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ABSTRACT

Background: In high-dimensional survival genomic data, identifying cancer-
related genes is a challenging and important subject in the field of bioinformatics.
In recent years, many feature screening approaches for survival outcomes with high-
dimensional survival genomic data have been developed; however, few studies have
systematically compared these methods. The primary purpose of this article is to
conduct a series of simulation studies for systematic comparison; the second purpose
of this article is to use these feature screening methods to further establish a more
accurate prediction model for patient survival based on the survival genomic datasets
of The Cancer Genome Atlas (TCGA).

Results: Simulation studies prove that network-adjusted feature screening
measurement performs well and outperforms existing popular univariate
independent feature screening methods. In the application of real data, we show that
the proposed network-adjusted feature screening approach leads to more accurate
survival prediction than alternative methods that do not account for gene-gene
dependency information. We also use TCGA clinical survival genetic data to identify
biomarkers associated with clinical survival outcomes in patients with various
cancers including esophageal, pancreatic, head and neck squamous cell, lung, and
breast invasive carcinomas.

Conclusions: These applications reveal advantages of the new proposed
network-adjusted feature selection method over alternative methods that do not
consider gene-gene dependency information. We also identify cancer-related genes
that are almost detected in the literature. As a result, the network-based screening
method is reliable and credible.

Subjects Bioinformatics, Statistics

Keywords Survival feature screening, High-dimensional genomic data, Network, Survival
prediction, TCGA, Esophageal cancer, Pancreatic cancer, Head and neck squamous cell carcinoma,
Lung adenocarcinoma, Breast invasive carcinoma

INTRODUCTION

In high-dimensional genomic data, identifying important genes related to clinical survival
traits is a challenging and important problem in the field of bioinformatics. The discovery
of important biomarkers that explain the phenotype of interest is essential for the
development of phenotype prediction models. In particular, contaminated data and
right-censored survival outcomes make relevant feature screening more challenging.
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In the era of high-throughput biology, the number of potential features/biomarkers
could be much larger than the research sample size. In this case, it is well-known that use
of preliminary feature screening can substantially improve the model selection performed
by the regularization approach (Fan ¢ Lv, 2008). Univariate feature screening for
right-censored survival outcomes has been a challenging topic receiving much attention in
the literature. Edelmann et al. (2020) recently provided a comprehensive review and
some useful suggestions for univariate feature independent screening methods, and
pointed out these screening methods for survival traits can be roughly divided into the
following categories: (semi-)parametric-based approaches, non-parametric ranking-based
approaches, model-free approached based on conditional survival functions, and distance
correlation-based approaches. All univariate independent feature screening methods are
based on certain statistics with specific model assumptions, which are calculated for each
variable without considering other variables. This statistic measure is the so-called
marginal utility. The feature screening procedure can then be performed by selecting
important features based on their corresponding marginal utility. Since the marginal
model is low-dimensional, the main advantage of the marginal model is its computational
stability and conceptual simplicity. Therefore, marginal programs are still popular in the
fields of bioinformatics.

However, outlier-contaminated biomarker data pose a further challenge to the survival
prediction problem based on high-dimensional genetic/genomic data. As is known, the
developmental process of disease is complicated and may involve the interaction of
multiple genes; that is, epistasis. In other words, to effectively identify disease-related
genes, it is necessary to make full use of biological network information. Wu, Zhu ¢
Feng (2018) pointed out that ignoring gene-gene dependency information might lead to
bias in gene screening. To this end, Wang & Chen (2021) developed a network-adjusted
Kendall’s tau measure for feature screening by incorporating gene-gene dependency
network information and compared a network-adjusted measure to a partial-likelihood
screening method (Fan, Feng & Wu, 2010; Zhao ¢ Li, 2012) and inverse probability-of-
censoring weighted (IPCW) Kendall’s tau statistics (Song et al., 2014; Wang ¢» Chen,
2020). They proved that the network-adjusted Kendall’s tau measurement method is
superior to these two methods in variable screening for most of the network structures
considered in terms of the average number of true predictors contained in the selected
model and the minimum of model size.

In this article, we intend to perform a systematic comparison for these advanced feature
screening methods and apply them to The Cancer Genome Atlas (TCGA, The Cancer
Genome Atlas Research Network, 2008) survival genomic data to develop a more accurate
prediction model for patient survival. The simulation studies under various scenarios are
conducted to compare the performance of new network-adjusted IPCW Kendall’s tau
measure with several commonly used univariate independent feature screening methods.
In the application of real data, we demonstrate that the new network-adjusted feature
screening approach leads to more accurate survival prediction than alternative methods
that do not account for feature network information or outlier-contamination. We also
determine biomarkers that are associated with clinical survival outcomes of patients with
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esophageal carcinoma (ESCA), pancreatic adenocarcinoma (PAAD), head and neck
squamous cell carcinoma (HNSCC), lung adenocarcinoma (LUAD), and breast invasive
carcinoma (BRCA) using TCGA genetic data.

MATERIALS AND METHODS

Data structure and methods partial review

We consider a study with n independent subjects. For a subject i, suppose that there are p
genes expression (xﬂ, e ,xip)/ related to clinical survival outcomes T;. Note that the
number of the genes is far greater than the sample size n. Usually, the survival outcome is
subject to censoring, so we define C; as censoring time, and use 9; as the indicator of
whether the survival time of subject i is censored, then define V; = min(T;, C;) as observed
survival time.

We list the common and effective survival feature screening methods, and provide
readers with an overview summarized in Table 1. Edelmann et al. (2020) provided an R
package “MVS” that can be downloaded from https://github.com/thomashielscher/MVS,
which contains the first six screening methods discussed in Table 1, and R codes for the last
two screening methods discussed in Table 1 are available at https://figshare.com/articles/
software/CODE/16677070, laying the foundation for meaningful comparison.

TCGA cancer data source

TCGA RNA-Seq expression data and phenotypic data including survival time and
censoring status data can be downloaded from the R package “TCGAbiolinks’

(Colaprico et al., 2016), or ‘UCSCXenaTools’ (Wang ¢ Liu, 2019). The TCGA ESCA,
PAAD, LUAD, and BRCA genomic data with survival traits analyzed during this study are
all available at Figshare: https://figshare.com/articles/dataset/ DATA/16677619. The TCGA
HNSCC genomic data can be downloaded from the R package “GEInter” (Wu, Qin ¢ Ma,
2021).

Evaluation performance in the simulation study
In performance measurement, we report the percentiles of the minimum model size
(MMS) statistics among 200 replications through violin plot to view the distribution of
MMS data and its summary statistics, where MMS is the minimum size of a selected
model, including underlying effective predictors. MMS measures the complexity of the
selected model and reflects the accuracy of the screening process; a smaller MMS value
indicates the higher accuracy of feature screening. We note that a violin chart can be
constructed through the “vioplot” R package (Adler ¢ Kelly, 2021). We also performed
additional simulation studies to investigate the survival time prediction errors by giving the
average number of c-index (Harrell, Lee ¢ Mark, 1996) among 200 replications as a
function of the number of selected features for each method. The c-index metric compares
the subjects’ predicted survival time rankings with their real survival time rankings. A
larger c-index indicates better prediction accuracy.

For our comparative study, we assess the similarity of different screening methods in
terms of the list of detected features. To this end, for each simulation run, the Jaccard
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Table 1 Reviews on univariate feature screening for survival outcomes (a partial list).

Citation Class/Method Description
Fan, Feng & Wu (semi-)parametric-based approach/partial The PL approach takes the maximum value of the corresponding
(2010) and Zhao ¢ likelihood (PL) marginal Cox’s partial likelihood as marginal utilities to rank the
Li (2012) predictors.
Saldana ¢& Feng (semi-)parametric-based approach/sure The SIS approach is an ad hoc approach, which takes Pearson
(2018) independence screening (SIS) correlations between predictors and survival times as marginal utilities
to rank the predictors.
Gorst-Rasmussen ¢ (semi-)parametric-based approach/feature The FAST approach proposes a semi-parametric independent screening
Scheike (2012) aberration at survival times (FAST) method for survival data which are described by single-index hazard
rate models.
Chen, Chen ¢ Wang  distance correlation-based approach/robust The RCDCS approach takes the robust distance correlation (Zhong et al.,
(2018) censored distance correlation screening (RCDCS)  2016) by replacing the survival outcomes and predictors by their

corresponding cumulative distribution functions’ Kaplan-Meier
estimator and empirical distribution function as marginal utilities to
rank the predictors.
Chen, Chen & Wang  distance correlation-based approach/composite The CRCDCS approach modifies the robust distance correlation through
(2018) robust censored distance correlation screening the composite quantile distance correlation of Chen, Chen ¢ Liu (2019)
(CRCDCS) to the right-censored scenario by redistributing the masses of censored
observations to the right with the indicator function being involved.

Harrell, Lee & Mark  non-parametric ranking-based approach/Harrell's The CINDEX approach takes the C-index as marginal utilities to rank

(1996) concordance index (CINDEX) the predictors.

Song et al. (2014) and non-parametric ranking-based approach/inverse =~ The IPCW Kendall’s tau approach takes Kendall’s tau rank correlation as
Wang ¢ Chen probability-of-censoring weighted (IPCW) marginal utilities to measure the association between survival trait and
(2020) Kendall’s tau biomarkers, which uses the IPCW technique to accommodate

right-censored survival outcomes.

Wang & Chen (2021) network-based approach/: IPCW-tau (NPN-MB) The NPN-MB approach modifies the IPCW Kendall’s tau measure
(Wang & Chen, 2020) to incorporate gene-gene dependency network
information using the technique of Google’s PageRank Markov matrix.
The NPN-MB approach using the nonparanormal procedure (Liu,
Lafferty & Wasserman, 2009) to transform the original predictors to
follow multivariate normal distribution, and then using the MB
method (Meinshausen ¢ Buhlmann, 2006) to estimate the sparse
precision matrix.

index (J(A, B) = |[AnB|/|AUB|) of the true feature list is calculated by selection of by two
methods under a specific model size of 500. The average Jaccard index of 200 simulation
repetitions is used as a measure of similarity between the two methods; in this way, the
similarity matrix of all the screening methods under consideration can be constructed and
visualized, for example, using the “corrplot” R package (Wei & Simko, 2017).

In addition, we calculate the overlap coefficient (O(A, B) = |ANB|/min (|A[, |B|)) set
similarity analysis of features selected by each method with a ground truth set of
predictors. The average number of overlap coefficient index among 200 replications as a
function of the number of selected features for each method is used as a measure of
similarity between the feature screening method and the ground truth set of predictors. A
larger overlap coefficient index indicates highly similarity with a ground truth set of
predictors.
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Simulation scenarios

For the first simulated settings, we follow the simulation settings of Song et al. (2014), and
generate a cohort of 500 subjects. Each subject’s survival time follows the linear
transformation model

H(T;) = —xiBo + ¢,

where H(t) = log(0.5(¢* — 1)), the covariates x jointly follow a 2,000-dimensional
multivariate standard normal distribution with the first-order autoregressive (AR(1))
structure that is corr (x 1 x,k) = 0.5V~ The distribution of the error term ¢ follows a
standard extreme value distribution, which corresponds to a proportional hazards (PH)
model.

The true regression coefficient vector is sparse:

B, = (—1, —0.9, 0.5, 0.8, 0.6,05,0.3,
0.7,—0.8,—0.5,—1, 05,—2, 1, 0, —0.5,—2,0;075),

so the underlying survival model has 14 true predictors. In the first simulated settings, only
linear relationships were assumed with true parameter vector. The censoring time
distribution follows a uniform distribution U(a,b), where (a, b) is chosen to control the
censoring rate at about 30% (light censoring), 50% (middle censoring) and 70% (heavy
censoring) respectively. Moreover, we consider the setting where, with a probability of 0.1,
the covariates may be contaminated by outliers produced by a ¢ distribution with two
degrees of freedom.

For the second simulated settings, we follow the simulation settings of Edelmann et al.
(2020). The simulated settings are the same as the first simulated settings except for the
relationships of true parameter vector, i.e.,

H(T;) = -z, + ¢,

where 7] = (g1(xi). - - gy (xi) ). we assume g (x) = By[x], g(x) = Balxl. ga(x) = B,
g5(x) = Bs1(x > 0), and all other j, we assume gj(x) = B;x.

For the third simulated settings, we follow the simulation settings of Wang ¢ Chen
(2021). The simulated settings are the same as the first simulated settings except for the
correlation structure of the variables and the true regression coefficient. We generate the
covariates jointly following a 2,000-dimensional multivariate standard normal distribution
with different network structures, including “hub”, “band”, “cluster”, and “scale-free”.
These network structures can be generated by the “huge” package with huge.generator

function (Zhao et al., 2012) and the true regression coefficient vector is defined as

B, = (—1.5, —1.5, 1.5, 1.5, 1.5,0s, 1.5,
1.5,—1.5,—1.5,—1.5, 05, —1.5, 1.5, 1.5, — 1.5, —1.5,0; ¢75)

For each simulation scenario, we perform 200 replications to investigate the numerical
performances of different methods.
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Survival prediction measure in real data application

To evaluate the performance of survival prediction, we report three measures of prediction
accuracy: the c-index, deviance, and the number of selected features (NOSF) metrics.
Larger c-index/smaller deviance and number of selected features indicates better
prediction accuracy. Since the c-index metric can be used to compare a subject’s predicted

survival time ranking with the true survival time ranking. And, the deviance metric is
defined as

D= —2(logL (B) - logL(0)>,

where logL (B) is the log partial likelihood function of Cox’s model from the testing set of
the data, B is an estimator of the penalized Cox’s regression with the MCP penalty
parameter in a prediction model obtained from the training set of the data, and logL(0) is
the log partial likelihood function of Cox’s null model from the testing set of the data,
where all predictors are assumed not related to the true survival time.

The deviance metric can therefore be considered as a comparison between the survival
prediction model and null model (no predictors considered). The deviance metric is also a
suitable survival prediction criterion.

Finally, we choose the number of selected features metric as a precision criterion; the
reason is that the feature screening approach is used to find parsimonious precision
models. Meaning, if we are modeling two sets of features with the same predictive
accuracy, we want to choose the model that uses the features, as a smaller number of
selected features are easier to interpret/evaluate in follow-up studies about biological
function.

RESULTS

Simulation studies
In simulation studies, a series of simulation studies are conducted to investigate the
performance of the existing feature screening methods for survival trait in identifying true
associated predictors and survival prediction errors.

The simulation results are summarized in Figs. 1-6 and Figs. S1-S12. Note that
Figs. 1-3 indicate the performances for the simulation study 1 with AR(1) structure;
Figs. 4-6 indicate the performances for the simulation study 2 with nonlinear
structure; Figs. S1-53 indicate the performances for the simulation study 3 with band
structure; Figs. S4-56 indicate the performances for the simulation study 3 with
hub structure; Figs. S7-S9 indicate the performances for the simulation study 3 with cluster
structure; and Figs. S10-512 indicate the performances for the simulation study 3 with
scale-free structure. We note that the “IPCW-tau (MB)” method is also an IPCW Kendall
tau method of network adjustment, but it uses the original predictors without using
nonparanormal procedure to transform them.

From simulation studies 1, 2, and 3 with band structure, we see that the IPCW-tau
(NPN-MB) method outperforms all alternative methods in terms of the overlap coefficient
(top three panels of Figs. 1, 4, S1), and MMS measure (Figs. 2, 5, S2). Overall, the variable
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Figure 1 The multi-panel figure contains the mean number of overlap coefficient (top three panels)
and c-index (bottom three panels) among 200 replications by the number of selected features for the
simulation 1 with AR(1) structure based on PH model. The left, medium, and right plots are based on
censoring rates of 30%, 50%, and 70%, respectively. A larger mean number of overlap coefficient indicates
highly similarity with a ground truth set of predictors, and a larger c-index indicates better prediction
accuracy. Note that the underlying survival model has 14 true predictors.
Full-size E&] DOI: 10.7717/peer].13098/fig-1

selection accuracy of the IPCW-tau (NPN-MB) method is substantially better than all
other methods. From bottom three panels of Figures 1, 4, S1, the FAST method has a
higher c-index when the number of selected variables is larger, and the IPCW-tau

(NPN-MB) method outperforms most alternative methods when the number of selected

variables is medium or small.

In simulation study 3 with hub structure, we see that the [IPCW-tau (NPN-MB) method
performs the best when the number of selected variables is larger or medium in terms of
the overlap coefficient (top three panels of Fig. S4), then the CINDEX method performs
the best when the number of selected variables is small. The c-index measure patterns
(bottom three panels of Fig. S4) are similar to these in the previous simulation studies.
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Figure 2 The violin chart of minimum of model size (MMS) measure among 200 replications for the
simulation study 1 with AR(1) structure based on PH model. The left, medium, and right plots are
based on censoring rates of 30%, 50%, and 70%, respectively. A smaller MMS value indicates the higher
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Figure 3 The average of Jaccard index among 200 replications for the simulation study 1 with AR(1)
structure based on PH model. The left, medium, and right plots are based on censoring rates of 30%,
50%, and 70%, respectively. Full-size &) DOT: 10.7717/peerj.13098/fig-3
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Figure 4 The multi-panel figure contains the mean number of overlap coefficient (top three panels)
and c-index (bottom three panels) among 200 replications by the number of selected features for the
simulation two with nonlinear structure based on PH model. The left, medium, and right plots are
based on censoring rates of 30%, 50%, and 70%, respectively. A larger mean number of overlap coefficient
indicates highly similarity with a ground truth set of predictors, and a larger c-index indicates better
prediction accuracy. Note that the underlying survival model has 14 true predictors.
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On the MMS measure metric (Fig. S5), the IPCW-tau (NPN-MB) method performs the

best.

In simulation study 3 with cluster and scale-free structures, we see that the CINDEX

method performs the best when the censoring rate is high in terms of the overlap
coefficient (top three panels of Figs. 57, 510), then the IPCW-tau (NPN-MB) method

performs the best when the censoring rate is medium or small. The c-index measure

patterns (bottom three panels of Figs. 57, S10) are similar to these in the previous

simulation studies. In the MMS measure metric (Figs. S8, S11), the performance of
IPCW-tau (NPN-MB) method is better than other methods.
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Figure 5 The violin chart of minimum of model size (MMS) measure among 200 replications for the
simulation study 2 with nonlinear structure based on PH model. The left, medium, and right plots are
based on censoring rates of 30%, 50%, and 70%, respectively. A smaller MMS value indicates the higher
accuracy of feature screening. Full-size K&l DOT: 10.7717/peerj.13098/fig-5
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Figure 6 The average of Jaccard index among 200 replications for the simulation study 2 with
nonlinear structure based on PH model. The left, medium, and right plots are based on censoring
rates of 30%, 50%, and 70%, respectively. Full-size K&l DOT: 10.7717/peerj.13098/fig-6
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Table 2 Results (median of prediction accuracy of different methods in the TCGA ESCA data over five random splits of 294:74 training/test

sets).
PL SIS FAST RCDCS CRCDCS CINDEX IPCW-tau NPN-MB Ordinary-MCP  Du et al. (2021)
Deviance 17.4067 -5.6785 —-6.2444 -2.79612 —-3.7387 2.7191 1.0834 -19.7218 474.4513 0.3548
c-index 0.6542 0.6314 0.6690 0.6866 0.6943 0.7324 0.6236 0.7380 0.8466 0.5450
NOSF 14 4 13 8 8 12 12 9 36 2
Note:

All feature screening methods and a published biomarker genes model are applied together with the MCP penalized Cox regression.

According to the average of Jaccard similarity index (Figs. 3, 6, S3, S6, S9, 512), we find
that screening methods belonging to the same category have higher similarity than
screening methods not belonging to the same category.

A further simulation study is conducted under the scenario where the survival time
follows a proportional odds (PO) model (i.e., the error term follows a standard logistic
distribution) and all other settings are the same as those in the previous simulation study.
We still obtain similar numeric results and the proposed IPCW-tau (NPN-MB) method
has a better performance than the alternative methods at most gene structures. These
correspondence figures are all available at Figshare: https://figshare.com/articles/figure/
Survival_Feature_Screening based_on_proportional _odds_model/17089013.

Real data application with TCGA ESCA data

After excluding patients with missing survival time data, our analysis is focused on the
subset of the TCGA ESCA data with 368 patients and 20,501 gene expression variables.
The censoring rate in the data is about 58%. As the number of disease-associated
biomarkers is not expected to be large, the top 2,000 genes with the smallest p-values based
on marginal Cox’s model are selected for downstream analysis. We take five random
splits of the whole data into 294:74 training/test sets of the data to evaluate the
performance of all methods for survival prediction in the TCGA ESCA data.

According to the procedure of Wang ¢ Chen (2021), we apply eight screening methods,
“PL”, “SIS”, “FAST”, “RCDCS”, “CRCDCS”, “CINDEX” “IPCW-tau”, “IPCW-tau
(NPN-MB)”, to the TCGA ESCA data. After grid search from the top 10 to the top
300 ranked genes, the best overall prediction performance of all methods is attained by
using the top 150 genes, so the top-ranked 150 predictors are selected as the candidate
covariates for each method and the Cox’s regression model with the candidate covariates
and the MCP penalty (Zhang, 2010) is applied to the training data to establish the final
prediction model. Besides, the MCP-penalized Cox model with the top 2,000 genes
selected by the univariate Cox’s test is applied to the training data to build the prediction
model. We also take the published biomarker genes (DNAJBI, BNIP1, VAMP7, TBKI)
related to ESCA (Du et al., 2021) as a survival prediction model to make comparisons.

The prediction accuracy performances for different methods are evaluated and the
numerical results are provided in Table 2 that reports the median of the survival prediction
results among five treatments. Overall, we can see that the proposed IPCW-tau (NPN-MB)
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Table 3 Selected genes with their correspondence estimate by IPCW-tau (NPN-NB) screening

procedure with MCP penalty for the whole TCGA ESCA data.

gene Estimate Citation

ATRX 0.7686

Cl1601f80 0.9168

Clé6orf87 —-0.2953

FAM189A2 —-0.1655

GFPT1 0.9318 Zhang et al. (2020b)
HNRNPC 1.1911 Xu, Pan ¢ Pan (2020)
MAF 0.4708

NEK1 -0.9591

OSTM1 0.7367

TSKU -0.3521

method outperforms the alternative methods for survival prediction in the TCGA ESCA

test data.

In addition, we apply the proposed IPCW-tau (NPN-MB) method for whole data to
identify several important biomarker genes and estimate the correspondence parameters

by penalized Cox’s regression model with the MCP penalty. Please see Table 3 for the list of

selected associated predictors with their correspondence weights. We identify ten genes
and find the two genes (GFPT1, HNRNPC) genes that are related to ESCA in the literature

(Zhang et al., 2020b; and Xu, Pan & Pan, 2020).

Real data application with TCGA PAAD data

After excluding patients with missing survival time data, our analysis is focused on the
subset of the TCGA PAAD data with 178 patients and 20,501 gene expression variables.
The censoring rate in the data is about 48%. As the number of disease-associated

biomarkers is not expected to be large, the top 2,000 genes with the smallest p-values based

on marginal Cox’s model are selected for downstream analysis. We take five random

splits of the whole data into 142:36 training/test sets of the data to evaluate the

performance of all methods for survival prediction in the TCGA PAAD data.

According to the procedure of Wang ¢ Chen (2021), we apply eight screening methods,
“PL”, “SIS”, “FAST”, “RCDCS”, “CRCDCS”, “CINDEX” “IPCW-tau”, “IPCW-tau
(NPN-MB)”, to the TCGA PAAD data. After grid search from the top 10 to the top
300 ranked genes, the best overall prediction performance of all methods is attained by

using the top 20 genes, so the top-ranked 20 predictors are selected as the candidate

covariates for each method, and the Cox’s regression model with the candidate covariates
and the MCP penalty (Zhang, 2010) is applied to the training data to establish the final
prediction model. Besides, the MCP-penalized Cox model with the top 2,000 genes

selected by the univariate Cox’s test is applied to the training data to build the prediction
model. We also take the published biomarker genes (CDKN2A, TP53, TTN, KRAS) related
to PAAD (Baek ¢ Lee, 2020) as a survival prediction model to make comparisons.
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Table 4 Results (median of prediction accuracy of different methods in the TCGA PAAD data over 5 random splits of 142:36 training/test
sets).

PL SIS FAST RCDCS CRCDCS CINDEX IPCW-tau NPN-MB Ordinary-MCP  Baek ¢ Lee (2020)
Deviance -6.3363 -2.3062 -7.1140 2.5505 -6.31712  -5.1000 -3.3673 -9.7919 887.5797 —4.4676
c-index 0.6834 0.6457 0.6608 0.5955 0.6774 0.6387 0.6538 0.6834 0.5290 0.7048
NOSF 5 4 3 6 6 6 5 2 39 1

Note:
All feature screening methods and a published biomarker genes model are applied together with the MCP penalized Cox regression.

Table 5 Selected genes with their correspondence estimate by IPCW-tau (NPN-NB) screening
procedure with MCP penalty for the whole TCGA PAAD data.

gene Estimate  Citation

MET 0.5718 Li et al. (2021), Huang et al. (2021), Wu et al. (2019a), Vanderwerff et al. (2019),
and Li et al. (2019)

ZMATI  -0.1422

The prediction accuracy performances for different methods are evaluated and the
numerical results are provided in Table 4 that reports the median of the survival prediction
results among five folds. Overall, we can see that the proposed IPCW-tau (NPN-MB)
method outperforms the alternative methods for survival prediction in the TCGA PAAD
test data.

In addition, we apply the proposed IPCW-tau (NPN-MB) method for whole data to
identify several important biomarker genes and estimate the correspondence parameters
by penalized Cox’s regression model with the MCP penalty. Please see Table 5 for the
list of selected associated predictors with their correspondence weights. We identify two
genes (MET, ZMATI) and find the MET gene that is related to PAAD in the literature (Li
et al., 2021; Huang et al., 2021; Wu et al., 2019a; Vanderwerff et al., 2019; and Li et al.,
2019).

Finally, the analysis results for TCGA HNSCC, TCGA LUAD, and TCGA BRCA
data are provided in supplementary materials. Note that we take the published biomarker
genes (GIMAP6, SELL, TIFAB, KCNA3, CCR4) related to HNSCC (Ran et al., 2021);
(ALK, BRAF, EGFR, ROS]I) related to LUAD (Chen et al., 2021); (TMEM190, TUBA3D,
LYVEI, LILBR5, CD209) related to BRCA (Liu et al., 2019) as a survival prediction
model to make comparisons. We identify nine genes and find the four genes (PITPNM3,
MXD4, ABCBI1, BATF) that are related to HNSCC in the literature (Aravind et al., 2021;
Wu et al., 2019b; da Silva et al., 2021; Duz & Karatas, 2021; Wang et al., 2020; and
Wen et al., 2015). We identify fifteen genes and find the seven genes (EPB41L5, INPP5],
KRT16, MS4A1, MYLIP, PEBPI1, SFTPB) that are related to LUAD in the literature (Li
et al., 2020a; Zhang et al., 2020a; Yuanhua et al., 2019; Song et al., 2020; Liu et al., 2021b;
Liet al., 2020b; Zhang et al., 2021; Cao et al., 2021; and Zhang et al., 2019). We identify ten
genes and find the four genes (EDA2R, PCMT1, QPRT, SKP1I) that are related to BRCA
in the literature (Liu, Kain ¢ Wang, 2012; Kyritsis et al., 2021; Liu et al., 2021a; and Tian

Wang et al. (2022), Peerd, DOI 10.7717/peerj.13098 13/20


http://dx.doi.org/10.7717/peerj.13098#supplemental-information
http://dx.doi.org/10.7717/peerj.13098
https://peerj.com/

Peer/

et al., 2020). The proposed IPCW-tau (NPN-MB) method consistently performs well in
these cancer datasets (refer to Tables S2, S4, and S6).

CONCLUSIONS AND DISSCUSSIONS

The identification of cancer-related genes in high-dimensional genetic/genomic data is a
challenging and important issue. In particular, right-censored survival outcomes and
contaminated biomarker data make relevant feature screening difficult. A two-step
statistical algorithm is used to achieve this (Fan ¢ Lv, 2008). The first step is preliminary
feature screening to identify biomarkers that may be associated with cancer, then the
regularization approach is used to conduct the final variable selection and parameter
estimation simultaneously.

The first purpose of this article is to conduct a systematic simulation study to validate
the performance of the advanced feature screening methods in variable selection and
survival prediction error. We prove that for most types of gene structures, the performance
of the new network-adjusted feature screening method is better than most effective
univariate independent feature screening methods. The second purpose of this article is to
establish a survival prediction model for TCGA survival genomic data. We prove that,
compared with alternative methods that do not consider feature network information or
outlier-contamination, and the published biomarker genes models, the new network
adjustment feature screening method can lead to more accurate survival prediction, and
determine biomarkers that are associated with clinical survival outcomes of patients with
ESCA, PAAD, HNSCC, LUAD and BRCA using TCGA genetic data. These applications
show that the new network-adjusted feature selection method performs well and
outperforms the existing popular univariate independent feature selection methods and
the published biomarker genes models. We have also identified cancer-related genes
almost detected in the literature. Accordingly, the new network-based screening method is
reliable and credible. R codes for the simulation studies and real data are available at
Figshare: https://figshare.com/articles/software/ CODE/16677070.

According to simulation studies for the c-index measure, we observe that the FAST
method has a higher c-index when the number of selected variables is larger, and the
IPCW-tau (NPN-MB) method outperforms most alternative methods when the
number of selected variables is medium or small. Although in the real data application, the
c-index measure of the IPCW-tau (NPN-MB) method is not always the best among all
considered feature screening methods or the published biomarker gene models, the
IPCW-tau (NPN-MB) method still outperforms most alternative methods by the different
prediction metrics. In addition, we observe every method can also identify the biomarker
genes that are related to TCGA cancer in the literature. However, according to the
simulation studies and real data analysis, we can still infer that the IPCW-tau (NPN-MB)
method has better performance in both variable selection and survival prediction. To this
end, the IPCW-tau (NPN-MB) method is a good choice for developing a survival
prediction model.

The main purpose of Wang ¢ Chen (2021) is to develop the advanced network-based
Kendall’s tau feature screening, and in simulation studies, only compared a network-based
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measure to partial likelihood screening method and IPCW Kendall’s tau statistics, not
provide a systematic comparison for some popular advanced feature screening methods
with survival outcome. As a consequence, the first purpose of this article was to review
multiple screening approaches systematically and make comparisons under the various
simulated scenarios with more evaluation performance like c-index for prediction errors,
overlap coefficient index, and the Jaccard index. Moreover, in real data applications,
Wang & Chen (2021) apply a few feature screening methods to only two real data.

We apply more feature screening methods and the published gene signature models to five
TCGA cancer genomic data, and provide an optimal survival prediction model for
patients. Furthermore, we also provide the selected biomarker genes with their
correspondence weights, which has meaning for clinical significance.

In the real data application, we adopt the hard thresholding rule proposed by Fan ¢ Lv
(2008) to select the candidate set of predictors; that is, after ranking the predictors using a
certain correlation measure, we select a prefixed number of top-ranked predictors as our
candidate model. Several alternative strategies for thresholding rule can be considered,
such as the soft thresholding rule proposed by Zhu et al. (2011), a method based on
the control of the false-positive rate or false discovery rate by Zhao ¢» Li (2012), and a
method based on multiple testing procedure by Song et al. (2014). In addition, we assume
that the number of cancer-related biomarkers will not be large, so we select the top 2,000
genes with the smallest p-value for downstream analysis based on the marginal Cox’s
model. Different candidate models lead to different survival prediction models. How to
define the number of cancer-related biomarkers for downstream analysis is a key and
interesting issue.

There are several public human databases, like METABRIC, TCGA, NCDB, and GEO.
These useful databases can be utilized to determine the reproducibility of our findings.
We consider that meta-analysis can be performed for discovery and validation of survival
biomarker genes (Xu et al., 2020), which is worthy of further research and will be studied in
our future work.

LIST OF ABBREVIATIONS

TCGA The Cancer Genome Atlas

ESCA esophageal carcinoma

PAAD pancreatic adenocarcinoma

HNSCC head and neck squamous cell carcinoma
LUAD lung adenocarcinoma

BRCA breast invasive carcinoma

PL partial likelihood

FAST feature aberration at survival times

SIS sure independence screening

RCDCS robust censored distance correlation screening
CRCDCS composite robust censored distance correlation screening

CINDEX Harrell’s concordance index
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IPCW inverse probability-of-censoring weighted

NPN nonparanormal

MMS minimum model size

PH proportional hazards

PO proportional odds

NOSF number of selected features

METABRIC Molecular Taxonomy of Breast Cancer International Consortium
NCDB National Cancer Database

GEO Gene Expression Omnibus
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