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Proteome-wide quantitative multiplexed 
profiling of protein expression: carbon-source 
dependency in Saccharomyces cerevisiae

ABSTRACT The global proteomic alterations in the budding yeast Saccharomyces cerevisiae 
due to differences in carbon sources can be comprehensively examined using mass spec-
trometry–based multiplexing strategies. In this study, we investigate changes in the S. cere-
visiae proteome resulting from cultures grown in minimal media using galactose, glucose, or 
raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine 
alterations in relative protein abundance due to a particular carbon source, in triplicate, 
thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins 
across all nine samples; 1003 proteins demonstrated statistically significant differences in 
abundance in at least one condition. The majority of altered proteins were classified as func-
tioning in metabolic processes and as having cellular origins of plasma membrane and mito-
chondria. In contrast, proteins remaining relatively unchanged in abundance included those 
having nucleic acid–related processes, such as transcription and RNA processing. In addition, 
the comprehensiveness of the data set enabled the analysis of subsets of functionally related 
proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data 
can be mined further in efforts to understand better the roles of carbon source fermentation 
in yeast metabolic pathways and the alterations observed therein, potentially for industrial 
applications, such as biofuel feedstock production.

INTRODUCTION
The budding yeast Saccharomyces cerevisiae is a model system for 
studying biological functions and pathways by both genomic and 
proteomic strategies. In industrial applications, S. cerevisiae has 
been used traditionally for brewing and baking, and more recently 
for biofuels (Raghavulu et al., 2011; Tang et al., 2013b). S. cerevisiae 
can grow on a variety of carbon sources, both fermentable 

(e.g., glucose, fructose, sucrose, galactose, maltose, raffinose) and 
nonfermentable (e.g., ethanol, glycerol, acetate, oleic acid) (Fendt 
and Sauer, 2010). We expect that culturing yeast on a particular car-
bon source would result in pronounced proteomic changes associ-
ated with metabolic perturbation (Gao et al., 2003). Here we inves-
tigate quantitatively the global proteomic alterations in wild-type 
S. cerevisiae following growth on minimal media supplemented with 
one of three carbon sources—galactose, glucose, or raffinose—
using a versatile mass spectrometry–based multiplexing strategy.

For S. cerevisiae, minimal growth media are typically composed 
of three components: 1) yeast nitrogen base, 2) ammonium sulfate, 
and 3) a carbon source as a basal medium to which amino acids 
may be supplemented. Glucose (dextrose) is a monosaccharide 
preferred as an energy source by many organisms, including 
S. cerevisiae, and is a component of standard yeast extract–pep-
tone–dextrose yeast media. Cells can sense glucose levels in the en-
vironment and can adapt central metabolic pathways to glucose 
availability (Towle, 2005). Central pathways of carbohydrate meta-
bolism, including those in yeast, have evolved to efficiently process 
glucose for general metabolism. For example, glucose availability 
can induce the expression of glucose transporters such as certain 
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(FDR) of 0.094% (Table 1). A total of 4873 proteins were identified 
with a protein FDR of 0.995%. Of these proteins, 4765 were confi-
dently quantified across all nine cultures, representing the largest 
number of proteins quantified in S. cerevisiae using isobaric tag-
ging. Supplemental Tables 1 and 2 list the proteins and peptides, 
respectively, as well as normalized TMT reporter ion intensities used 
for quantitative analysis.

We subjected the 4765 quantified yeast proteins to two-dimen-
sional clustering (by normalizing to the average value for the glu-
cose cultures) and then using the Euclidean distance metric 
(Figure 2A). The samples clustered as expected, as triplicates of 
each carbon source clustered together. Similarly, principal compo-
nents analysis also reflected the tight clustering of these samples 
(Figure 2B), as the first two principal components explained greater 
than 90% of the variance. Principal component 1 explained nearly 
60% of the variance and separated samples grown in glucose from 
galactose and raffinose. Similarly, principal component 2 explained 
34% of the variance and separated cultures grown with galactose 
from those grown with raffinose. To examine the overall distribution 
of protein abundance alterations, we constructed histograms of the 
log2 ratios for each pair of carbon sources (Figure 2C). Agreeing 
with the clustering of the three carbon sources in the dendrogram in 
Figure 2A, the galactose versus raffinose histogram (Figure 2C, top) 
showed a narrower fold-change distribution compared with the glu-
cose versus raffinose (Figure 2C, middle) and galactose versus 
glucose (Figure 2C, bottom) histograms. Collectively these results 
revealed that of the three comparisons, the global protein abun-
dance differences between raffinose and galactose were more simi-
lar relative to that between either of these two sugars and glucose. 
In regard to the reproducibility of the biological triplicates, we de-
termined that the Pearson correlation coefficients (r2) for each pair of 
replicates are all >0.99 (Supplemental Figure 2).

As examples, we highlighted three proteins: 1) HXT3, which 
showed higher abundance in cultures grown in glucose; 2) GAL10, 
which had higher abundance in those grown in galactose; and 
3) SUC2, which was of higher abundance for cultures grown in raffi-
nose. HXT3 is a glucose transporter, and its expression was induced 
in the presence of glucose, which correlated well with our data 
(Ko et al., 1993). GAL10, also known as UDP-glucose-4-epimerase 
and galactose mutarotase, is a bifunctional enzyme that functions in 
galactose catabolism and was up-regulated in the presence of galac-
tose (De Robichon-Szulmajster, 1958). SUC2 (invertase) catalyzes the 
hydrolysis of di- and trisaccharides (such as raffinose) to produce 
monosaccharides, which eventually enter glycolysis (Trumbly, 1992). 
In agreement with our data, SUC2 expression has been shown to be 
up-regulated under low-glucose conditions (Guaragnella et al., 2013).

k-Means clustering of statistically significant proteins 
revealed metabolic pathways as being highly altered
We tested for statistical significance using a one-way analysis of 
variance (ANOVA) and corrected for multiple testing of proteins in 
each set of samples using the Bonferroni method (Dunn, 1961). 
With a threshold for the p value of < 0.01, we determined 1003 
proteins as demonstrating a statistically significant difference in 
abundance due to the carbon source used. Using only proteins with 
altered abundance (n = 1003), we performed k-means clustering 
(Figure 3). Three major k-means clusters emerged: 1) proteins that 
were of higher abundance (n = 378) in the galactose-containing 
media (Figure 3A), 2) those that were of higher abundance (n = 289) 
in the glucose-containing media (Figure 3B), and 3) those that were 
of higher abundance (n = 337) in the raffinose-containing media 
(Figure 3C).

HXT genes (Kim et al., 2013). Although glucose is the preferred car-
bon source, yeast can ferment other carbon sources, including galac-
tose and raffinose. Similar to glucose, galactose is a monosaccharide 
sugar that is converted into a glycolytic metabolite, glucose 6-phos-
phate, via the Leloir pathway (Frey, 1996). As such, yeast growth on 
galactose induces the expression of proteins under GAL4-dependant 
promoters, for example, GAL1, GAL7, and GAL10 (Timsol, 2007). In 
contrast, raffinose is a trisaccharide composed of galactose, glucose, 
and fructose. Raffinose is gradually hydrolyzed extracellularly by in-
vertase (SUC2) to monosaccharides that can typically enter the cell via 
SNF3, among other hexose transporters (Granot and Snyder, 1993). 
We expect extensive protein alterations, particularly of transport and 
metabolism-related proteins, when the carbon source is modified.

Multiplexing strategies applied to mass spectrometry–based 
quantitative proteomics have expanded the efficiency, depth, and 
throughput of comprehensive protein analyses. Employing isobaric 
labeling (Thompson et al., 2003; Ross et al., 2004) permits the quan-
tification of protein samples from virtually any source, with the major 
limitation being the number of available labels. The maturation of 
mass spectrometry–based proteomic analysis currently permits the 
quantification of thousands of individual proteins, a level approach-
ing the entire yeast proteome. The elucidation of a complete pro-
teome allows not only for the study of individual proteins but also 
for investigation of various classes and pathways in which these pro-
teins function. Previous work upon which this study builds has shown 
promise in elucidating the comprehensive proteome of S. cerevisiae 
via mass spectrometry–based techniques (King et al., 2006; Nagaraj 
et al., 2012; Picotti et al., 2013; Webb et al., 2013; Hebert et al., 
2014; Paulo and Gygi, 2014).

Here we quantitatively explore the proteomic alterations in wild-
type S. cerevisiae cultured in three different carbon sources: galac-
tose, glucose, and raffinose. We use a tandem mass tag (TMT) 
9-plex strategy to determine the relative protein abundance altera-
tions due to the particular carbon source. This “3 × 3” strategy is 
advantageous, as nine samples (three samples per each carbon 
source) can be analyzed simultaneously in a single experiment, and 
statistical analyses can be performed with biological triplicates. We 
present the largest mass spectrometry–based analysis of the yeast 
S. cerevisiae to date using a TMT9-plex quantitative strategy on an 
Orbitrap Fusion mass spectrometer. These data can be mined fur-
ther to develop a better understanding of yeast metabolic pathways 
under different carbon sources and potentially leverage these ob-
served alterations for industrial applications.

RESULTS
More than 4700 proteins were quantified across nine 
S. cerevisiae cultures in a single experiment
Using the strategy we described above (outlined in Figure 1), we 
successfully characterized the proteome of S. cerevisiae when grown 
with galactose, glucose, and raffinose as the carbon sources. Growth 
curves for the cultures are presented in Supplemental Figure 1. As 
expected, below 10 OD600/ml, all cultures grew exponentially, with 
the galactose and raffinose cultures showing similar, slightly slower 
average doubling times (t1/2 = 123 and 126 min, respectively) than 
the glucose cultures (t1/2 = 108 min, see inset). The increase in time 
between cell divisions for the cells growing in galactose or raffinose 
could be attributed to the time and metabolic costs required to 
synthesize the additional enzymes needed to metabolize the non-
canonical sugars. Our analysis was of the proteomes of cultures 
harvested at OD600≈0.6/ml.

We confidently identified 175,417 peptides, of which 60,251 
were nonredundant (unique) with a peptide false discovery rate 
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Subsequently, we classified these clusters of proteins using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
analysis (Wixon and Kell, 2000) through the STRING interface 
(Franceschini et al., 2013) and tallied the number of significantly 
altered proteins in given categories. Of particular interest was 
the metabolic pathways category, which had the highest number 
of proteins in each of the three clusters (Figure 3, right). In fact, 
the majority of pathways listed were specific metabolic pro-
cesses that were directly or indirectly related to carbohydrate 
metabolism. We expected that metabolic pathways would be 
significantly altered, as carbon sources are tightly linked to 
metabolism.

FIGURE 1: TMT9-plex analysis of S. cerevisiae grown on three carbon sources. The procedure was as follows: 1) Three 
starter cultures of minimal media with raffinose as the carbon source were each inoculated with a single colony. Cultures 
were grown overnight in raffinose media. Cultures were centrifuged, washed in deionized water, and diluted to an 
OD600 of 0.1/ml in growth media containing galactose, glucose, or raffinose. At OD600 of 0.6/ml, cultures were 
harvested, cells were lysed, and proteins were extracted via mechanical lysis and chloroform-methanol precipitation. 
2) Proteins were digested with LysC and trypsin and labeled with TMT reagents. 3) The pooled samples were separated 
using BPRP chromatography. 4) Desalted peptides were subjected to HPLC and TMT-MS3–based mass spectrometry.

 Number

Identified proteins 4873

Unique peptides 60,251

Total peptides 175,417

Quantified proteinsa 4765

Proteins with significantly altered abundanceb 1003
aProteins quantified across all nine TMT channels.
bA Bonferroni-corrected ANOVA p value < 0.01 was required for statistical 
significance.

TABLE 1: Summary of mass spectrometry data.
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1997). In contrast, the main biological processes represented by 
proteins that remained relatively constant in abundance regardless 
of carbon source were those involved in transcription and RNA pro-
cessing. Moreover, the cellular component gene ontology classifica-
tion results correlated well with those for biological process. In par-
ticular, proteins in the nuclear lumen, ribonucleoproteins, and 
nucleoplasm-localized proteins did not demonstrate a substantial 
change in abundance. Likewise, many highly altered proteins were 
classified as (plasma) membrane- or mitochondria-associated, which 
reflect changes in carbon source transport into the cell and meta-
bolic consequences, respectively. Even with extensive alterations in 
metabolic processes and associated proteins induced by growth on 
different carbon sources, nuclear protein abundance levels were 
perturbed minimally. These gene ontology classifications were also 
consistent with those observed for the k-means clustering analysis 
described above.

Several dozen protein kinases, phosphatases, and 
transcription factors were quantified in our data set
The comprehensiveness of this data set allowed us to compile large 
subsets of protein families and therefore investigate further the 

Gene ontology classification of unaltered proteins due to 
carbon source (coefficient of variation < 5%) was primarily 
of nuclear function and localization
In addition to investigating the proteins with the highest differences 
in abundance, we also determined those that were relatively unal-
tered regardless of the carbon source. For this, we chose proteins 
with coefficients of variation < 5%, which resulted in a total of 
114 proteins (Supplemental Table 3). For comparison, we selected 
the 114 proteins with the highest coefficients of variation among the 
three different carbon sources (Supplemental Table 4). We then 
used the Database for Annotation, Visualization and Integrated 
Discovery (DAVID; Huang da et al., 2009) to perform gene ontology 
analysis to determine which biological processes (Table 2, top) and 
cellular components (Table 2, bottom) were represented by these 
subsets of proteins.

DAVID analysis revealed that the major biological processes for 
the proteins with high changes in abundance were categorized as 
metabolic and transmembrane transport. Such a result was ex-
pected, as the carbon source provided a direct input for metabolic 
processes and the expression of particular transmembrane trans-
porters were influenced by the carbon source (Boles and Hollenberg, 

FIGURE 2: Global protein expression analysis. (A) Heat map and dendrogram show the relative expression levels across 
the nine TMT channels and the clustering, respectively, of the 4765 quantified proteins. To the right of the heat map are 
three example proteins that show increased protein abundance in each of the three carbon sources investigated. The 
data were normalized to the average TMT relative abundance values from the glucose cultures. (B) Principal component 
analysis correlates well with the clustering of the replicates. (C) Histograms show the distribution of the fold changes 
between galactose and raffinose, glucose and raffinose, and galactose and glucose. Gal, galactose; Glu, glucose; 
Raf, raffinose; TMT RA, tandem mass tags relative abundance; *, p value < 0.01.
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Among protein kinases with the highest fold changes due to the 
particular carbon source are KNS1, PRR2, and CKA2 (Supplemental 
Figure 3A, left). KNS1 (YLL019C) and PRR2 (YDL214C) both are of 
higher abundance in yeast cultures grown on raffinose. KNS1 is a 
putative protein kinase of unknown cellular role (Padmanabha et al., 
1991), and as such, KNS1 could be part of a mechanism that facili-
tates growth on raffinose. The elevated expression of KNS1 and 
those of similar putative proteins may reveal hitherto unknown func-
tions of such proteins. PRR2, a serine/threonine protein kinase, 
inhibits pheromone-induced signaling downstream of MAPK 
(Burchett et al., 2001) and has a significant role in many signaling 
events that may be linked indirectly to various metabolic pathways. 
CKA2 (YOR061W) is of higher abundance in yeast grown on glu-
cose. CKA2, the alpha-catalytic subunit of casein kinase 2a, is a ser-
ine/threonine protein kinase with essential roles in cell growth and 
proliferation (Hermosilla et al., 2005). Changes in kinase abundance 

differences in the abundance of proteins with similar or redundant 
functions. For example, we compared our data set with the protein 
kinases (Supplemental Figure 3A), phosphatases (Supplemental 
Figure 3B), and transcription factors (Supplemental Figure 3C) found 
in available databases (Hunter and Plowman, 1997; Teixeira et al., 
2014). In all three categories, we quantified in our data set more 
than 80% of the categorized proteins, including a subset of at least 
104 protein kinases, 36 phosphatases, and 128 transcription factors 
(Supplemental Table 5). Of these, 23 kinases, eight phosphatases, 
and 19 transcription factors show statistically significant alterations in 
protein abundance resulting from growth on different carbon 
sources. Kinases and phosphatases are integral members of cell sig-
naling pathways, and perturbations thereof can dramatically alter 
cell function. Likewise, transcription factors can influence and 
thereby regulate protein expression. In the following paragraphs, we 
highlight three proteins within each of these subsets.

FIGURE 3: k-Means clustering and associated KEGG pathways. k-Means clustering of protein subsets with statistically 
significant alterations in abundance from cultures grown in media containing (A) galactose, (B) glucose, and (C) raffinose. 
Listed on the right are the KEGG pathways that were represented by the proteins in the associated k-means cluster. 
Each trace represents the abundance profile of a single protein. Gal, galactose; Glu, glucose; Raf, raffinose.
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highest fold changes due to the particular carbon source are PHO3, 
SER2, and PPZ2 (Supplemental Figure 3B, left). PHO3 (YBR092C) 
and SER2 (YGR208W) are of higher abundance in the glucose-con-
taining cultures. PHO3 is an acid phosphatase that hydrolyzes thia-
mine phosphates in the periplasmic space (Blinnikova et al., 2002; 
Nosaka et al., 2005). The role of thiamine has been linked histori-
cally to fermentation, and evidence supports its function as carbon-
source dependent (Suomalainen and Axelson, 1956). SER2 is a 
phosphoserine phosphatase of the phosphoglycerate pathway in-
volved in serine and glycine biosynthesis (Qiu et al., 2009). This pro-
tein is of potential importance, given that glycine biosynthesis and 
glucose metabolism are linked tightly (Melcher and Entian, 1992). In 
contrast, PPZ2 (YDR436W) demonstrates higher expression in galac-
tose and raffinose compared with glucose. PPZ2 is a serine/threo-
nine protein phosphatase involved in the regulation of potassium 
transport that affects osmotic stability and cell cycle progression 
(Posas et al., 1995) and can enhance resistance to multiple alcohols 
(Lam et al., 2014). Such alterations in phosphatase abundance can 
influence cellular signaling and, as such, render a compensatory ef-
fect to sustain growth on different carbon sources.

Although we identified nuclear-related proteins to be among 
those with unchanged abundances, 19 transcription factors demon-
strated statistically significant differences in abundance. Such a result 
may be expected, as we observed changes in abundance of hun-
dreds of proteins. Supplemental Table 5 lists significantly altered 
transcription factors, the targets of which can be queried using the 
YEASTRACT database (Teixeira et al., 2014). Among the transcription 
factors with the highest fold changes due to the particular carbon 
source are XBP1, YGR067C, and MSN4 (Supplemental Figure 3C, 
left). XBP1 (YIL101C) is of higher abundance in raffinose compared 
with the other two carbon sources. XBP1 is a transcriptional repressor 
that binds to promoter sequences of the cyclin genes and therefore 
has a role in cell cycle regulation (Back et al., 2005). Conversely, we 
determined YGR067C to be significantly lower in abundance when 
grown on galactose. YGR067C is a putative zinc finger motif–con-
taining protein of unknown function (Pir et al., 2006). Similar to KNS1, 
YGR067C may have a currently undefined function in yeast metabo-
lism and, as such, merits further study. In contrast, MSN4 (YKL062W) 
is of higher abundance when grown on galactose compared with the 
two other carbon sources. MSN4 is activated under stress conditions, 
in which it translocates from the cytoplasm to the nucleus and con-
tributes to altered transcription (Martinez-Pastor et al., 1996), which 
can potentially affect the expression of various proteins. Like kinases 
and phosphatases, transcription factors have important roles in main-
taining cellular homeostasis. Alteration in transcription factor abun-
dance can result in the activation or repression of certain genes with 
many potential downstream effects. Further dissection of the per-
turbed cellular pathways may reveal mechanisms that modulate or 
are regulated by the alterations in transcription factors, as well as ki-
nases and phosphatases, resulting from cultures grown with different 
carbon sources.

DISCUSSION
In this study, we use a multiplexed quantitative mass spectrometry–
based strategy to comprehensively investigate the proteomic alter-
ations in S. cerevisiae resulting from growth on different carbon 
sources (i.e., galactose, glucose, or raffinose). We labeled our pep-
tide samples using TMT9-plex reagents and used a 3 × 3 strategy to 
examine in triplicate the relative protein abundance alterations. In 
total, we identified 4873 proteins, of which 1003 demonstrated a 
statistically significant difference in abundance in at least one condi-
tion. Gene ontology analysis reveals that the majority of altered 

can alter phosphorylation equilibrium, and such alterations can have 
a major impact on cellular signaling and a number of downstream 
processes that promote growth on a particular carbon source.

Like kinases, some phosphatases also show statistically signifi-
cant alterations in abundance. Among phosphatases with the 

Number of proteins

Unchangeda Changedb

Biological function

Regulation of transcription 23 0

RNA processing 22 0

Transcription 18 0

Cellular macromolecular complex 
subunit organization

16 0

ncRNA processing 13 0

Chromatin organization 11 0

mRNA metabolic process 11 0

Generation of precursor metabo-
lites and energy

0 18

Oxidation reduction 0 17

Monosaccharide metabolic 
process

0 15

Hexose metabolic process 0 14

Transmembrane transport 0 14

Energy derivation by oxidation of 
organic compounds

0 13

Cofactor metabolic process 0 12

Response to temperature stimulus 0 10

Cellular carbohydrate catabolic 
process

0 10

Carbohydrate catabolic process 0 10

Coenzyme metabolic process 0 10

Cellular component

Intracellular organelle lumen 27 0

Membrane-enclosed lumen 27 0

Organelle lumen 27 0

Nuclear lumen 20 0

Ribonucleoprotein complex 18 0

Nucleoplasm 11 0

Nucleoplasm part 11 0

Intrinsic to membrane 0 37

Integral to membrane 0 33

Mitochondrion 0 29

Plasma membrane 0 22

Insoluble fraction 0 12

Membrane fraction 0 12
aProteins that were relatively unaltered in abundance (coefficient of variation < 5%, 
n = 114).
bProteins with the highest fold changes in abundance (n = 114).

TABLE 2: Gene ontology classification.
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(Kulak et al., 2014). It is worth noting that 
our search database included the 785 dubi-
ous ORFs, of which only one, YPR169W-A, 
was quantified. This protein identification 
was associated with only one peptide, and 
we determined the change in protein abun-
dance as nonsignificant (p value = 1). More-
over, the percentage of dubious ORFs 
identified is 0.1%, which is below our 1% 
protein-level FDR.

Our data set facilitated the expression 
mapping of protein alterations in complete 
metabolic pathways. With more than 4700 
quantified proteins in our data set, the en-
tire subset of proteins from many common 
biological pathways were quantified. As ex-
amples, we outline four metabolic pathways 
for which we quantified the complete set of 
proteins. All the enzymes involved in galac-
tose catabolism (Figure 4), glucose fermen-
tation (Supplemental Figure 4A), the tricar-
boxylic acid (TCA) cycle (Supplemental 
Figure 4B), and the galactose catabolism 
pathway (Supplemental Figure 4C) were 
quantified in our data set. As these were 
metabolic pathways, the corresponding en-
zymes were expected to be altered as their 
function was directly or indirectly linked to 
the carbon source on which the cultures 
were grown.

More specifically, we highlight the five 
proteins involved in galactose catabolism, 
also known as the Leloir pathway (Figure 4). 
In this pathway, GAL10 catalyzes β-d-
galactose into α-d-galactose. Next, GAL1 
catalyzes the stereospecific phosphoryla-
tion of α-d-galactose, producing α-d-
galactose 1-phosphate (Howard and Hein-
rich, 1965). In a reaction catalyzed by 
galactose 1-phosphate uridyltransferase 
(GAL7), α-d-galactose 1-phosphate reacts 
with UDP-d-glucose to produce d-glucose 
1-phosphate and UDP-galactose (Segawa 
and Fukasawa, 1979). In addition, UDP-
glucose is regenerated from UDP-galac-
tose via UDP-galactose 4-epimerase 
(GAL10; Fukasawa et al., 1980). The final 
stage in the pathway is the isomerization 

of glucose 1-phosphate to glucose 6-phosphate by phosphoglu-
comutase (PGM1, PGM2). GAL10, GAL1, and GAL7 are exclusive 
to this pathway, and the abundance of these proteins was sub-
stantially greater (∼30–50 times higher TMT signal) in yeast grown 
with galactose as the carbon source. These three enzymes are 
regulated coordinately at the transcriptional level in response to 
galactose (De Robichon-Szulmajster, 1958; Lohr et al., 1995). 
Likewise, PGM2 was of higher abundance when galactose was 
the carbon source, but only approximately twofold, as this protein 
is not exclusive to the Leloir pathway and also has a role in glyco-
gen metabolism (Timsol, 2007). Further knowledge of the path-
way and the manipulation thereof may have various applications. 
For example, although S. cerevisiae can ferment galactose 
into ethanol, its yield is significantly lower than from glucose. As 

proteins function in metabolic processes and that these proteins are 
of plasma membrane and mitochondrial origin. We also examined a 
subset of proteins that remained relatively unchanged among the 
carbon sources used. This subset includes proteins related to nu-
clear processes, such as transcription and RNA processing. In total, 
we have quantified the largest number of yeast proteins and pep-
tides in a single analysis via a TMT-based mass spectrometry strat-
egy to date. However, our list of more than 4700 quantified proteins 
is not complete. Currently 5800 validated open reading frames 
(ORFs) are thought to be present in S. cerevisiae, although not all 
encode proteins (Cherry et al., 2012). As an estimate, ∼10–15% 
more proteome coverage is needed for a complete proteome of 
budding yeast. Our data set, however, does achieve ∼90% overlap 
with the second-largest proteomic analysis of S. cerevisiae 

FIGURE 4: All proteins comprising the galactose catabolism pathway were quantified in our 
data set. The colored bars indicate the relative abundance of the protein across the nine 
channels, with each triplicate of bars representing protein abundance in cultures grown in media 
containing galactose, glucose, or raffinose.
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from either the pyrimidine de novo synthesis or the salvage pathway 
is sequentially doubly phosphorylated by THI20 or THI21 (Kawasaki 
et al., 2005). In yeast, THI4 catalyzes the entire thiazole synthesis 
branch, which requires five reactions across three enzymes in pro-
karyotes (Chatterjee et al., 2011; Hazra et al., 2011). THI4, however, 
is a suicide enzyme, capable of producing only one molecule of 
2-(2-caboxy-4-methyl-thiazol-5-yl) ethyl phosphate at the cost of 
donating an active-site sulfide group (Chatterjee et al., 2011). 
Sustained up-regulation of the ThDP biosynthesis pathway would 
require continuous translation and proteolysis of THI4. All four of the 
ThDP biosynthesis pathway enzymes were strongly up-regulated 
specifically during growth on glucose. Our data suggest thiamine 
supplementation as potential approach to improve the efficiency of 
glucose-based growth for industrial applications, allowing more of 
the carbon source to be funneled into the desired end product, 
rather than spent on biomass production.

Characterizing all ORFs in the yeast S. cerevisiae has become 
an unexpectedly elusive goal. Optimistic estimates had predicted 
“known” functions for all ORFs by 2008 (Hughes et al., 2004). 
However, 706 ORFs remain uncharacterized (Cherry et al., 2012). 
The primary setback may be that “genome-wide” screens mea-
sure uncharacterized ORFs less often than those characterized, 
yielding a perpetually suppressed rate of data collection specific 
to uncharacterized ORFs (Pena-Castillo and Hughes, 2007). This 
caveat led Peña-Castillo and Hughes to propose that alternative 
growth conditions may be required to characterize the recalcitrant 
last ∼14% of yeast ORFs (Pena-Castillo and Hughes, 2007). Similar 
to previous studies, our data quantified the abundances of unchar-
acterized ORFs at a lower frequency (43.1%) than those character-
ized (87.1%), comprising only 6.8% of quantified proteins 
(Figure 5A). Supporting the conjecture of Peña-Castillo and 
Hughes, 68% of the uncharacterized ORFs displayed increased ex-
pression on galactose and raffinose when compared with glucose 
(Figure 5B). The majority of those proteins with altered expression 
in raffinose (61%) comprised a set enriched for integral membrane 
proteins (GO:0016021, p ∼ 0.03, hypergeometric test, multiple 
hypothesis-corrected Benjamini-Hochberg) (Ashburner et al., 
2000; Hong et al., 2008; Cherry et al., 2012). We highlight three 
uncharacterized proteins that show significant alterations in ex-
pression: YMR122W-A, YDL218W, and YJR061W (Figure 5C). 
YMR122W-A is strongly and selectively expressed upon growth in 
raffinose. This protein is predicted to have a single, highly con-
served transmembrane domain flanked by a cytoplasmic domain 
and a noncytoplasmic domain. YMR122W-A may interact with 
PMT1 and CBR1 and be involved in regulating cell wall protein 
glycosylation in the endoplasmic reticulum (ER; Huh et al., 2003), 
perhaps altering protein glycosylation in response to different en-
vironmental sugars. Similarly, YDL218W is strongly and selectively 
expressed upon growth in raffinose and is likely a transmembrane 
protein with a cytoplasmically exposed domain. High-throughput 
screens have shown induced expression under aerobic or stressful 
conditions, and interaction with the vacuole-targeting protein 
VPS8 suggests a possible role in vacuole regulation or autophagy 
(Wu et al., 2004). YJR061W demonstrates increased expression in 
galactose and raffinose. This protein consists of a short transmem-
brane domain and a large (∼100 amino acid) noncytoplasmic 
domain. Its paralogue, MNN4, has mannosyltransferase activity 
and increases expression as the cell walls thicken for late-log and 
stationary phase. YJR061W may glycosylate proteins in the ER, 
potentially regulating cell wall integrity (Lamb and Mitchell, 2003; 
Byrne and Wolfe, 2005). All 63 uncharacterized proteins that were 
quantified herein are listed in Supplemental Table 6. Future 

galactose is one of the most abundant sugars in marine plant bio-
mass, efficiently using it for growth and ethanol production is ad-
vantageous in the biofuels industry (Lee et al., 2011).

Likewise, our data set also quantified the enzymes involved in 
the glucose fermentation pathway (Supplemental Figure 4A). For 
glucose fermentation, glucose is phosphorylated by glucokinases 
(HXK1, HXK2, GLK1) to glucose 6-phosphate and then isomerized 
to fructose 6-phosphate by phosphoglucose isomerase (GPI1). 
Phosphofructokinase (PFK1, PFK2) then phosphorylates fructose 
6-phosphate to fructose 1,6-bisphosphate. Other enzymes in the 
pathway include aldolase (FBA1), triosephosphate isomerase (TPI1), 
glyceraldehyde 3-phosphate dehydrogenase (TDH1, TDH2, TDH3), 
phosphoglycerate kinase (PGK1), phosphoglycerate mutase 
(GPM1), enolase (ENO1, ENO 2), and pyruvate kinase (CDC19, 
PYK2). The majority of these enzymes, however, were not exclusively 
associated with a particular carbon source, but changes in abun-
dance were noted. For example, in the glucose fermentation cycle, 
ALD5, PDC1, and PDC5 were of higher abundance (∼3–15-fold) 
when glucose was used as the carbon source. In addition, ALD4, 
PDC6, ALD2, GLK1, and HXK1 demonstrated a statistically signifi-
cant increase in abundance (approximately twofold) when raffinose 
was used. Further studies will be needed to understand fully the 
pathways underpinning these differences and to develop further 
such mechanisms for beneficial applications.

Similarly, all of the enzymes in the TCA cycle (Supplemental 
Figure 4B) were quantified in our data set (Blank and Sauer, 2004). 
The TCA cycle is an important source of biosynthetic building blocks 
used in gluconeogenesis, amino acid biosynthesis, and fatty acid 
biosynthesis. Occurring in the mitochondria, the TCA cycle oxidizes 
acetyl-CoA and extracts energy primarily as the reduced electron 
carriers NADH and FADH2 for use in the electron transport chain 
(Lowenstein, 1969). The enzymes quantified in our data set in-
cluded: citrate synthase (CIT1, CIT2, CIT3), aconitrate hydratase 
(ACO1, ACO2), NAD-dependent isocitrate dehydrogenase (IDH1, 
IDH2), 2-ketogluterate dehydrogenase complex (KGD1, KGD2, 
LPD1), succinate dehydrogenase (LSC1, LSC2), fumarate hydrolase 
(FUM1), and malate dehydrogenase (MDH1, MDH2, MDH3). Our 
data showed that certain enzymes demonstrated statistically signifi-
cant differences in abundance resulting from the carbon source uti-
lized. In particular, CIT2, ACO2, and MDH2 were of higher abun-
dance in cultures containing glucose, while KGD1, KGD2, LPD1, 
ACO1, SDH1, SDH2, SDH3, and LSC2 were of higher abundance in 
cultures grown in the raffinose-containing media. Moreover, fatty 
acid concentrations have been shown to increase via the modula-
tion of enzymes involved in citrate turnover in the TCA cycle (Tang 
et al., 2013a). As such, these fatty acids may be potential substrates 
for the production of biofuel hydrocarbon molecules, which may 
benefit from alternative carbon sources in addition to genetic engi-
neering techniques. Further studies will lead to a better understand-
ing of the mechanisms governing carbon source–induced protein 
abundance alterations in these pathways.

Our data set also quantified the enzymes responsible for thia-
mine diphosphate (ThDP) biosynthesis (Supplemental Figure 4C). 
Across many organisms, ThDP serves as an essential cofactor for a 
variety of core metabolic reactions, often as a molecular handle for 
the biochemical manipulation of two-carbon compounds. In yeast, 
THI6 catalyzes the coupling of 4-amino-2methyl-5-hydrozymethyl-
pyrimidine diphosphate to 2-(2-carboxy-4-methyl-thiazol-5-yl) ethyl 
phosphate to produce thiamine phosphate, which is ultimately 
phosphorylated by THI80 to produce ThDP. Two main branches 
feed the methylpyrimidine and thiazole substrates into THI6. In the 
pyrimidine branch, 4-amino-2-methyl-5-methylpyrimidine derived 
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PA). Unless otherwise noted, all other chem-
icals were from Sigma-Aldrich (St. Louis, 
MO).

Media and growth
The yeast strain was BY4742, derived from 
S288c. The yeast minimal medium was com-
posed of yeast nitrogenous base with amino 
acids, ammonium sulfate, and 2% final vol-
ume of the appropriate sugar (galactose, 
glucose, or raffinose). Three starter cultures 
were grown in raffinose-containing minimal 
media overnight from individual colonies. 
Each of the three starter cultures were spun 
down, washed with deionized water twice, 
and divided into three different cultures—
containing either galactose, glucose, or raf-
finose—at OD 600 of 0.1/ml. Cultures were 
grown to reach an optical density (OD) of 
0.6/ml and then harvested.

Cell lysis and protein digestion
Yeast cultures were harvested by centrifu-
gation, washed twice with ice-cold deion-
ized water, and resuspended at 4°C in a 
buffer containing 50 mM HEPES (pH 8.5), 
8 M urea, 75 mM NaCl, and protease 
(complete mini, EDTA-free) and phospha-
tase (PhosphoStop) inhibitors (Roche, 
Basel, Switzerland). Cells were lysed using 
the MiniBeadbeater (Biospec, Bartlesville, 
OK) in microcentrifuge tubes at maximum 

speed for three cycles of 60 s each, with 1-min pauses between 
cycles to avoid overheating of the lysates. After centrifugation, 
lysates were transferred to new tubes. We determined the protein 
concentration in the lysate using the bicinchoninic acid protein 
assay (Thermo Fisher Scientific, Waltham, MA).

Proteins were subjected to disulfide reduction with 5 mM Tris 
(2-carboxyethyl)phosphine (room temperature, 25 min) and al-
kylation with 10 mM iodoacetamide (room temperature, 30 min in 
the dark). Excess iodoacetamide was quenched with 15 mM 
dithiothreitol (room temperature, 15 min in the dark). Methanol-
chloroform precipitation was performed before protease diges-
tion. In brief, four parts neat methanol was added to each sample 
and vortexed, one part chloroform was added to the sample and 
vortexed, and three parts water was added to the sample and 
vortexed. The sample was centrifuged at 14,000 rpm for 5 min at 
room temperature and after removal of the aqueous and organic 
phases subsequently washed twice with 100% methanol, before 
being air-dried.

Samples were resuspended in 50 mM HEPES (pH 8) and di-
gested at room temperature for 16 h with LysC protease at a 100:1 
protein-to-protease ratio. Trypsin was then added at a 100:1 pro-
tein-to-protease ratio, and the reaction was incubated 6 h at 37°C.

TMT labeling
TMT reagents (0.8 mg) were dissolved in anhydrous acetonitrile 
(40 μl), of which 10 μl was added to the peptides along with 30 μl 
of acetonitrile to achieve a final acetonitrile concentration of 
∼30% (vol/vol). Following incubation at room temperature for 1 h, 
the reaction was quenched with hydroxylamine to a final concentra-
tion of 0.3% (vol/vol). The TMT-labeled samples were pooled at a 

experiments of proteome-wide quantification across even more 
diverse growth conditions may prove more informative toward the 
elusive goal of a completely characterized yeast genome. Further-
more, improvements in instrument sensitivity, faster scan times, 
greater robustness, and higher selectivity will further expand the 
extent of identified and quantified yeast proteins.

The use of multiplexed proteomic techniques can facilitate the 
high-throughput elucidation of comprehensive proteomes. The 
TMT9-plex strategy outlined herein required only 72 h of analysis, 
without which data collection for each individual sample could re-
quire weeks. Using the data herein, studies may be developed to 
investigate the influence of carbon sources on yeast proteomes us-
ing yeast deletion and overexpression strains and with other treat-
ments or forms of cellular stress. Likewise, additional multiplexing 
can be achieved by incorporating the previously published 3 × 3 + 1 
strategy to link multiple experiments (Paulo and Gygi, 2014; Paulo 
et al., 2014) or performing hyperplexing for higher-order multiplex-
ing (Dephoure and Gygi, 2012). Furthermore, our data set contains 
more than 60,000 unique S. cerevisiae peptides, which may be 
useful for future targeted mass spectrometry–based experiments 
(Doerr, 2013). In summary, we have used a TMT9-plex strategy to 
quantitatively compare the proteomic profiles of yeast grown on 
three carbon sources (galactose, glucose, and raffinose) and have 
assembled one of the largest catalogues of yeast proteins to date in 
a single quantitative mass spectrometry–based experiment.

MATERIALS AND METHODS
Materials
TMT isobaric reagents were from Thermo Fisher Scientific (Waltham, 
MA). Water and organic solvents were from J.T. Baker (Center Valley, 

FIGURE 5: Comparing proteins from characterized and uncharacterized ORFs. (A) Bar chart 
comparing quantified and differentially expressed characterized and uncharacterized ORFs. 
(B) Proportion of differentially expressed uncharacterized ORFs (n = 63), which are up-regulated 
when grown on a particular sugar. (C) Examples of uncharacterized ORFs demonstrating 
statistically significant (p value < 0.01) differences in abundance with growth on different sugars 
within our data set. Error bars represent ± SD for triplicates. TMT RA, tandem mass tags relative 
abundance.
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N termini (+229.163 Da) and carbamidomethylation of cysteine 
residues (+57.021 Da) were set as static modifications, while oxi-
dation of methionine residues (+15.995 Da) was set as a variable 
modification.

Peptide-spectrum matches (PSMs) were adjusted to a 1% FDR 
(Elias and Gygi, 2007, 2010). PSM filtering was performed using a 
linear discriminant analysis, as described previously (Huttlin et al., 
2010), while considering the following parameters: XCorr, ΔCn, 
missed cleavages, peptide length, charge state, and precursor mass 
accuracy. For TMT-based reporter ion quantitation, we extracted the 
signal-to-noise (S/N) ratio for each TMT channel and found the clos-
est matching centroid to the expected mass of the TMT reporter 
ion. PSMs were identified, quantified, collapsed to a 1% FDR, and 
then collapsed further to a final protein-level FDR of 1%. Moreover, 
protein assembly was guided by principles of parsimony to produce 
the smallest set of proteins necessary to account for all observed 
peptides.

Proteins were quantified by summing reporter ion counts across 
all matching PSMs using in-house software, as described previously 
(McAlister et al., 2012, 2014). Briefly, a 0.003 Th window around the 
theoretical m/z of each reporter ion (126: 126.127 Th; 127N: 127.124 
Th; 127C: 127.131 Th; 128N: 128.128 Th; 128C: 128.134 Th; 129N: 
129.131 Th; 129C: 129.138 Th; 130N: 130.135 Th; 130C: 130.141 
Th) was scanned for ions, and the maximum intensity nearest the 
theoretical m/z was used. PSMs with poor quality, MS3 spectra with 
more than six TMT reporter ion channels missing, MS3 spectra with 
TMT reporter summed S/N ratio < 100, quantitation isolation speci-
ficity of <0.7, or no MS3 spectra were excluded (McAlister et al., 
2012). Protein quantification values were exported for further analy-
sis in Excel or JMP. Each reporter ion channel was summed across all 
quantified proteins and normalized assuming equal protein loading 
of all nine samples. One-way ANOVA was then used to identify 
proteins that were differentially expressed across strains. We used 
the Bonferroni method as the multiple testing correction for our 
p values to minimize the probably of type I error (Dunn, 1961). The 
p values calculated for each comparison (i.e., protein) were multi-
plied by the number of comparisons (n = 4765 proteins), and this 
corrected p value was considered significant if p < 0.01.

Data access
Supplemental Tables 1 and 2 list the proteins and peptides, respec-
tively, as well as normalized TMT reporter ion intensities used for 
quantitative analysis. The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium (Vizcaino 
et al., 2014) via the PRIDE partner repository with the data set identi-
fier PXD002875.

1:1:1:1:1:1:1:1:1 ratio. The sample was vacuum centrifuged to near 
dryness and subjected to C18 solid-phase extraction (Sep-Pak; 
Waters).

Off-line basic pH reversed-phase (BPRP) fractionation
We fractionated the pooled TMT-labeled peptide sample using 
BPRP high-pressure liquid chromatography (HPLC). We used an 
Agilent 1100 pump equipped with a degasser and a photodiode 
array detector (set at 220- and 280-nm wavelength) from Thermo 
Fisher Scientific (Waltham, MA). Peptides were subjected to a 
50-min linear gradient from 5 to 35% acetonitrile in 10 mM 
ammonium bicarbonate (pH 8) at a flow rate of 0.8 ml/min over an 
Agilent 300Extend C18 column (5-μm particles, 4.6-mm inner dia-
meter, and 250 mm in length). The peptide mixture was fractionated 
into a total of 96 fractions that were consolidated into 24. Samples 
were subsequently acidified with 1% formic acid and vacuum 
centrifuged to near dryness. Each eluted fraction was desalted via 
StageTip, dried via vacuum centrifugation, and reconstituted in 5% 
acetonitrile, 5% formic acid for liquid chromatography and tandem 
mass spectro metry (LC-MS/MS) processing.

LC-MS/MS
Our mass spectrometry data were collected using an Orbitrap 
Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, 
CA) coupled to a Proxeon EASY-nLC II LC pump (Thermo Fisher 
Scientific). Peptides were fractionated on a 75-μm inner diameter 
microcapillary column packed with ∼0.5 cm of Magic C4 resin (5 μm, 
100 Å, Michrom Bioresources) followed by ∼35 cm of GP-18 resin 
(1.8 μm, 200 Å; Sepax, Newark, DE). For each analysis, we loaded 
∼1 μg onto the column.

Peptides were separated using a 3-h gradient of 6–26% acetoni-
trile in 0.125% formic acid at a flow rate of ∼350 nl/min. Each analy-
sis used the multi-notch MS3-based TMT method (McAlister et al., 
2014) on an Orbitrap Fusion mass spectrometer. The scan sequence 
began with an MS1 spectrum (Orbitrap analysis; resolution 120,000; 
mass range 400−1400 m/z; automatic gain control [AGC] target 
2 × 105; maximum injection time 100 ms). Precursors for MS2/MS3 
analysis were selected using the TopSpeed parameter of 2 s. MS2 
analysis consisted of collision-induced dissociation (quadrupole ion-
trap analysis; AGC 4 × 103; normalized collision energy (NCE) 35; 
maximum injection time 150 ms). Following acquisition of each MS2 
spectrum, we collected an MS3 spectrum using our recently de-
scribed method in which 10 MS2 fragment ions were captured in the 
MS3 precursor population using isolation waveforms with multiple 
frequency notches (McAlister et al., 2014). MS3 precursors were 
fragmented by high-energy collision-induced dissociation and ana-
lyzed using the Orbitrap (NCE 55; AGC 5 × 104; maximum injection 
time 150 ms, resolution was 60,000 at 400 Th).

Data analysis
Mass spectra were processed using a SEQUEST-based in-house 
software pipeline (Huttlin et al., 2010). Spectra were converted to 
mzXML using a modified version of ReAdW.exe. Database search-
ing included all entries from the yeast SGD (Saccharomyces 
Genome Database, March 11, 2014). This database was concate-
nated with one composed of all protein sequences in the reversed 
order. Searches were performed using a 50-ppm precursor ion 
tolerance for total protein-level analysis. The product ion toler-
ance was set to 0.9 Da. These wide mass tolerance windows were 
chosen to maximize sensitivity in conjunction with Sequest 
searches and linear discriminant analysis (Beausoleil et al., 2006; 
Huttlin et al., 2010). TMT tags on lysine residues and peptide 
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