechanism in melanocytes as it leads to with-
drawal from cell cycle and terminal differentiation. This occurs
more effectively in cells with eumelanin than cells with
pheomelanin.39 Increased CDK inhibitor activity and the
resulting loss of E2F1 function is a characteristic melanocyte
senescence program that is induced by cAMP pathway.40,41

High level of C-MYC and the associated low level of the
phosphatase PP2A protein in human melanomas is believed
to suppress oncogene-induced senescence.42 These obser-
vations implicate high levels of E2F1 in oncogene-induced
senescence. However as a direct transcriptional target of
C-MYC, E2F1 has a negative regulatory role in hTERT
regulation and senescence induction.43–45 The Halaban
group reported that high E2F1 level in melanoma cells was
associated with a fivefold higher DNA-binding activity com-
pared with melanocytes in culture.46 Increased expression of
E2F1 in melanoma has been attributed to increased gene
copy number of E2F1 in malignant melanoma.47 Given that
oncogenic addiction of melanoma cells to MDM2 is dependent
on E2F1, it has been suggested to serve as a biomarker to
stratify patients who may receive p53-MDM2 inhibitors for
treatment.48 E2F1 regulates melanoma cell survival genes
such as ASK/Dbf4.49 E2F1 also contributes to melanoma
metastasis through the induction of epidermal growth factor
receptor.50 Although, E2F1 is a transcription factor and its
exact role in melanoma is not fully understood yet, there is
evidence of complicated crosstalk between E2F1 and several
deregulated pathways in melanoma. These findings are
suggestive of the important role E2F1 may have in regulating
disease progression and drug resistance as it relates to
malignant melanoma. From the known interactions between
E2F1 and various signaling pathways (Figure 4), it is not
difficult to see that the ability of E2F1 to control a multitude of
biological processes makes its role in cancer cells rather
complex.

Interaction with Ras–Raf–MEK–ERK signaling. The high
prevalence of BRAF and NRAS mutations indicates the
importance of Ras–Raf–MEK–ERK pathway in melanoma.
ERK is believed to lie upstream of pRb-E2F1 as ERK1/2 is
known to upregulate the expression of cyclin D1,51 which
induces the activation of CDK4/6 and subsequently

Figure 3 Involvement of E2F1 in cell cycle progression. After pRb is
hyperphosphorylated, phosphorylation of E2F1 at Serine-332 and -337 by cyclin
D/cdk4/6 complex at the G1/S transition point increases the stability of E2F1 and
prevents pRb binding. Sequential acetylation of E2F1 at Lysine-117, -120, and -125
sites further stabilizes E2F1 and increases DNA-binding ability of E2F1/DP
heterodimer. In late S phase, cdk2 recruited by cyclin A phosphorylates E2F1 at
Serine-375, which causes the release of DP protein and reduces DNA-binding
ability of E2F1 itself. This process facilitates the binding of p14ARF to the carboxyl
terminus of E2F1 and promotes subsequent binding of p45skp2 to the amino
terminus and leads to the degradation of E2F1 in S–G2 phase4
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phosphorylates pRb to release E2F1. Inhibition of MAPK/
ERK signaling caused the activation of pRb tumor suppres-
sive activity and suppressed E2F1 and E2F3 activity
suggesting the influence of this signaling on E2F1 activity
in melanoma cells.52 The crosstalk between ERKs and E2F1
is not unidirectional. E2F1 also regulates ERK activation via
a transcriptional mechanism. E2F1-mediated transcription of
RasGRP1 and RasGEF1B positively affects Ras activity.
Thus E2F1 induces the Ras–Raf–MEK–ERK pathway.
Altogether, the evidence thus far indicates an E2F1-ERK
positive feedback loop that increases both ERK signaling and
E2F1 activity.53 This also suggests the existence of an
alliance between E2F1 and ERK in promoting melanoma
progression considering that there is overexpression of E2F1
and activated ERK signaling in malignant melanoma. More-
over, p73 a downstream target of E2F1 is also reported to
form a positive feedback loop with oncogenic Ras. Sustained
activation of Ras contributes to the stabilization of p73, which
in turn ensures continuous activation of the MAPK cas-
cade.54 Deciphering the underlying mechanism could lead to

the development of strategies to overcome E2F1-mediated
inhibition of apoptosis and drug resistance.

Interaction with PI3K–AKT signaling. The PI3K–AKT
signaling pathway is an emerging therapeutic target in
malignant melanoma. Loss of heterozygosity of PTEN has
been reported in approximately 30% of human melanomas.55

However, PTEN loss is not the only reason for activation of
this signaling. Oncoprotein Ras activates both the MAPK and
PI3K–AKT pathways. Other activating mutations in mela-
noma including c-KIT, KIT receptors, ERBB456 may also
contribute to activated signaling through this pathway.
Studies using cultured melanoma cells and patient tumors
have shown deregulated PI3K–AKT pathway activity in about
70% of melanomas.57 Inhibition of the PI3K–AKT–mTOR
signaling pathway potently sensitizes melanoma cells to
chemotherapy with cisplatin and temozolomide.58 Moreover,
BRAFV600E serves as a negative regulator of the AKT
pathway in melanoma, which may be responsible for the
underlying molecular resistance mechanisms for BRAF
inhibitors.59 Chaussepied and Ginsberg60 reported the
existence of a negative feedback loop between E2F and
AKT. Their work showed that the adaptor protein Grb2-
associated binder 2 (Gab2) is a direct E2F1 target involved in
this process. E2F1 induces AKT phosphorylation and activity
by transcriptionally upregulating Gab260 and AKT sup-
presses E2F-induced apoptosis.61 In this negative feedback
loop, E2F1 promotes sustained AKT activation through
Gab2, whereas AKT inhibits E2F1-mediated apoptosis.
Topoisomerase II b-binding protein (TopBP1), a BRCA1
carboxyl-terminal (BRCT) domain-containing protein, also
participates through AKT-mediated phosphorylation of
TopBP1 at Ser-1159, which induces oligomerization of the
protein.60 This oligomerization through the seventh and
eighth BRCT domain is required for E2F1 binding. Mean-
while, it prevents TopBP1 recruitment to chromatin and
subsequent binding to ATR and hampers TopBP1 function
in checkpoint activation.62 TopBP1 interacts with and
represses E2F1 only but not other E2Fs through its sixth
BRCT domain.63–65 As E2F1 is overexpressed in melanoma,
this E2F1-Gab2-AKT-TopBP1-E2F1 feedback loop may
explain why AKT is activated and E2F1 cannot exert its
proapoptotic functions in malignant melanoma. In this way,
targeting AKT pathways in melanoma may also remove
constraints on E2F1 to induce apoptosis and could serve as
a means to improve sensitivity of melanoma cells to AKT
inhibitors.

Interaction with micro-RNA. MicroRNAs (miRNAs) are a
class of short noncoding RNAs that regulate genes by
directly promoting mRNA degradation or by repressing
translation. They have important roles in proliferation and
apoptosis, and are thus involved in the development of many
cancers including melanoma. Expression of miR-205 is
significantly suppressed in primary and malignant tumors
when compared with nevi, and is correlated inversely with
melanoma progression.66,67 Several published reports
strongly suggest that miR-205 might be a tumor suppressor
and prognostic factor in melanoma, as its ectopic expression
can inhibit melanoma cell growth and migration, and low level

Figure 4 E2F1 is involved in crosstalk with Ras–Raf–MEK–ERK and PI3K–AKT
pathways. E2F1 promotes sustained AKT activation through Gab2, whereas AKT in
turn inhibits E2F1-mediated apoptosis by activation of TopBP1. ERK1/2 is known to
upregulate the expression of cyclin D1,51 which induces the activation of CDK4/6
and subsequently phosphorylates pRB to release E2F1. Meanwhile, E2F1 also
regulates ERK activation via transactivation of RasGRP1 and RasGEF1B, which
positively affects Ras activity. Thus E2F1 induces two positive feedback loops for
survival
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of miR-205 is related to decreased disease-free survival of
melanoma patients.67–70 An interesting and complicated
regulatory loop exists between E2F1 and miR-205. Dar
et al.66 found an inverse correlation between the expression
of miR-205 and E2F1 and E2F5. By targeting the 30UTR of
these two E2Fs, miR-205 negatively regulates the Akt
pathway. Overexpression of miR-205 inhibits cell prolifera-
tion, colony formation, and tumor growth and also induces
apoptosis and senescence. Importantly, these phenotypes
caused by miR-205 overexpression can be rescued by E2F1
overexpression. These data indicate that miR-205 works as
tumor suppressor by repressing E2F1 and its gene targets.
Downregulation of miR-205 may be responsible for the
elevated level of E2F1 in primary and malignant mela-
noma.66 The cause and effect relationship between E2F1
and miRNA is not simple as discussed above because
E2F1 also downregulates miR-205 upon genotoxic stress,
which may contribute to anticancer drug resistance.71

E2F1 is known to induce expression of p73 and its
N-terminally truncated isoforms (DNp73) via direct
transactivation, which has a similar role in apoptosis
induction like its homolog p53. DNp73 has antiapoptotic
activity in human melanoma cells by either directly
obstructing DNA binding or forming inactive heteromeric
complexes with p73. p73 strongly induces miR-205,
whereas the inhibitory DNp73 transdominantly inhibits it.
E2F1 deficiency leads to DNp73 downregulation with
a concomitant rise in miR-205.71 This provides a
possible explanation for the low miR-205 levels in the
presence of high E2F1 activity in melanoma, that is,
E2F1 downregulates miR-205 through stimulating DNp73
expression.

Potential Therapeutic Role for E2F1 in Melanoma

Despite the development of small molecule inhibitors for
targeted therapy and immunotherapy for melanoma
patients, a standard of care that can be applied to all
melanoma patients is still missing. With none of the current
approved drugs being curative, another challenge is to
overcome therapeutic resistance. To improve therapeutic
benefit and extend disease-free survival, combination
therapies are currently being investigated. Although
E2F1 may not be a good target per se considering
the Yin and Yang biological effects it exerts, it may have
applications in combination therapies and or serve as
biomarkers.

Combination with chemotherapy. Given the resistance of
malignant melanoma to conventional chemotherapy, would
it be possible to sensitize drug resistant cells to apoptosis
by manipulating E2F1 considering its role in apoptosis
induction. In this regard, adenoviral vectors that express E2F1
(Ad-E2F1) efficiently induce apoptosis in cancer cells with little
effect on normal cells.72 Work by Dong et al.73 showed that
adenovirus-mediated E2F1 overexpression sensitizes mela-
noma cells to apoptosis induced by topoisomerase II
inhibitors, like etoposide, and adriamycin with antitumor
effects occurring in vivo. Later, Ad-E2F1 and doxorubicin
combination treatment was found to produce synergistic

effect on melanoma cell apoptosis by induction of antitumor
cytokines, IL-8 and GM-CSF and inactivation of NF-kB
pathway.74,75

Despite the promise of combinatorial use of E2F1, its
controversial oncogenic role has led to the therapeutic
testing of truncated E2F1 gene (E2Ftr; amino acids 1–375).
Several studies have shown that mutants of E2F1 without
TAD can induce cell death with as few as 75 amino acids
within the DBD being sufficient for cell death.76 Removal of
TAD also hindered cell cycle-promoting activity and potently
induced cancer cell apoptosis.77 It is suggested that
apoptotic effects of E2F1 are at least partly independent of
its transactivation function as E2Ftr binds to promoters of
prosurvival genes such as MCL1 without transactivation,
and prevents wild-type E2F1 binding.77 Therefore,
understanding mechanisms that regulate E2Ftr-induced
apoptosis can provide insight into the use of E2Ftr for
melanoma therapy. BH3-only protein HRK is a possible
target of E2F1, independent of its transactivation function.
E2Ftr co-localizes with the HRK repressor downstream
regulatory element antagonist modulator (DREAM) and
promotes its homodimerization, to reduce DREAM binding
to HRK promoter. However, the downregulation of HRK
cannot completely repress E2Ftr-induced apoptosis, which
suggests that there may be other pathways or factors
involved in the apoptotic process.12 The induction of
apoptosis by E2Ftr is independent of p53 status with
little cytotoxicity in normal cell lines. In a mouse
melanoma xenograft model, overexpression of E2Ftr
strongly induced caspase-3 activation with B80% decrease
in tumor size.78 Despite the potential benefits of E2Ftr
obstacles such as effective ways of viral delivery, hepatic
and other potential toxicity, and immune response against
the adenovirus have to be overcome to realize its clinical
utility.78

Potential role in drug resistance. A melanoma-specific
explanation for drug resistance is melanosome-mediated
sequestration of cytotoxic drugs that increases drug
export.79 For example, methotrexate (MTX) is exported
out of resistant cells, so it cannot increase E2F1
protein levels as it does in sensitive cells. However,
low intracellular MTX induces E2F1 demethylation, its
acetylation and activation. Increased transcriptional activity
upregulates downstream targets that are required for G1

progression and prevents dTTP depletion in melanoma
cells.80 The accumulation of dTTP promotes DNA single-
strand breaks and the subsequent activation of Chk1 to
arrest cells in S phase and protect from apoptosis.
Further, excess dTTP inhibits E2F1-mediated apoptosis
in melanoma cells.80 Interestingly, combination treatment
with UCN-01 suppresses MTX export and promotes
E2F1 apoptotic pathway.81 In addition, the combination
of MTX and tyrosinase-processed antifolate prodrug, 3-O-
(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG) causes
depletion of thymidine pools, double-strand DNA breaks,
and E2F1-mediated apoptosis with high efficiency regard-
less of BRAF, MEK, or p53 status. This is thought to be
because MTX induces microphthalmia-associated tran-
scription factor expression, which inhibits invasiveness
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and promotes differentiation-associated expression of
melanocyte-specific tyrosinase gene. Activation of TMECG
generates TMECG-QM, which inhibits dihydrofolate
reductase with high affinity, promotes dTTP depletion;
S phase-associated DNA damage and E2F1-mediated
apoptosis.82 Together, these studies suggest that E2F1 is
involved in the drug resistance of malignant melanoma, and
it may be possible to overcome this resistance with the use
of specific drug combination. Therefore, devising an
optimum strategy that can affect E2F1-mediated apoptosis
to overcome resistance is an area that deserves more
attention.

Future Directions

The constant need for cancer cells to feed, divide, and grow
lends credence to the idea that there is an unvarying need
for transcription in cancer cells. Melanoma cells like most
cancer cells are addicted to transcription factors including
ATF-2, SNAIL/SLUG, NF-kB, STAT3, STAT5, E2F1, and
others, many of which are known to be oncogenic.
Transcription addiction allows cancer cells to meet their
demand for gene products to enable their ability to
proliferate, survive, migrate, invade, form new blood
vessels, and so on. The involvement of E2F1 in cell cycle
progression, proliferation, DNA damage response, and
apoptosis have been known for many years. Recent
evidence shows that E2F1 serves as a lever to regulate
oxidative metabolism by switching from oxidative to glyco-
lytic metabolism under stressful conditions.83 As discussed
in this review, E2F1 also affects migration and invasion of
cancer cells through its interactions with signaling pathways
to enable these functions. It would appear to be in the best
interest of the melanoma cells to rely on a versatile
transcription factor that can supply as many gene products
as necessary for its growth and survival. In this regard, E2F1
is a useful candidate transcription factor for melanoma cells
to be addicted to. Melanoma cells ensure their dependence
on E2F1 through the deregulation of pRb-mediated negative
regulation of E2F1. Abundance of E2F1 allows these cells to
drive regulation of genes involved in many of the aforemen-
tioned biological processes. The draconic ability of E2F1 to
control numerous signaling pathways directly or indirectly
through its interactions and crosstalk between these path-
ways is prone to inhibit E2F1’s apoptotic properties,
promote its oncogenic activities, and lead to the observed
activities associated with melanoma progression and drug
resistance. However, recent observations including our
unpublished observations suggest that this oncogenic view
of E2F1 may be dictated differently in the context of
mutations in the signaling pathways and produce an
outcome that is in stark contrast to its so-called ‘pro-
cancerous’ role. Further, as discussed here, E2F1 also
binds directly to the hTERT promoter to repress c-MYC-
mediated tumorigenesis. Given the contextual nature of
E2F1’s influence on various biological processes in normal
and cancer cells we have to exercise caution in severing the
arms of the E2F1 dragon so that it can be tamed in a way so
as to restore its activities associated with death or
senescence of cancer cells without activating other

pathways involved in oncogenesis. In this regard, greater
understanding of the changing biology of E2F1 especially in
the context of cancer-specific mutations is warranted to
ensure that E2F1 activity can be leveraged for the benefit of
melanoma patients.
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