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A B S T R A C T   

Quantitative Structure Activity Relationship modelling methodologies need to incorporate relevant mechanistic 
information to have high predictive performance and validity. Electrophilic reactivity is a common mechanistic 
feature of skin sensitization endpoints which could be concisely characterized with electronic descriptors which 
is key to enabling the modelling of small datasets in this domain. However, quantum mechanical methodologies 
have previously featured high computational costs which would exclude the use of large datasets. Consequently, 
we investigate the use of electronic descriptors calculated using the Hartree Fock with 3 corrections (Hf-3c) 
method, a low-cost ab initio methodology that has higher chemical accuracy than previous semiempirical 
methodologies for modelling in vitro skin sensitization assay outcomes. We also model the Ames assay as a 
surrogate for determining skin sensitization outcomes. The quantum chemical descriptors calculated using the 
Hf-3c method with conductor-like polarizable continuum model (CPCM) implicit solvation found improved 
QSAR model performance for the in vitro Ames (n = 6049, 0.770 AUC), KeratinoSens (n = 164, 0.763 AUC), and 
Direct Peptide Reactivity Assay (n = 122, 0.750 AUC) datasets, with their combination producing high predictive 
performance for unseen in vivo Local Lymph Node Assay (n = 86, 0.789 AUC) and Human Repeated Insult Patch 
Test (n = 86, 0.791 AUC) assay toxicant outcomes.   

Introduction 

Skin sensitization is a toxicological endpoint that is initiated by the 
covalent chemical interactions between the toxicant and predominantly 
nucleophilic protein moieties leading to the development of lifelong 
allergic contact dermatitis following dermal chemical exposure. This 
phenomena has been characterized as the Molecular Initiating Event 
(MIE) in the skin sensitization Adverse Outcome Pathway (AOP) which 
is defined as the rate limiting event that initiates the pathway leading to 
the toxicity outcome and has been previous studied using in vitro assays 
such as the Direct Peptide Reactivity Assay (DPRA) with the aim of 
reducing or replacing the use of animal models, most predominately the 
Local Lymph Node Assay (LLNA). Previous studies have found insuffi
cient predictive performance with the use of only one assay compared to 
the “two of three” approach which involves the use of two in vitro assays 
modelling the MIE and Key Events further downstream together to 
enhance in vivo LLNA predictive performance (Benigni et al., 2016; 
Gadarowska et al., 2022; Kleinstreuer et al., 2018; Ta et al., 2021; Tung 

et al., 2018). The high predictive performance of the “two of three” 
approach has indicated the MIE and closely associated Key Events to 
have greater importance in the modelling of skin sensitization outcomes 
as including the later Key Events does not meaningfully contribute 
additional performance. 

Quantitative Structure Activity Relationship (QSAR) models are the 
foremost in silico methodology used to model toxicological outcomes. 
They have been widely used to model in vitro and in vivo toxicological 
assays for the prediction of potential toxicity in untested compounds. 
This is achieved by statistically relating properties derived from the 
chemical structure to a biological outcome. The predictive performance 
of a QSAR model depends on the quantity of chemical structures, input 
chemical representation quality, and the selection and tuning of the 
algorithm used to parameterize the input representation to the toxico
logical outcome. All three factors are key to generating QSAR models 
that feature high predictive performance. The applicability domain de
fines the limits of a QSAR model and can be used to assess whether a 
model can be applied to a new compound. Establishing the applicability 
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domain is not straightforward and may be established using one of 
several similarity measures based on molecular descriptors. 

The limited data availability for skin sensitization in vitro assays has 
been challenging for the application of in silico methodologies to support 
the aim of reducing or replacing the use of in vivo LLNA assays (Hoff
mann et al., 2018; Wang et al., 2017). This would restrict the applica
bility domain of any global QSAR model, which is the defined chemical 
space for which QSAR model predictions are reliable. Current skin 
sensitization models exhibit poor predictive performance for untested 
chemicals of toxicological concern, such as pesticides (Braeuning et al., 
2018). The development of a global QSAR that is predictive for in vivo 
outcomes is important following the European ban on the use of animal 
assays in cosmetics. To that end, this project will implement extensive 
modifications to the conventional QSAR modelling methodology to 
address data availability limitations. 

Mutagenicity features substantial mechanistic similarity with the 
MIE in skin sensitization toxicity outcomes by sharing similar electro
philic covalent interactions between the toxicant and biological target 
(Ashby et al., 1993) such as Michael addition for covalent bonding to 
epidermal proteins (Enoch et al., 2008) that can also be present in Ames 
mutagenicity (Townsend and Grayson, 2020). This is supported by the 
high concordance between the in vitro Ames mutagenicity assay and the 
in vivo LLNA skin sensitization assay outcomes (Patlewicz et al., 2010; 
Wolfreys and Basketter, 2005). Patlewitcz et al., further supports the 
relevance of reactions comprised within mutagenic effects with the in
clusion of the same reaction types as the first step in their workflow 
summarising testing and assessment strategies for identifying indirectly 
acting sensitizers (Patlewicz et al., 2016). The use of Ames mutagenicity 
information to assist in detection of skin sensitisers is further supported 
by its inclusion in the OECD guidance document on reporting of defined 
approaches and individual information sources to be used within inte
grated approaches to testing and assessment (IATA) for skin sensitisation 
(OECD, 2016). The key difference is the orders of magnitude greater 
data availability of the Ames mutagenicity assay compared to in vitro 
skin sensitization assays in the AOP recognized by regulatory authorities 
(Hansen et al., 2009). This presents an opportunity to investigate the 
viability of using the abundant Ames mutagenicity data as a surrogate 
for the limited available in vitro skin sensitization data in building high 
performance QSAR models for predicting in vivo skin sensitization out
comes. This project hypothesizes a computational QSAR model of the 
Ames assay can reproduce the in vitro concordance rate while addressing 
the applicability domain limitations with current QSAR models of skin 
sensitization assays. 

While previous work found chemical reactivity to be the key deter
minant in the solicitation of the immune response (Enoch and Roberts, 
2013), the use of in silico methodologies to mechanistically study 
chemical reactivity from first principles have been limited due to the 
high computational costs, low throughput, and limited chemical appli
cability. Quantum mechanics is the only theory that could explain the 
inherent reactivity of a potential toxicant which could be used to derive 
relevant descriptors. This approach would produce a chemical repre
sentation that would feature relatively few dimensions as the chemical 
reactivity is directly quantified which reduces model complexity to 
improve generalizability. This project aims to investigate chemical 
representations derived from quantum mechanical calculations. 

Quantum mechanical descriptors readily quantify the reactivity of a 
molecule which is a determinant of the mechanisms of toxicity for both 
skin sensitization and genotoxicity (Chipinda et al., 2011). These de
scriptors are calculated from the electronic properties of a ground state 
molecular structure using ab initio computational chemistry methodol
ogies. Quantum mechanical descriptors derived from the molecular or
bitals such as the Lowest Unoccupied Molecular Orbital (LUMO) energy 
and polarization have seen extensive use in previous toxicological QSAR 
studies (Can et al., 2013; Kostal and Voutchkova-Kostal, 2016; Pandith 
et al., 2010). The level of theory, basis set, and input structure used in 
computational chemistry methodologies determines the precision of the 

calculated quantum mechanical descriptor. 
While quantum mechanical descriptors have shown high predictive 

power in past studies, their use has been restricted to small datasets 
owing to their high computational cost. Many previous studies have 
used rudimentary semiempirical or Hartree Fock methodology imple
mentations with small basis sets to reduce computational cost at the 
expense of a restricted chemical space and descriptor robustness (Can 
et al., 2013; Puzyn et al., 2008). The development of a quantum me
chanical descriptor set that could reliably be used for a diverse chemical 
space is desirable for constructing robust QSAR models of toxicological 
datasets as it directly models the covalent interactions that form the 
mechanistic basis of skin sensitization. This approach might mitigate the 
problem of predicting outcomes for molecules outside the applicability 
domain. Previous implementations of these descriptors utilize the mo
lecular structure optimized in the gas phase without implicit or explicit 
solvation to avoid the computational cost of incorporating solvation. 
However, this reduces the biological relevance of the calculated quan
tum mechanical descriptors which could in turn reduce the resulting 
model performance and reliability. Previous studies using quantum 
mechanical descriptors in toxicological QSAR models feature narrow 
applicability due to the computational cost of molecular characteriza
tion using quantum methodologies. 

Contemporary computational chemistry has developed sufficiently 
to address previous limitations of using quantum mechanical de
scriptors. These developments include the “low-cost” Hartree Fock with 
three corrections (Hf-3c) method that incorporates dispersion correc
tions to account for van Der Waals forces, and the use of an optimized 
basis set that can be used to calculate quantum mechanical descriptors 
across the periodic table with lower computational cost compared to the 
conventional Hartree Fock method (Sure and Grimme, 2013). Addi
tionally, solvation could be readily incorporated using implicit solvation 
models which simulate the bulk polarization effects of solvation while 
omitting the explicit inclusion of solvent molecules to reduce compu
tational cost. High concordance with experimental results has been 
achieved with implicit solvation models for simulating condensed phase 
chemical milieus (Barone and Cossi, 1998; Marenich et al., 2009; Silva 
et al., 2016). The incorporation of these developments into a quantum 
mechanical descriptor implementation is hypothesized to enhance 
model reliability and prediction performance and simplify model 
mechanistic interpretation in the toxicological domain. 

This project implements quantum mechanical descriptors using the 
Hf-3c method with and without aqueous CPCM implicit solvation for 
modelling skin sensitization and Ames mutagenicity datasets. These 
predictive models are evaluated on in vivo LLNA outcomes compared to 
conventional descriptors, existing skin sensitization QSAR models, and 
the in vitro Ames assay. The applicability of using the Ames assay as a 
surrogate skin sensitization QSAR model data source will also be 
investigated and compared with in vitro Ames assay results. It is neces
sary to remove manual model optimization to avoid investigator bias 
since this project assesses and compares quantum mechanical and con
ventional descriptors through QSAR model performance. To that end, an 
automated machine learning methodology using the TPOT library was 
adopted to conduct all data transformation and scaling, machine 
learning algorithm selection, and hyperparameter tuning to produce a 
pipeline for each dataset and descriptor variant. Lastly, the highest 
performing in silico model produced in this project will be compared to 
the in vivo Local Lymph Node Assay in their prediction of in vivo Human 
Repeat Insult Patch Test (HRIPT) outcomes to characterize in silico skin 
sensitization QSAR models in the wider context and to guide future 
development efforts. 

Materials and methods 

Dataset preparation 

The following datasets were obtained for each toxicity outcome: 
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1. Ames Mutagenicity. The Hansen Ames Mutagenicity Benchmark 
dataset (Hansen et al., 2009) was selected with all 6512 chemicals 
and binary Ames assay outcomes. This dataset comprised results 
labeled as four sources, CCRIS (2542), VITIC (1197), EPA (2747), 
and 26 from GENETOX. In the Hansen paper they assert that Ames 
data are generally affected by an error rate of around 15 % in terms 
of interlaboratory reproducibility but that the CCIRS data is more 
likely to be only around 11 % in accordance with a study by Kazius 
et al. (2005). A recent study by Li et al., examined the Hansen dataset 
comparing it with the training data for the second Ames/QSAR in
ternational challenge from the Division of Genetics and Mutagenesis, 
National Institute of Health Sciences, Japan (Li et al., 2023). They 
found 175 overlapping molecules in the Hansen dataset and of these 
25 had discordant results. This roughly corresponds to the 85 % 
reproducibility rate observed in laboratory Ames data (Kamber et al., 
2009). 

2. KeratinoSens (KRS). A 164 chemical dataset with binary Kera
tinoSens assay results was extracted from the Skin Sensitization 
Database (SkinSensDB) published on 19 October 2017 (Wang et al., 
2017).  

3. Direct Peptide Reactivity Assay (DPRA). 122 chemicals from the 
Cosmetics Europe database were selected with categorical DPRA 
outcomes and assigned mechanistic domains (Hoffmann et al., 
2018). In vivo Human Repeat Insult Patch Test (HRIPT) and corre
sponding LLNA outcomes were also extracted from this database. 
The six HRIPT outcome categories were quantized to binary quali
tative (positive, negative) and ternary ordinal (none, weak, strong) 
skin sensitization categories.  

4. Skin Sensitization (SKS). A 92 chemical dataset was composed with 
structures, mutagenicity, and LLNA skin sensitization toxicity out
comes from Patlewicz et al. (2010) and held out as an external 
validation dataset. 

Dataset curation 

All SMILES structures of each dataset were curated with the removal 
of salts and solvents, neutralization of charges and the addition of 
explicit hydrogens using Standardizer 18.22.0, 2019, ChemAxon (https: 
//www.chemaxon.com/). A KNIME (Berthold et al., 2008) workflow 
was used to convert all two-dimensional structures to 3D with initial 3D 
structures generated by OpenBabel (O’Boyle et al., 2011) and optimized 
with the Universal Force Field for 50,000 steps with the RDKit nodes 
(Landrum). OpenBabel was then used to convert the SDF file to MOL2 
format files for quantum chemical descriptor calculation. 

Conventional descriptor calculation 

The Mordred 1.1.2 Python library (Moriwaki et al., 2018) was used 
to calculate 1,825 molecular descriptors from the 3D structures for each 
dataset. Feature selection was conducted using the CfsSubsetEval filter 
implemented in the Weka 3.9.3 machine learning program (Witten 
et al., 2016). 

Quantum mechanical descriptor calculation 

A performance optimized fork of the MaPhi descriptor package was 
implemented with Cython (Behnel et al., 2011) and parallelization 
(Moritz et al., 2018). This modified MaPhi package was configured to 
further optimize the geometry of each structure at the PM7 level of 
theory using the MOPAC2016 semiempirical chemical program (Stew
art, 2016) before further calculation. 21 quantum chemical descriptors 
were then calculated for each dataset at the Hf-3c level of theory (Sure 
and Grimme, 2013) either in vacuum or with aqueous implicit solvation 
using the Conductor-like Polarizable Continuum Model (Barone and 
Cossi, 1998) within the Orca 4.2.0 computational chemistry program 
(Neese, 2012, 2018). This MaPhi fork has been made available at 

https://github.com/IamDavyG/FasterMaPhi. 

Applicability domain analysis 

The applicability domain of the Ames, KeratinoSens, and DPRA 
modelling datasets were assessed against the SKS dataset that was to be 
used for external validation. This project selected the distance from 
centroid (dist. centroid), leverage, fixed and variable kNN measures 
implemented in the Applicability Domain Toolbox (Sahigara et al., 
2014; Sahigara et al., 2012) in MATLAB 2019b (The MathWorks, 2019) 
to quantify the applicability domain between each corresponding 
dataset variant. An additional unified AD measure consisting of only 
counting chemicals that were within all four measures was implemented 
to provide an aggregated and conservative AD estimate (Eq. (1)). 

For each dataset descriptor combination : Unified AD

= ADDist. Centroid

⋂
ADLeverage

⋂
ADFixed kNN

⋂
ADVariable kNN (1)  

Machine learning methodology 

The TPOT Python library (Le et al., 2019; Olson et al., 2016a; Olson 
et al., 2016b) automated the optimization of toxicological models using 
Darwinian evolutionary theory for each dataset. This was achieved by 
the generation of an initial population of 100 model configurations that 
differed in dataset preprocessing and machine learning algorithm. All 
model configurations for each dataset were trained and scored using 
ROC AUC from 10-fold cross validation with the worse performing half 
of the population removed. Additional models are generated with 
crossover, where models combine configurations, mutation, where 
model configuration parameters randomly change, and reinitialized 
from scratch, up to the original 100 model configuration population. 
This concludes and increments a single generation, with further model 
training repeating this process. The optimization process is carried out 
for 10 generations. 

QSAR model combination 

Three QSAR model combinations were composed by averaging the 
prediction probabilities output from each individual QSAR generated 
using Hf-3c CPCM descriptors. These three variants consisted of aver
aging: all three QSAR models, only the DPRA and KeratinoSens QSARs 
to replicate the literature, and only the Ames mutagenicity and Kera
tinoSens QSAR model outputs. 

Additional performance enhancement 

The unified AD measure (Equation (1) was used to compose SKS 
external validation dataset subsets that only include predictions for 
molecules considered to be within the applicability domain of each 
combined QSAR model described above. Threshold values for assigning 
the binary positive/negative class on the model output probability 
values were also optimized and compared to the naïve 0.5 threshold. 
These values were manually optimized for balanced accuracy by 
selecting threshold values between 0.35 and 0.65 in 0.01 increments. 

CAESAR positive control 

The CAESAR Skin Sensitization QSAR model version 2.1.6 
(Chaudhry et al., 2010) in the VEGA in silico platform version 1.1.5 
evaluated the SKS external validation dataset to provide a baseline for 
model performance comparison. The integrated Applicability Domain 
Index was used with a 0.8 threshold value to select a subset of SKS 
external validation dataset predictions that were considered within the 
applicability domain of this model. 
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Permutation feature importance analysis for model interpretation 

Permutation feature importance analysis assessed the contribution of 
each Hf-3c descriptor, both vacuum and solvated variants for each in 
vitro dataset, in predicting the external validation dataset. The eli5 
0.10.1 Python library was used to iteratively shuffle each descriptor 
column of the external validation molecules which were predicted 
again; the change in external validation ROC AUC signified the relative 
importance weight of that shuffled descriptor. This process was repeated 
20 times for each in vitro dataset and quantum mechanical descriptor 
pair, with the mean weight of each descriptor used to rank their relative 
contributions. 

Binary to ternary QSAR model output conversion 

The probability output of the Hansen Ames, KeratinoSens, and DPRA 
Hf-3c CPCM QSAR models was arithmetically averaged to generate 
combined model predictions for predicting HRIPT outcomes before two 
thresholds were chosen to enable the current models to produce a 

ternary output. They consisted of a non-sensitizing classification if the 
averaged probability was below 0.33, weak sensitizers between 0.33 and 
0.66, and strongly sensitizing if 0.66 probability was exceeded. 

Results 

Outline 

This study assessed the feasibility of quantum mechanical descriptors 
calculated using the Hf-3c level of theory compared to conventional 
molecular modelling-derived descriptors as chemical representations in 
QSAR models for two small skin sensitization assay datasets and one 
large Ames mutagenicity assay dataset. This consisted of comparing the 
proportion of each dataset for which quantum mechanical descriptors 
could be calculated to conventional descriptors and visualizing the 
resulting chemical space. The predictive concordance between the LLNA 
outcomes in the SKS external validation dataset and the Ames mutage
nicity, KRS, and DPRA skin sensitization QSAR model predictions were 
characterized and compared to CAESAR, an established QSAR model 
known to be predictive for skin sensitization outcomes. A comparison 
between the current in silico models and the in vivo LLNA assay for 
predicting in vivo HRIPT outcomes is also presented. 

Exploratory data analysis 

Both Hf-3c quantum mechanical representations in vacuum and 
CPCM solvation feature a lower yield of molecules for which descriptors 
could be calculated compared to conventional Mordred descriptors 
(Table 1). This difference is most substantial in the Hansen Ames dataset 
with the greatest difference of 451 between the Hf-3c CPCM and 

Table 1 
Summary of the datasets and the total number of molecules before and after 
descriptor calculation.    

Chemical Representations (% Total) 

Dataset n Hf-3c vacuum Hf-3c CPCM Mordred PM7 

Hansen Ames 6512 6361 (97.7 %) 6049 (92.9 %) 6450 (99.0 %) 
SSDB KeratinoSens 164 161 (98.2 %) 160 (97.6 %) 161 (98.2 %) 
CosEU DPRA 122 110 (90.2 %) 109 (89.3 %) 111 (91.0 %) 
ExtVal SKS 92 87 (94.6 %) 86 (93.5 %) 88 (95.7 %)  

Fig. 1. Chemical space of the Ames (yellow), DPRA (teal), KeratinoSens (green), and SKS (navy) datasets with Hf-3c descriptors calculated in vacuum visualized 
using UMAP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Mordred datasets. The other datasets show a smaller difference with Hf- 
3c vacuum descriptors yielding one molecule less than Mordred de
scriptors in the DPRA and SKS datasets while having the same yield in 
the KeratinoSens dataset. The Hf-3c CPCM descriptors feature one less 
molecule compared to the Hf-3c vacuum descriptors on the Kera
tinoSens, DPRA, and SKS datasets. 

Chemical space visualization 

The chemical space of each descriptor type was visualized by 
transforming the descriptors from each dataset to two dimensions using 
UMAP analysis. The chemical space of the Hansen Ames dataset is 
substantially larger than those of all the other datasets in this project for 
all descriptor types (Figs. 1, 2, and 3). The chemical space of this dataset 
also covers all the datasets indicating all the other datasets are quali
tatively within the applicability domain of models constructed from this 
dataset. The KeratinoSens, DPRA, and SKS datasets are dispersed 
throughout the chemical space with many singletons that do not feature 
chemicals from other datasets nearby for all descriptor types. 

Automated model training results 

Most models achieved similar internal validation performance across 
descriptor types for each dataset (Table 2). The Hf-3c CPCM descriptor 
type had lower model performance for the Ames and DPRA datasets and 
the best model performance in the KeratinoSens dataset compared to Hf- 
3c vacuum descriptors. Models based on Mordred descriptors achieved 
the best training performance in the remaining Ames and DPRA 
datasets. 

External validation performance 

The performance of both the Hf-3c quantum chemical descriptor 
variants and the DPRA Mordred descriptor models in classifying the 
LLNA outcomes in the SKS external validation dataset was better than 
random (ROC AUC 95 % CI > 0.5 (Table 3)) and visualized in Fig. 6. Hf- 
3c descriptors calculated with CPCM implicit solvation achieved the best 
SKS external validation classification performance in the models using 
the Hansen Ames (0.744 ROC AUC) and DPRA (0.705 ROC AUC) data
sets (Table 3). A statistically significant difference in model performance 
between the Hf-3c CPCM and Mordred descriptors was found in the 
Ames dataset (bold values in Table 3) and visualized in Fig. 4. Models 
using Hf-3c descriptors calculated in vacuum showed inconsistent per
formance with the best external validation performance using the Ker
atinoSens dataset (0.701 ROC AUC), comparable to the Hf-3c CPCM 
descriptors in Hansen Ames (0.730 ROC AUC) and the DPRA datasets 
(0.688 ROC AUC). Mordred descriptors ranked last in external valida
tion performance in the Ames (0.509 ROC AUC) and KeratinoSens 
(0.530 ROC AUC) datasets with lower performance than the Vega 
CAESAR model (0.633 ROC AUC) and shown in Figs. 4 and 5. 

Both Hf-3c descriptor variants produced models that outperformed 
models using Mordred descriptors trained on the Hansen Ames and 
KeratinoSens datasets in terms of balanced accuracy at a naïve 0.5 
probability threshold (Table 4). The model using Mordred descriptors 
and the DPRA dataset found the higher performance at a naïve 0.5 
probability threshold (Table 4). Selecting molecule predictions that 
were considered within the applicability domain of each model gener
ally increased performance by between 1 and 2 % balanced accuracy. 
There were two exceptions to this trend where only including molecules 
inside the applicability domain reduced performance with the Hf-3c 

Fig. 2. Chemical space of the Ames (yellow), DPRA (teal), KeratinoSens (green), and SKS (navy) datasets with Hf-3c descriptors with CPCM implicit solvation 
visualized using UMAP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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vacuum descriptor set on KeratinoSens dataset reducing balanced ac
curacy by 0.5 % and the Mordred DPRA model that lost 6.2 % balanced 
accuracy (Table 4). 

Applicability domain analysis 

All descriptor types found high applicability domain scores for all 
three modelling datasets compared to the SKS external validation 
dataset (Tables 5, 6, and 7). There was a trend with reduced scores for 
smaller datasets (Table 6 and 7) compared to the Hansen Ames dataset 
(Table 5). The KeratinoSens dataset represented with Hf-3c vacuum 
descriptor set is an exception to this trend with a higher Unified AD 
Measure score (Table 6) than the corresponding Hansen Ames variant 
(Table 5) owing to the identification of the same molecules deemed to be 
out of the applicability domain across different measures. 

Combined model performance 

The combination of multiple models using the average of their 
output probabilities improved external validation performance over the 
performance of the individual model constituents in ROC AUC point 
estimates (Table 8, Fig. 7). Consideration of the applicability domain 
further improved combined model performance for DPRA and Kera
tinoSens and the “all” model combinations and the Ames and Kera
tinoSens models (Table 8, Fig. 8). The Vega CAESAR model found a 
statistically significant difference compared to the in vitro Ames assay for 
predicting LLNA outcomes for the entire SKS dataset. CAESAR model 
performance improved when the applicability domain was taken into 
consideration. However, this performance was still lower than the point 

Fig. 3. Chemical space of the Ames (yellow), DPRA (teal), KeratinoSens (green), and SKS (navy) datasets with Mordred descriptors visualized using UMAP. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
10-fold cross validation model training performance (ROC AUC) for TPOT 
pipelines of each dataset and descriptor type.   

Chemical Representations 

Dataset Hf-3c vacuum Hf-3c CPCM Mordred 

Hansen Ames  0.858  0.770  0.893 
SSDB KeratinoSens  0.760  0.763  0.716 
CosEU DPRA  0.762  0.750  0.793  

Table 3 
External validation classification performance (ROC AUC [95 % CI], bold ¼
non-overlapping CI) of each model for predicting the SKS dataset.   

Chemical Representations CAESAR 

Dataset Hf-3c vacuum Hf-3c CPCM Mordred 

Ames 0.730 [0.626, 
0.834] 

0.744 [0.642, 
0.846] 

0.509 [0.389, 
0.629] 

– 

KRS 0.701 [0.592, 
0.810] 

0.683 [0.572, 
0.794] 

0.530 [0.409, 
0.651] 

– 

DPRA 0.688 [0.578, 
0.798] 

0.705 [0.597, 
0.813] 

0.664 [0.550, 
0.778] 

– 

CAESAR – – – 0.633 [0.504, 
0.762]  

Mean 
AUC 

0.706 0.711 0.568 –  
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Fig. 4. ROC curves for models based on the Hansen Ames dataset using Hf-3c vacuum (orange), Hf-3c CPCM (blue), or Mordred descriptors (yellow) and the Vega 
CAESAR model (green dotted) predicting the SKS external validation dataset. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 5. ROC curves for models based on the KeratinoSens dataset using Hf-3c vacuum (orange), Hf-3c CPCM (blue), or Mordred descriptors (yellow) and the Vega 
CAESAR model (green dotted) predicting the SKS external validation dataset. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Fig. 6. ROC curves for models based on the DPRA dataset using Hf-3c vacuum (orange), Hf-3c CPCM (blue), or Mordred descriptors (yellow) and the Vega CAESAR 
model (green dotted) predicting the SKS external validation dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 4 
Performance statistics (%) for predicting LLNA outcomes in the SKS external 
validation dataset for each model of the Hansen, KeratinoSens, and DPRA 
dataset represented using conventional Mordred, or Hf-3c quantum mechanical 
descriptors in vacuum or with aqueous CPCM solvation.  

Dataset Representation Variant Sensitivity Specificity Balanced 
Accuracy 

Ames Hf-3c CPCM Global  60.0  82.9  71.5 
Inside 
AD  

61.5  82.9  72.2 

Hf-3c Vacuum Global  48.9  85.4  67.1 
Inside 
AD  

51.2  86.5  68.8 

Mordred Global  62.2  29.3  45.7 
Inside 
AD  

62.2  30.0  46.1  

KRS Hf-3c CPCM Global  93.3  24.4  58.9 
Inside 
AD  

94.6  24.4  59.5 

Hf-3c Vacuum Global  84.4  24.4  54.4 
Inside 
AD  

84.1  23.7  53.9 

Mordred Global  64.4  39.0  51.7 
Inside 
AD  

66.7  40.6  53.6  

DPRA Hf-3c CPCM Global  71.1  43.9  57.5 
Inside 
AD  

72.2  45.0  58.6 

Hf-3c Vacuum Global  71.1  41.5  56.3 
Inside 
AD  

70.7  45.5  58.1 

Mordred Global  80.0  51.2  65.6 
Inside 
AD  

79.5  39.3  59.4  

Table 5 
Quantitative applicability domain comparison for the Hansen Ames dataset 
represented using Hf-3c vacuum, Hf-3c CPCM, and Mordred descriptors 
compared to the corresponding SKS external validation dataset variant.  

AD Measure Hf-3c vacuum (%) Hf-3c CPCM (%) Mordred (%) 

Dist. Centroid  94.2  94.2 100 
Leverage  98.8  98.8 98.8 
Fixed kNN  98.8  98.8 100 
Variable kNN  95.3  96.5 100 
Unified AD Measure  89.5 (n = 77)  91.9 (n = 80) 98.8 (n = 85)  

Table 6 
Quantitative applicability domain comparison for the KeratinoSens dataset 
represented using Hf-3c vacuum, Hf-3c CPCM, and Mordred descriptors 
compared to the corresponding SKS external validation dataset variant.  

AD Measure Hf-3c vacuum (%) Hf-3c CPCM (%) Mordred (%) 

Dist. Centroid  95.3  95.3  98.8 
Leverage  96.5  95.3  86.0 
Fixed kNN  97.7  96.5  97.7 
Variable kNN  97.7  96.5  95.3 
Unified AD Measure  94.2 (n = 81)  90.7 (n = 78)  84.9 (n = 73)  

Table 7 
Quantitative applicability domain comparison for the DPRA dataset represented 
using Hf-3c vacuum, Hf-3c CPCM, and Mordred descriptors compared to the 
corresponding SKS external validation dataset variant.  

AD Measure Hf-3c vacuum (%) Hf-3c CPCM (%) Mordred (%) 

Dist. Centroid  95.3  96.5  96.5 
Leverage  93.0  93.0  83.7 
Fixed kNN  96.5  97.7  94.2 
Variable kNN  89.5  94.2  84.9 
Unified AD Measure  83.7 (n = 72)  88.4 (n = 76)  76.7 (n = 66)  
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estimate of any combined model variants (Table 8, Figs. 7 and 8). The in 
vitro Ames assay was the most predictive for LLNA outcomes of the SKS 
external validation dataset with a ROC AUC point estimate of 0.828 
(Table 8, Figs. 7 and 8). 

The external validation balanced accuracy results of all models did 
not follow the rank order demonstrated in the ROC AUC results (Table 8) 
when predicting on all SKS molecules (Table 9). Most combined models 
and the Vega CAESAR model found performance improvements after 
molecules were selected within the applicability domain; however, the 
effect was greater in Vega CAESAR with an 8.9 % increase in balanced 
accuracy compared to up to 3.3 % for the combined models (Table 9). 
This resulted in the Vega CAESAR model achieving 71.9 % balanced 

accuracy at the expense of only classifying 47 molecules compared to at 
least 74 molecules being within the applicability domain of the com
bined models (Table 9). The single exception was the Ames and Kera
tinoSens combined model which found a performance decrease of − 1.0 
% balanced accuracy after selecting molecules inside the applicability 
domain (Table 9). Threshold tuning improved performance for all 
combined models with a larger effect than considering the applicability 
domain only, with up to 11.7 % balanced accuracy improvement 
observed for the DPRA and KeratinoSens combined model (Table 9). The 
in vitro Ames assay featured the highest balanced accuracy at 82.8 % 
followed with the applicability domain-controlled combination of all Hf- 
3c models with threshold tuning at 74.6 % balanced accuracy. 

LLNA prediction permutation feature importance analysis 

The three highest ranked Hf-3c CPCM descriptors (hardness, LUMO, 
and HOMO) are conserved between the DPRA and KeratinoSens datasets 
(Table 10). Some of these descriptors also ranked in the top three when 
calculated at the Hf-3c vacuum level of theory in the Ames and Kera
tinoSens datasets sharing hardness. The Hf-3c vacuum variant of the 
LUMO molecular orbital descriptor was present in the DPRA dataset 
with the KeratinoSens dataset featuring HOMO in the top three ranking 
descriptors. The Ames dataset for both descriptor variants share HOMO- 
1 molecular orbital and are largely distinct from the DPRA and Kera
tinoSens datasets. 

Human repeated Insult Patch Test (HRIPT) prediction performance 

The in silico Ames and combined Hf-3c models found a statistically 
significant difference in ROC AUC performance when predicting HRIPT 

Table 8 
External validation performance (ROC AUC [95 % CI], bold ¼ non-over
lapping CI) for Hf-3c CPCM models combined by averaging the prediction 
probabilities for all datasets, the DPRA and KeratinoSens, or Ames and Kera
tinoSens datasets, and the Vega CAESAR model for the entire SKS dataset 
(Global) or only within the applicability domain (Inside AD) alongside in vitro 
Ames assay performance.  

Model Combination Global Inside AD In vitro 
Ames 

All (Hf-3c CPCM) 0.789 [0.685, 
0.893] 

0.806 [0.712, 
0.900] 

– 

DPRA + KRS (Hf-3c 
CPCM) 

0.760 [0.660, 
0.860] 

0.764 [0.657, 
0.871] 

– 

Ames + KRS (Hf-3c 
CPCM) 

0.770 [0.672, 
0.868] 

0.777 [0.674, 
0.880] 

– 

Vega CAESAR 0.633 [0.504, 
0.762] 

0.669 [0.481, 
0.857] 

– 

In vitro Ames – – 0.828  

Fig. 7. ROC curves depicting external validation performance of the combined models using Hf-3c descriptors averaging model prediction probabilities for all 
models (orange striped), the combined DPRA and KeratinoSens models (yellow striped), and the combined Ames and KeratinoSens models (blue striped). The Vega 
CAESAR model (green dotted) and in vitro Ames assay (purple striped) for classifying the entire SKS dataset are also shown. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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compared to in vivo LLNA outcomes (Table 11), with the Combined 
model finding the best binary skin sensitization prediction performance 
(Table 11, Fig. 9). The in vivo LLNA is more predictive for ternary out
comes compared to the combined model (Table 12). 

Discussion 

This study examined the use of quantum mechanical descriptors to 
improve skin sensitization and mutagenicity QSAR model performance 
for the prediction of in vivo LLNA outcomes for a set of unseen chemicals. 

QSAR models based on the Hansen Ames mutagenicity benchmark 
dataset demonstrated high predictive performance for predicting in vivo 
skin sensitization outcomes when used in conjunction with Hf-3c 
quantum mechanical descriptors calculated in vacuum or with CPCM 
solvation. Neither Hf-3c descriptor variant could produce QSAR models 
with statistically significant predictive performance (Table 3) compared 
to the actual in vitro Ames mutagenicity assay results (Table 8). How
ever, the Hf-3c descriptor variant with aqueous solvation showed a 
statistically significant difference compared to conventional descriptors 
(Table 3). Although beyond the scope of the present study, we also found 
0.843 ROC AUC for the Hf-3c with CPCM solvation Ames QSAR model 
when predicting the Ames mutagenicity outcomes included within the 
SKS external validation dataset. This is close to the 84 % interlaboratory 
reproducibility of the in vitro Ames mutagenicity assay itself (Benigni 
and Bossa, 2011; Piegorsch and Zeiger, 1991). 

The pure in silico “2 of 3” implementation in this project, combining 
the DPRA and KeratinoSens QSAR models, found similar performance to 
the “2 of 3” defined approach implemented using in vitro assay results 
from the literature (Kleinstreuer et al., 2018). Together, these three 
findings show QSAR models can become computational facsimiles of in 
vitro assays when given abundant data, appropriate features that 

Fig. 8. ROC curves depicting applicability domain-controlled external validation performance of the combined models using Hf-3c CPCM descriptors averaging 
model prediction probabilities for all models (orange striped), the DPRA and KeratinoSens models (yellow striped), or the Ames and KeratinoSens models (blue 
striped), followed by the Vega CAESAR model (green dotted) and in vitro Ames assay (purple striped) for classifying a subset of the SKS dataset. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 9 
External validation performance statistics (%) for the combined Hf-3c CPCM 
models averaging the prediction probabilities of all models, DPRA and Kera
tinoSens models, and Ames and KeratinoSens models for predicting all 86 SKS 
molecules (Global), a subset within the applicability domain (Inside AD), and 
with threshold probability tuning compared to the Vega CAESAR model and in 
vitro Ames assay.  

Model Variant Sensitivity Specificity Balanced 
Accuracy 

All (Hf-3c CPCM) Global  84.4  51.2  67.8 
Inside AD (n 
= 74)  

85.3  52.5  68.9 

T = 0.59 
Inside AD  

61.8  87.5  74.6  

DPRA + KRS (Hf- 
3c CPCM) 

Global  91.1  24.4  57.8 
Inside AD (n 
= 76)  

91.7  25.0  58.3 

T = 0.61 
Inside AD  

75.0  65.0  70.0  

Ames + KRS (Hf-3c 
CPCM) 

Global  73.3  65.9  69.6 
Inside AD (n 
= 76)  

71.4  65.9  68.6 

T = 0.54 
Inside AD  

60.0  78.0  69.0  

Vega CAESAR Global  95.9  30.0  63.0 
Inside AD (n 
= 47)  

96.2  47.6  71.9  

In vitro Ames − 77.8  87.8  82.8  
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describe mechanistic details within the solvated biological milieu, more 
rigorous automated model optimization methodologies, and consider
ation of the applicability domain. 

While models based on quantum mechanical descriptors for either 
DPRA or KeratinoSens datasets did not show statistically significant 
performance improvements compared to conventional Mordred de
scriptors, their combination with the Ames QSAR model resulted in the 

highest LLNA predictive performance of any computational model in 
this project at 0.806 ROC AUC. This is comparable to existing read 
across models for the LLNA which feature 0.805 and 0.837 ROC AUC 
(Tung et al., 2018). Furthermore, the substitution of the DPRA QSAR 
model with the Ames QSAR model in the computational implementation 
of the “2 of 3” approach only produced marginally improved perfor
mance relative to the substantially increased number of chemicals. This 
indicates the DPRA dataset with Hf-3c CPCM features may include 
mechanistic information that is less readily accessible to the Ames 
mutagenicity assay. These findings show the small skin sensitization 
assay datasets that are currently available can still be used construc
tively to improve skin sensitization QSAR models in combination with 
the Ames mutagenicity QSAR model. 

Most individual and combined QSAR models developed in this 
project display slightly increased performance when the applicability 
domain was taken into consideration compared to the Vega CAESAR 
model. CAESAR was selected as the best performing QSAR model that 
currently exists in the public domain (Braeuning et al., 2018), however, 
the exclusion of molecules that are outside the applicability domain was 
essential for CAESAR to perform comparably to the in vitro Ames assay 
without statistically significant difference (Table 8). This indicates the 

Table 10 
Permutation feature importance rankings for both Hf-3c descriptor variants calculated in vacuum or with CPCM solvation for predicting the external validation dataset, 
higher rank (darker greeen and lower value i.e. from 1st rank down) indicates greater relative contribution to LLNA prediction. Quantum mechanical descriptor 
families include reactivity (REACT), molecular orbital (MO), polarization (POLAR), and total energy (ENERGY).  

Table 11 
HRIPT binary outcome prediction performance (ROC AUC [95 % CI], * = sig
nificant difference vs LLNA) for the LLNA, individual Hf-3c CPCM models, and 
the combined model averaging the prediction probabilities from each individual 
model on the molecules for the entire CosEU dataset without filtering for the 
applicability domain.  

Model Type ROC AUC [95 % CI] 

LLNA In vivo 0.674 
Ames (Hf-3c CPCM)* In silico 0.765 [0.718, 0.813] 
KRS (Hf-3c CPCM) In silico 0.641 [0.583, 0.699] 
DPRA (HF-3c CPCM) In silico 0.721 [0.672, 0.770] 
All (Hf-3c CPCM)* In silico 0.791 [0.749, 0.834]  
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QSAR models developed in this project are relatively less sensitive to 
applicability domain differences between the training and external 
validation datasets. The small performance difference from omitting the 
applicability domain to predict on all chemicals is desirable for 
screening compounds for sensitizing activity where other in silico 
methods are not applicable. The current applicability domain results 
indicate the combined model (86 % balanced accuracy) is comparable to 
reported commercial TOPKAT (86 %) and CASE ULTRA (76 %) in silico 
tools (Kostal and Voutchkova-Kostal, 2016). However, this could also be 
a result of low sensitivity in the unified applicability domain quantifi
cation methodology in this project compared to the “Applicability 
Domain Index” in CAESAR used to determine whether to include or 
exclude unseen molecules. A more conservative applicability domain 
quantification methodology could be implemented in future studies to 
further increase model performance at the expense of predicting a 
smaller fraction of the external validation dataset. 

The Hf-3c quantum mechanical descriptor family was implemented 
in this project to construct QSAR models with high predictive perfor
mance while including a plausible mechanistic interpretation in accor
dance with Principle 5 of the OECD QSAR Guidelines (OECD, 2014). To 
that end, we found the high external performance from the Ames QSAR 
model may be due to improved performance against molecular steric 
factors that are not directly modelled using either quantum mechanical 

descriptor set as shown by the inclusion of the HOMO-1 and LUMO + 1 
descriptors (Table 10). These molecular orbitals are used when the 
molecule is unable to interact with the HOMO or LUMO orbitals due to 
steric hindrance (Enoch, 2010). In comparison, the HOMO and LUMO 
descriptors are ranked in the top three of the solvated Hf-3c DPRA and 
KeratinoSens datasets which may be due to their low molecular diversity 
compared to the Ames dataset as shown in Fig. 1. 

The inclusion of solvation using the implicit CPCM solvation model 
may be another factor that has resulted in the conservation of the HOMO 
and LUMO descriptors as the top ranking features for both DPRA and 
KeratinoSens datasets, in contrast to the presence of the IsotropicQuad 
and quadrupole_ZZ polarization descriptors in the Hf-3c vacuum variant 
of these datasets. Implicit solvation models represent solvated molecules 
in an electrostatic cavity that interacts with a dielectric medium 
parameterized from physicochemical descriptors which serves to 
generalize bulk solvent interactions to influence the geometry and po
larization of a ligand (Barone and Cossi, 1998). As a result, the effects of 
polarization are reduced in QSAR models using Hf-3c descriptors with 
solvation in favor of descriptors that more directly related to the 
mechanism of toxicity. This presented a small external validation per
formance improvement (Table 3) and is consistent with previous find
ings in regarding their importance for predicting toxicological outcomes 
in the related genotoxicity domain (Karelson et al., 2000). 

The omission of biotransformation is a general limitation of QSAR 
models that would more substantially affect quantum mechanical de
scriptors as they only represent the reactivity, polarization, and molec
ular orbitals of the parent structure and excludes consideration of 
metabolites. This limits QSAR model performance in chemical domains 
where biotransformation is essential for toxicity, such as aromatic 
amines with azo bonds that currently have poor concordance between in 
vitro Ames assay and their QSAR model results. Current QSAR models 
implicitly model biotransformation by using endpoints that include 
metabolism and large conventional descriptor sets with mixed results 

Fig. 9. ROC curves depicting binary HRIPT prediction performance of the individual Ames (yellow striped), KeratinoSens (blue striped), DPRA (green striped), and 
combined (orange striped) Hf-3c CPCM descriptor models for the entire CosEU dataset compared to the in vivo LLNA (purple dotted). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 12 
HRIPT ternary outcome prediction accuracy for the 
LLNA and the combined Hf-3c CPCM model on the 
entire CosEU dataset.  

Model Accuracy 

LLNA  59.6 % 
All (Hf-3c CPCM)  53.2 %  
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(Hansen et al., 2009). However, the broad availability of metabolic 
simulators in the public domain to generate potential metabolites could 
enable quantum mechanical descriptors to sort and select metabolites 
based on their reactivity (Dimitrov et al., 2016; Djoumbou-Feunang 
et al., 2019). This could aid in the construction of biologically mecha
nistic hypotheses for assessing chemotypes for skin sensitization and 
mutagenicity. Unlike conventional descriptors, the ab initio nature of the 
Hf-3c method enables descriptor calculation for charged molecules and 
radicals that constitute toxicological metabolites. The lack of parame
terization for ionic molecules in implicit solvation models has poten
tially been addressed with the recent CMIRS solvation model (Silva 
et al., 2016). In summary, biotransformation as a QSAR performance 
limitation could be addressed by explicitly modelling metabolites using 
quantum chemical descriptors coupled with recent implicit solvation 
models to enable mechanistic biological pathway construction. 

The binary in vivo HRIPT results show the highest performing in silico 
model, which is the combined model averaging all individual model 
probability outputs, can exceed the prediction performance of the in vivo 
LLNA in the Cosmetics Europe database. This is comparable with various 
other in silico methodologies that have also been capable of exceeding 
LLNA predictive performance for HRIPT outcomes (Kleinstreuer et al., 
2018). However, the current QSAR models in this project do not require 
the use of in vitro assays to produce an in silico prediction compared to 
previous Defined Approaches, enabling these QSAR models to be used 
prospectively in regulatory screening efforts at low fiscal cost. To that 
end, the QSAR models in this project fulfil the OECD QSAR Validation 
Guidelines as shown in Table 13. 

Ternary HRIPT outcomes are not currently well predicted by either in 
vivo or in silico methodologies and requires further investigation in the 
future. The performance difference between the combined model could 
be due to the naïve nature of the threshold setting or the LLNA having 
greater dynamic range from being a model with five categorical out
comes. This limitation necessitates future study as the current REACH 
regulatory regime is also an ordinal ternary categorical scale for human 
skin sensitization outcomes of none, 1B (weak), and 1A (strong). 

Conclusion 

Quantum mechanical descriptors calculated at the Hf-3c level of 
theory with aqueous CPCM implicit solvation are a novel chemical 
representation that can generate QSAR models highly predictive of 
endpoints that incorporate covalent bonding mechanisms such as skin 
sensitization and mutagenicity. The use of these descriptors with the 

Ames assay dataset produced QSAR models with equivalent external 
validation performance to the in vitro Ames mutagenicity assay for 
predicting skin sensitization. This also shows the Ames assay dataset 
could be used as a surrogate dataset in the skin sensitization domain. 

CRediT authorship contribution statement 

Davy Guan: Conceptualization, Methodology, Software, Investiga
tion, Data curation, Writing – original draft, Project administration, 
Visualization. Raymond Lui: Visualization. Slade T. Mattthews: Su
pervision, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The code used in this paper is available via Github (link in manu
script). The data was gleaned from the literature as described. 

References 

Ashby, J., Hilton, J., Dearman, R.J., Callander, R.D., Kimber, I., 1993. Mechanistic 
relationship among mutagenicity, skin sensitization, and skin carcinogenicity. 
Environ. Health Perspect. 101 (1), 62–67. https://doi.org/10.1289/ehp.9310162. 

Barone, V., Cossi, M., 1998. Quantum calculation of molecular energies and energy 
gradients in solution by a conductor solvent model. Chem. A Eur. J. 102 (11), 
1995–2001. https://doi.org/10.1021/jp9716997. 

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K., 2011. Cython: 
The best of both worlds. Comput. Sci. Eng. 13 (2), 31–39. https://doi.org/10.1109/ 
MCSE.2010.118. 

Benigni, R., Bossa, C., 2011. Alternative strategies for carcinogenicity assessment: an 
efficient and simplified approach based on in vitro mutagenicity and cell 
transformation assays. Mutagenesis 26 (3), 455–460. https://doi.org/10.1093/ 
mutage/ger004. 

Benigni, R., Bossa, C., Tcheremenskaia, O., 2016. A data-based exploration of the adverse 
outcome pathway for skin sensitization points to the necessary requirements for its 
prediction with alternative methods. Regul. Toxicol. Pharm. 78 (Supplement C), 
45–52. https://doi.org/10.1016/j.yrtph.2016.04.003. 

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., 
Thiel, K., Wiswedel, B. 2008. KNIME: The Konstanz Information Miner. In C. 
Preisach, H. Burkhardt, L. Schmidt-Thieme, & R. Decker, Data Analysis, Machine 
Learning and Applications Berlin, Heidelberg. 

Braeuning, C., Braeuning, A., Mielke, H., Holzwarth, A., Peiser, M., 2018. Evaluation and 
improvement of QSAR predictions of skin sensitization for pesticides. SAR QSAR 
Environ. Res. 29 (10), 823–846. https://doi.org/10.1080/1062936X.2018.1518261. 

Can, A., Yildiz, I., Guvendik, G., 2013. The determination of toxicities of sulphonylurea 
and phenylurea herbicides with quantitative structure–toxicity relationship (QSTR) 
studies. Environ. Toxicol. Pharmacol. 35 (3), 369–379. https://doi.org/10.1016/j. 
etap.2013.02.001. 

Chaudhry, Q., Piclin, N., Cotterill, J., Pintore, M., Price, N.R., Chrétien, J.R., 
Roncaglioni, A., 2010. Global QSAR models of skin sensitisers for regulatory 
purposes. Chem. Cent. J. 4 (Suppl 1), S5–S. https://doi.org/10.1186/1752-153X-4- 
S1-S5. 

Chipinda, I., Hettick, J.M., Siegel, P.D., 2011. Haptenation: chemical reactivity and 
protein binding. J. Allergy. 

Dimitrov, S.D., Diderich, R., Sobanski, T., Pavlov, T.S., Chankov, G.V., Chapkanov, A.S., 
Karakolev, Y.H., Temelkov, S.G., Vasilev, R.A., Gerova, K.D., Kuseva, C.D., 
Todorova, N.D., Mehmed, A.M., Rasenberg, M., Mekenyan, O.G., 2016. QSAR 
Toolbox - workflow and major functionalities. SAR QSAR Environ. Res. 27 (3), 
203–219. https://doi.org/10.1080/1062936x.2015.1136680. 

Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A., Greiner, R., Manach, C., & 
Wishart, D. S. J. J. o. C. (2019). BioTransformer: a comprehensive computational 
tool for small molecule metabolism prediction and metabolite identification [journal 
article]. 11(1), 2. https://doi.org/10.1186/s13321-018-0324-5. 

Enoch, S.J., 2010. Chapter 7 The Use of Frontier Molecular Orbital Calculations in 
Predictive Reactive Toxicology. In: In Silico Toxicology: Principles and Applications. 
The Royal Society of Chemistry, pp. 193–209. https://doi.org/10.1039/ 
9781849732093-00193. 

Enoch, S.J., Cronin, M.T.D., Schultz, T.W., Madden, J.C., 2008. Quantitative and 
mechanistic read across for predicting the skin sensitization potential of alkenes 
acting via Michael addition. Chem. Res. Toxicol. 21 (2), 513–520. https://doi.org/ 
10.1021/tx700322g. 

Table 13 
The OECD QSAR Guidelines and their methodological implementation in the 
current project.  

OECD QSAR Guideline Methodology 

A defined endpoint Binary LLNA outcomes 
An unambiguous algorithm A pipeline of data scaling and transformation 

algorithms, machine learning algorithms, and 
their hyperparameters for each dataset used 
to construct the model 

A defined domain of applicability The Applicability Domain Toolbox is used to 
assess the domain of applicability by 
comparing the unseen chemicals against 
those in the training dataset 

Appropriate measure of goodness of 
fit, robustness and predictivity 

Both internal and external validation is 
ranked with ROC AUC, an appropriate 
measure that is resistant to class imbalance 

A mechanistic interpretation, if 
possible 

The skin sensitization MIE is defined with 
non-specific covalent interactions. Quantum 
mechanics is the only theory that directly 
describes covalent interactions. The use of 
QM descriptors to quantify electronic 
properties related to reactivity readily enables 
mechanistic interpretation. See Permutation 
Feature Importance (Table 10).  

D. Guan et al.                                                                                                                                                                                                                                   

https://doi.org/10.1289/ehp.9310162
https://doi.org/10.1021/jp9716997
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1093/mutage/ger004
https://doi.org/10.1093/mutage/ger004
https://doi.org/10.1016/j.yrtph.2016.04.003
https://doi.org/10.1080/1062936X.2018.1518261
https://doi.org/10.1016/j.etap.2013.02.001
https://doi.org/10.1016/j.etap.2013.02.001
https://doi.org/10.1186/1752-153X-4-S1-S5
https://doi.org/10.1186/1752-153X-4-S1-S5
http://refhub.elsevier.com/S2666-027X(24)00036-7/h0050
http://refhub.elsevier.com/S2666-027X(24)00036-7/h0050
https://doi.org/10.1080/1062936x.2015.1136680
https://doi.org/10.1039/9781849732093-00193
https://doi.org/10.1039/9781849732093-00193
https://doi.org/10.1021/tx700322g
https://doi.org/10.1021/tx700322g


Current Research in Toxicology 7 (2024) 100183

14

Enoch, S.J., Roberts, D.W., 2013. Predicting skin sensitization potency for Michael 
acceptors in the LLNA using quantum mechanics calculations. Chem Res Toxicol 26 
(5), 767–774. https://doi.org/10.1021/tx4000655. 

Gadarowska, D., Kalka, J., Daniel-Wojcik, A., Mrzyk, I., 2022. Alternative methods for 
skin-sensitization assessment. Toxics 10 (12). https://doi.org/10.3390/ 
toxics10120740. 

Hansen, K., Mika, S., Schroeter, T., Sutter, A., ter Laak, A., Steger-Hartmann, T., 
Heinrich, N., Muller, K.R., 2009. Benchmark data set for in silico prediction of Ames 
mutagenicity. J. Chem. Inf. Model. 49 (9), 2077–2081. https://doi.org/10.1021/ 
ci900161g. 

Hoffmann, S., Kleinstreuer, N., Alépée, N., Allen, D., Api, A.M., Ashikaga, T., Clouet, E., 
Cluzel, M., Desprez, B., Gellatly, N., Goebel, C., Kern, P.S., Klaric, M., Kühnl, J., 
Lalko, J.F., Martinozzi-Teissier, S., Mewes, K., Miyazawa, M., Parakhia, R., 
Petersohn, D., 2018. Non-animal methods to predict skin sensitization (I): the 
Cosmetics Europe database. Crit. Rev. Toxicol. 48 (5), 344–358. https://doi.org/ 
10.1080/10408444.2018.1429385. 

Kamber, M., Fluckiger-Isler, S., Engelhardt, G., Jaeckh, R., Zeiger, E., 2009. Comparison 
of the Ames II and traditional Ames test responses with respect to mutagenicity, 
strain specificities, need for metabolism and correlation with rodent carcinogenicity. 
Mutagenesis 24 (4), 359–366. https://doi.org/10.1093/mutage/gep017. 

Karelson, M., Sild, S., Maran, U., 2000. Non-Linear QSAR Treatment of Genotoxicity. 
Mol. Simul. 24 (4–6), 229–242. https://doi.org/10.1080/08927020008022373. 

Kazius, J., McGuire, R., Bursi, R., 2005. Derivation and validation of toxicophores for 
mutagenicity prediction. J. Med. Chem. 48 (1), 312–320. https://doi.org/10.1021/ 
jm040835a. 

Kleinstreuer, N.C., Hoffmann, S., Alépée, N., Allen, D., Ashikaga, T., Casey, W., 
Clouet, E., Cluzel, M., Desprez, B., Gellatly, N., Göbel, C., Kern, P.S., Klaric, M., 
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