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Abstract

The blood–brain barrier (BBB) consists of highly specialized

cells including brain microvascular endothelial cells,

astrocytes, microglia, pericytes, and neurons, which act in

concert to restrict the entry of pathogens, immune cells, and

soluble molecules into the central nervous system (CNS). If

pathogens manage to cross the BBB and establish infection

within the CNS, the BBB can open in a regulated manner to

allow leukocyte transmigration into the CNS so that microbes,

infected cells, and debris can be cleared. This review highlights

how different inflammatory cytokines or signaling pathways

disrupt or enhance BBB integrity in a way that regulates entry of

neurotropic viruses into the CNS.
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Introduction
Neurotropic viruses that trigger encephalitis are a signifi-

cant cause of morbidity and mortality globally, resulting

in clinical phenotypes that range in severity from mild

cognitive impairment and memory loss to permanent

central nervous system (CNS) damage and death [1,2].

However, most patients who are infected at peripheral

sites with neurotropic viruses never develop evidence of

CNS infection [3]. Since neuroinvasion occurs in only a

small minority of infected patients, it is thought that host–
pathogen interactions and immune system responses in

peripheral organs and at the blood–brain barrier (BBB)
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prevent viruses from gaining access to and establishing

infection within the CNS.

Structure of the BBB
In 1885, Paul Ehrlich noted that dyes administered

intravenously into animals failed to enter the CNS, al-

though his initial interpretation was that the dye did not

stain the brain because of altered affinity rather than a

physical barrier [4]. In 1909, Goldmann theorized the

existence of a structural barrier in the brain because

intravenously injected trypan blue dye failed to enter

the CNS [5]. It was not until the mid-20th century when

electron microscopy studies revealed the ultrastructural

characteristics that define the BBB [6,7]. Brain microvas-

cular endothelial cells (BMECs) line post-capillary

venules and function as the primary structural component

of the BBB. BMECs closely associate with the foot

processes of astrocytes, which secrete soluble factors that

promote tight junctions and barrier integrity, pericytes,

which regulate angiogenesis, vessel integrity, and blood

flow, and microglia, which release cytokines and matrix

metalloproteinases (MMP) in response to pathogen-asso-

ciated stimuli [8–10]. Cytokines and other inflammatory

mediators secreted by these supporting cells regulate

tight junctions composition and the opening and closing

of the BBB (see below).

The use of in vitro models of the BBB in combination with

in vivo studies in small animals has advanced our under-

standing of the cellular and molecular mechanisms that

prevent viruses from disseminating into the CNS. Many

studies that have defined the contributions of cytokines to

BMEC permeability have used in vitro transwell systems

in which BMECs are cultured over supporting astrocytes

and/or pericytes (Figure 1). Colocalization of tight and

adherens junction proteins is evaluated by immunofluo-

rescence confocal microscopy, and barrier integrity is

quantitated by measuring trans-endothelial electrical re-

sistance or transit of virus/solutes across a BMEC mono-

layer [11,12��]. In vivo assessment of BBB integrity

primarily relies on the measurement of dye (e.g., fluores-

cein) or protein (e.g., immunoglobulin) permeation into

the CNS [13��].

Viral crossing of the BBB
Many viruses infect the CNS including retroviruses,

morbillivirus, picornaviruses, rhabdoviruses, flaviviruses,

bunyaviruses, alphaviruses, and coronaviruses, among

others [14]. With the exception of rabies virus, most

neuroinvasive viruses enter the CNS in a small subset
www.sciencedirect.com
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In vitro model of the BBB. Primary brain microvasulcar endothelial

cells (BMECs) are cultured in a transwell above primary astrocytes

and/or primary pericytes. Virus and/or exogenous cytokines are added

to the upper chamber followed by measurement of trans-endothelial

electrical resistance (TEER), virus crossing, and/or permeation of

solutes into the lower chamber. BMECs also can be examined by

immunofluoresence and confocal microscopy to assess expression

and colocalization of tight junction proteins, which regulate

permeability across BMEC monolayers.
of infected individuals. The host mechanisms that restrict

viruses from crossing into the CNS vary depending on the

route of entry of the particular virus.

The pathways by which individual neurotropic viruses

enter the CNS have been difficult to demonstrate with

precision. Viruses invade the CNS by either directly

crossing the BBB or by circumventing the BBB via non-

hematogenous routes of entry [15]. Pathways of direct

viral transit across the BBB include: (1) spread of viruses

across BMEC tight junctions due to high levels of

viremia and inflammation [12��]; (2) direct infection of

BMECs and transport of nascently generated viruses

across basolateral membranes [16]; and (3) a ‘Trojan

horse’ pathway in which infected leukocytes in the blood

migrate across the BBB to seed the CNS with infectious

virus [17,18]. This can occur in the context of inflamma-

tion-directed diapedesis or as part of tissue surveillance,

which occurs at low levels at baseline. Some viruses can

circumvent the BBB entirely by utilizing non-hematog-

enous routes of entry into the CNS. These mechanisms

include: (1) retrograde axonal transport of virions from

peripheral nerves into the CNS [19] and (2) infection of

the olfactory epithelium followed by transit of virus into

the CNS across the cribriform plate and infection of cells

in the olfactory bulb [20]. When considered together,

these five pathways of entry into the CNS are not

mutually exclusive and may vary depending on the

immune context or specific virus. It is plausible that
www.sciencedirect.com 
more than one pathway may be used by certain viruses.

For example, Venezuelan equine encephalitis virus can

invade the CNS via the cribriform plate, which subse-

quently triggers a delayed opening of the BBB that

allows a second wave of viral neuroinvasion directly

across the BBB [20].

Young mice are more susceptible to viral encephalitis

than adult mice, an observation that was described nearly

80 years ago [21]. Vulnerability of young mice to neuro-

tropic viruses may occur in part as a result of BBB

breakdown during viral infection, which has been

demonstrated by intravenous injection of dye and mea-

surement of permeation into the CNS [12��]. This phe-

nomenon is not limited to animal models, since human

neonates and children also are more susceptible to many

forms of viral encephalitis [1]. Age-dependent effects on

viral neuroinvasion can also be seen in the context of

viruses that are not classically considered neurotropic.

For example, old world alphaviruses including chikun-

gunya virus (CHIKV) typically cause inflammatory ar-

thritis and only rarely cause neurological disease in

adults. In the 2006 epidemic of CHIKV on La Reunion

Island, there were multiple cases of neuroinvasive

CHIKV infection in neonates, which resulted in micro-

cephaly, flaccid paralysis, cerebral palsy, seizure disor-

ders, and even death [22–25]. Some have speculated that

young animals have an immature BBB despite the fact

that tight junctions and other relevant structural compo-

nents observed in adult animals are present early in

development [26,27]. Young animals may be more vul-

nerable to viral encephalitis as a result of a combination of

host factors, with BBB breakdown being just one of the

variables.

Modulators of BBB integrity
Host factors regulate BBB integrity both to prevent

pathogen invasion into the CNS and if necessary, to

enable leukocyte transmigration after a neuroinvasive

infection is established. The balance and type of cyto-

kines and their cumulative effects at the BBB are com-

plex and regulated by multiple signaling pathways and

cell types, including BMECs, astrocytes, and pericytes.

Type I and type III interferons

Interferon (IFN)-a/b signaling through the type I IFN

receptor (IFNAR1/IFNAR2) activates an antiviral pro-

gram that up-regulates IFN-stimulated genes (ISGs),

which antagonize viral replication in many cell types.

Recent studies have shown that activation of viral RNA-

sensing pathways in BMECs leads to Rac-1-dependent

tight junction formation and enhanced BBB integrity to

prevent viruses from transiting across BMEC monolayers

[12��]. The discovery that type I IFNs promote BBB

integrity may explain, in part, the efficacy of IFN-b in

the treatment of multiple sclerosis, an autoimmune dis-

ease characterized by BBB breakdown and unchecked
Current Opinion in Immunology 2016, 38:18–23
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migration of autoreactive T cells into the brain and spinal

cord. IFN-l, a type III IFN, also stabilizes  tight junctions

and limits viral crossing into the CNS of mice infected

with flaviviruses. Animals lacking the IFN-l receptor

(IFNLR1/IL10b) exhibited earlier entry of West Nile

virus (WNV) into the brain despite similar levels of viral

replication in peripheral organs compared to wild-type

animals, and treatment of WNV-infected mice with

pegylated IFN-l protected animals against virus neu-

roinvasion and lethality [13��]. Type I and type III IFNs

exert their barrier-tightening effects in BMECs through

independent receptors but via a common non-canonical

STAT1-independent signaling pathway that requires

Rac1 activation and actin cytoskeletal reorganization

[12��,13��].

Enveloped viruses that display phosphatidylserine on

their viral membranes interact with Gas6 and Protein

S, which bind to the TAM receptor tyrosine kinases

(Tyro3, Axl, and Mertk) on endothelial cells [28,29].

All three TAM receptors contribute to BBB integrity in

the context of different pathological conditions, with

Tyro3 and Mertk having the most prominent effects.

Mice lacking Mertk exhibit enhanced BBB permeability

during infection with two unrelated encephalitic viruses,

WNV and La Crosse encephalitis virus [30�]. Tyro3

signaling promoted BBB integrity in the context of cere-

bral vascular occlusion [31], whereas signaling via Mertk

on endothelial cells and possibly microglia was more

important during viral infection [30�]. Cooperative sig-

naling via Mertk and the type I IFN receptor rapidly

enhanced BMEC barrier integrity, suggesting that circu-

lating TAM receptor ligands (Gas6 and Protein S) can

amplify the barrier-stabilizing effects of type I IFN at the

BBB.

Viral antagonism of type I IFN signaling is an established

immune evasion mechanism, and some viruses may use

this strategy to facilitate neuroinvasion. For example,

mouse hepatitis virus (MHV), a coronavirus, perturbs

the BBB by antagonizing IFN-b production, which

resulted in decreased expression of junctional proteins

ZO-1, VE-cadherin, and occludin [32�].

Pro-inflammatory cytokines and chemokines

In contrast to the barrier-tightening effects of type I and

type III IFNs, the pro-inflammatory cytokines TNF-a,

IL-6, IL-1b and IFN-g disrupt BBB integrity. Daniels

et al. demonstrated that BMEC-intrinsic expression of

these pro-inflammatory cytokines at the BBB during

WNV infection results in a loss of tight junction integrity

[12��]. Treatment of BMECs with TNF-a or IL-1b

activated the RhoA kinase pathway, which disrupted tight

junctions and enhanced permeability of BMEC mono-

layers in vitro. Consistent with a role for pro-inflammatory

cytokines in causing BBB breakdown, mice lacking toll-

like receptor 3 (TLR3) exhibited diminished cytokine
Current Opinion in Immunology 2016, 38:18–23 
(e.g., TNF-a, and IL-6) production systemically and

enhanced BBB integrity during WNV infection, which

partially protected mice from lethal WNV infection.

TNF-a produced during infection of BMECs also up-

regulated expression of the adhesion molecules ICAM-1,

VCAM-1, and E-selectin, which facilitate leukocyte ad-

hesion to BMECs and coincided with diminished TEER

values measured across BMEC monolayers using an in
vitro model of the BBB [33]. Thus, pro-inflammatory

cytokines produced in BMECs during viral infection

can enhance leukocyte recruitment as well as promote

BBB breakdown.

Chemokine effects on BBB integrity have been demon-

strated in the context of studies with HIV-1. Expression

of the chemokine CCL2 may enhance migration of HIV-

1-infected leukocytes across the BBB [34,35]. Treatment

of BMEC monolayers with CCL2 triggered sequestration

of endothelial b-catenin, which disrupted adherens junc-

tions and transiently opened the endothelial cell barrier

[36]. CXCL12 promotes lymphocyte transmigration

across BMEC monolayers, providing a possible ‘Trojan

horse’ pathway for HIV-1 entry into the CNS. Migration

of HIV-1-infected monocytes into the CNS leads to

infection and replication in microglia as well as non-

productive infection of astrocytes [35]. HIV infection

of astrocytes may further disrupt BBB integrity if cyto-

kines and/or chemokines that promote leukocyte traffick-

ing into the CNS are induced [37].

Newer, more complex co-culture systems using multiple

cell types (e.g., BMECs, astrocytes, and pericytes) have

started to yield more mechanistic insight into the contri-

butions of pericytes and astrocytes as regulators of BBB

permeability. For example, in a co-culture system of

pericytes with BMECs, Japanese encephalitis virus

(JEV) infection of pericytes triggered secretion of IL-6,

which resulted in degradation of ZO-1 in BMECs and

endothelial barrier disruption [38�]. WNV infection of

astrocytes in vitro resulted in production of matrix metal-

loproteinases (MMP) that degrade tight junctions and

promote BBB breakdown [39]. The relevance of MMPs

during WNV infection is supported by the observation

that degradation of tight junction proteins correlated with

expression of MMPs in vivo [40]. The contribution of

MMP9 in WNV neuroinvasion was established by the

discovery that MMP9�/� mice were resistant to WNV

infection [41]. In addition to the release of MMPs that

degrade tight junctions, astrocytes also produce cytokines

that contribute to BBB breakdown. For example, JEV

infection of astrocytes triggered release of IL-6 and

VEGF, which alter endothelial cell junctions by causing

proteasomal degradation of ZO-1 [42�]. Consistent with

these in vitro data using mouse models, JEV infection in

non-human primates causes activation of astrocytes, peri-

cytes, and BMECs [43], all of which may contribute to the

BBB breakdown that is seen clinically.
www.sciencedirect.com
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Figure 2
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Regulation of BBB integrity during viral infection. Pro-inflammatory cytokines (e.g., TNF-a, IL-1b, IL-6, IFN-g, which are expressed either luminally

or abluminally) act to open the BBB by causing breakdown of tight junctions. Astrocytes, pericytes, BMECs, leukocytes, and/or other cell types

may produce these cytokines. MMPs disrupt BBB integrity during viral infection by directly degrading tight junctions. Collectively, the pro-

inflammatory cytokines and MMPs facilitate viral crossing into the CNS parenchyma. By contrast, tight junction stabilization occurs in response to

signals by type I IFNs (e.g., IFN-b) or type III IFN (IFN-l). TAM receptor ligands induce signals that augment this effect by cooperating with type I

IFN to activate Rac1, rearrange actin filaments, and stabilize endothelial tight junctions. Gut microbiota enhance BBB integrity as well, although its

mechanistic role during neuroinvasive viral infection is yet to be defined.
Microbiome and the BBB
The gastrointestinal microbiome recently was identified

as a modulator of BBB integrity. Occludin and claudin-5

expression on BMECs in vivo is diminished in germ-free

mice, and enhanced BBB permeability in germ-free mice

can be reversed in response to administration of sodium

butyrate, a chemical produced by Clostridium tyrobutyr-
icum [44��]. Remarkably, colonization of germ-free mice

with only C. tyrobutyricum was sufficient to restore BBB

integrity [44��], although this finding does not exclude a

role for other gastrointestinal commensals in regulating

BBB integrity. Since disruption of the BBB occurred in

germ-free mice of all ages, colonization of the gut with

normal flora early in life may contribute to age-dependent

properties of the BBB during viral infection, although this

has yet to be demonstrated. Studies are needed to define

how changes in gut microbiota affect BBB permeability in

the context of neuroinvasive viral infections.

Summary
The multicellular nature of the BBB makes the study of

neuroinvasive viral infections a complex and intriguing

field of study (Figure 2). The use of complementary in
vivo and in vitro models will continue to define molecular

mechanisms by which proteins, cell types, and microbes

affect viral neuroinvasion at the BBB. Furthermore, the

field is only beginning to define how factors such as age,

gastrointestinal microbiota, and immune signaling inter-

act to affect entry into the CNS of neurotropic viruses.

These studies may yield new therapeutic strategies for
www.sciencedirect.com 
modulating BBB integrity and viral entry into the CNS,

which also might be relevant for autoimmune diseases in

which BBB penetration by leukocytes contributes to

disease pathogenesis.
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