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Single crystal functional oxides on silicon
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Single-crystalline thin films of complex oxides show a rich variety of functional properties

such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the

potential for completely new electronic applications. Direct synthesis of such oxides on

silicon remains challenging because of the fundamental crystal chemistry and mechanical

incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit

cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at

room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer

as the gate insulator, we demonstrate direct reversible control of the semiconductor channel

charge with polarization state. These results represent the realization of long pursued but yet

to be demonstrated single-crystal functional oxides on-demand on silicon.
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A
significant number of single-crystalline complex oxides

show ferroic order and a variety of correlated phenom-
ena1,2. Consequently, extensive research effort is currently

ongoing in the investigation of these materials both for
fundamental science and potential applications. For many of
the novel functionalities, it is important to retain the single-
crystal nature of these oxides when they are finally interfaced with
Si electronics. In addition, it has been long postulated that
integration of single-crystal functional oxides with silicon could
resolve some of the most critical problems in existing applications
such as the memory retention time in ferroelectric random access
memory3. As a consequence, there is currently a significant effort
to integrate functional complex oxides on silicon4–17. However,
owing to large difference in interfacial chemistry and the typically
high temperatures and oxidizing environments needed for the
growth of such oxides, direct epitaxial synthesis on Si continues to
pose a significant synthesis challenge6–10. Such integration is
mostly achieved by growing an appropriate buffer layer9,11–16,
which then acts as a template for synthesis of subsequent layers
either by epitaxy or other techniques. Synthesis of a ferroelectric
without a buffer layer has also been demonstrated17. However, a
common problem in all these methods comes from the electronic
incompatibility of the interfaces that leads to dangling bonds and
trap states. These trap states in turn dominates the electronic
behaviour and decouples the functional oxides from the
underlying Si channel. For example, despite the pioneering
work of epitaxial growth of a ferroelectric layer on silicon without
a buffer layer in ref. 17, a direct and reversible control of the Si
channel charge could not be achieved.

In the following, we present a fundamental advancement in the
integration of such dissimilar materials. This is achieved by
epitaxial transfer of single-crystalline functional oxides directly
onto Si. Because of the fact that the process can be carried out at
room temperature, it avoids the interface chemistry and thermal
issues described above. We demonstrate transfer of functional
oxides as thin as one unit cell (4 Å), which is almost three orders
of magnitude thinner than any other transfer technique reported

for complex oxides. The lattice structure, surface morphology,
piezoelectric coefficient, dielectric constant, polarization
switching and spontaneous and remnant polarization of the
transferred ferroelectric oxide are commensurate with those of
the as-grown films on lattice matched oxide substrates.
Remarkably, when a transferred Pb(Zr0.2Ti0.8)O3 (PZT) is used
as the gate of a silicon-on-insulator (SOI) transistor, it shows
clear control of the channel charge with ferroelectric polarization
evidenced in the signature anti-clockwise hysteresis loop and an
abrupt jump in the current, attesting to high-quality interface and
single-crystalline nature of the transferred film respectively. We
also demonstrate transfer of single-crystalline superlattices and
multiferroic heterostructures on Si that illustrate the tremendous
flexibility offered by the technique reported in this work.

Results
Structural characteristics of complex oxides on silicon. For
epitaxial transfer, we start by growing single crystal, 0.4–100-nm
thick PZT on 20 nm thick La0.7Sr0.3MnO3 (LSMO) coated SrTiO3

(STO) substrate by using pulsed laser deposition (PLD) (for
structural properties see Supplementary Figs 1 and 2). Subse-
quently, the LSMO layer is wet etched. This releases the layer(s)
sitting above it (Fig. 1a), which is then carried by a transfer stamp
based on polymethyl methacrylate (PMMA) and placed on the
target substrate such as Si. High-resolution transmission electron
microscopy reveals atomically sharp interfaces and no interfacial
layer when Si surface is properly passivated (Fig. 1b,
Supplementary Fig. 3a,b). Similar results are obtained when stack
with multiferroic (SrRuO3/BiFeO3/CoFeB/MgO) and super-
lattices (CaTiO3/SrTiO3)6 are transferred (Fig. 1c,d). Figure 2
shows the structural characteristics of transferred films of PZT on
Si. The root mean square (RMS) roughness of the transferred
PZT is 0.61 nm (Fig. 2a) which is comparable to that of the as-
grown film (0.42 nm; Supplementary Fig. 1a). The bottom surface
of the PZT, which was released from LSMO, shows a RMS
roughness of 0.67 nm (Fig. 2b). This indicates that the surface

Oxide substrate

Sacrifical LSMO (10–20 nm)

Epitaxial ferroelectric

PMMA stamp

Wet etching of LSMO Release of the 
ferroelectric layer

PZT

Si

SiO2

a

Si

SiO 2
CTO

STO

STO

STO

CTO

CTO

cb

BF
O

SR
O

Si
O 2

Si

Pt
C

oF
eB

d

Figure 1 | Epitaxial ferroelectric films on silicon. (a) Transfer process. Epitaxial thin films (one unit cell � 100 nm) of ferroelectric oxides are grown

on lattice-matched substrates with a thin (10–20 nm) sacrificial layer using pulsed laser deposition method. The stack is then immersed in a diluted

KIþHCl solution, which isotropically etches La0.7Sr0.3MnO3. A polymethyl methacrylate handle is used to transfer the released ferroelectric layers onto

Si and other substrates. Transmission electron microscopy images of the transferred (b) Pb(Zr0.2Ti0.8)O3, (c) (CaTiO3/SrTiO3)6 superlattices and

(d) SrRuO3/BiFeO3/CoFeB/Pt multilayers on Si substrate. The scale bars are 5 nm in b,c and 40 nm in d.
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morphology of PZT is insensitive to the etch chemistry and
removal of LSMO. The y-2y scan of the transferred film using
X-ray diffraction (Fig. 2d) is essentially identical to the as-grown
film (Fig. 2c) and shows peaks only from the PZT (001) and Si
(00 l) family planes, suggesting that the transferred PZT is a single
crystal. The lattice constants for the as-grown and the transferred
PZT are 4.14 and 4.15 Å respectively and the full width half
maxima measured from the rocking curves are 0.54� and 0.53�.
This suggests that the overall film quality remains intact after the
transfer process. Similar behaviour is observed when PZT is
transferred on other surfaces such as 5-nm amorphous Al2O3

coated Si, thermally grown amorphous SiO2 coated Si, sputter
deposited amorphous Au coated Si, single-crystal oxide substrates
such as LSMO on STO and so on (Supplementary Figs 3 and 4).

Switching in single crystal Pb0.2Zr0.8TiO3 on silicon. Next we
studied the electromechanical properties of the transferred PZT
using the piezoelectric force microscopy. As shown in Fig. 3a, the
ferroelectric domains of the transferred PZT on Si could be

reversibly poled by applying oppositely directed electric fields
from the piezoelectric force microscopy tip. The domains, thus,
obtained retained their respective polarization states even after
24 h. Figure 3b shows the d33-V loop for the transferred PZT on
Si. The d33 amplitude is similar to that obtained in the as-grown
film (Supplementary Fig. 5).

Electronic transport properties of Pb0.2Zr0.8TiO3 on silicon.
To understand the quality and applicability of the transferred
PZT for electronic applications, we explore the polarization
(P)-field (E) and capacitance (C)-E characteristics. Figure 3c,d
shows the results for the case where an epitaxial tri-layer
SrRuO3(SRO)/PZT/SRO heterostructure on LSMO buffered STO
substrate was grown and subsequently transferred onto a Si
substrate. The saturation polarization (B75mC cm� 2) and the
peak capacitance (B1.6 mC cm� 2) are similar to a typical
as-grown film. The hysteresis is symmetric with the V¼ 0 point
because of a symmetric boundary condition on top and bottom
for the PZT film18. Importantly, the results in Fig. 3c,d and
Supplementary Fig. 6 demonstrate that the transfer method works
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Figure 2 | Structural characterization of the as-grown Pb(Zr0.2Ti0.8)O3 (PZT) and the transferred PZT on silicon. (a,b) Atomic force microscopy images

of the top and bottom surfaces of transferred PZT. The top surface is probed when PZT is sitting on Si and the bottom surface is probed by placing

PZT/PMMA bilayer inverted on Si. The RMS roughness of top and bottom surfaces is 0.61 and 0.67 nm, respectively. These are comparable to 0.41 nm

roughness of the source PZT film’s top surface (Supplementary Fig. 1). Scale bar, 1 mm. (c,d) y-2y scan and rocking curve around PZT (002) reflection peak

of the source PZT on SrTiO3/ La0.7Sr0.3MnO3 substrate and transferred PZT on Si (001). The absence of any phase other than the 001 family of planes of Si

and PZT points that the transferred PZT is single crystalline.
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equally well for multiple layers and therefore any arbitrary
heterostructure can be transferred in this way. Monitoring the
voltage across the ferroelectric after application of a pulsed
voltage shows a transient decrease with time, characteristic of the
intrinsic polarization switching19–21 (see Supplementary Fig. 7 for
details).

Single-crystal Pb0.2Zr0.8TiO3-gated Si transistor. To check the
electronic quality of the interface, we demonstrate a functional Si
field-effect transistor with a transferred PZT layer as the gate
oxide. We exploit one of the major strengths of the transfer
process, namely, a single-crystalline ferroelectric can be trans-
ferred onto any arbitrary surface, such as Si/SiO2 (3 nm) surface.
The Si/SiO2 interface ensures excellent surface for the channel
and at the same time provides a large band-offset with the
channel that stops hot electrons from easily tunnelling into the
ferroelectric atop it. The PZT is then transferred onto the channel
to form the gate. Figure 4a shows the normalized, frequency-

dependent capacitance of a Si/SiO2 capacitor with and without
the transferred PZT on top. The dispersion is identical for both,
indicating that the transfer of PZT does not degrade the quality of
the interface. The impedance angle is close to 90� for both
capacitors over the entire frequency range. Similar behaviour is
seen for Si/Al2O3 interfaces (Supplementary Figs 8 and 9).
Figure 4b,c show the schematic representation of the fabricated
transistor (optical image is shown in Supplementary Fig. 10) and
the ID�VG characteristics. There are two important points about
the ID�VG characteristic. Firstly, the ID�VG shows counter-
clockwise hysteresis for the n-type transistor which is a
characteristic signature of the ferroelectric control of the charge.
Secondly, the abrupt jump in the current indicates that the
ferroelectric PZT switches abruptly as expected in a single-
crystalline structure. The handedness of the hysteresis and the
abruptness in the current together demonstrate the successful
integration of a functional, single-crystalline oxide onto a
Si device, a goal that has been long pursued but has so far been
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Figure 3 | Piezoelectric and ferroelectric properties of the transferred PZT on Si. (a) Piezoforce microscopy of the transferred layer. The

ferroelectric domains can be reversibly poled and the states are very stable. (b) The d33 coefficient of the transferred Pb(Zr0.2Ti0.8)O3 on Si.

(c,d) P-E and C-E loop of a SrRuO3/ Pb(Zr0.2Ti0.8)O3/SrRuO3 transferred on highly doped Si substrate.
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The length, L, and width, W, of the silicon channel region are 5 and 10mm, respectively, whereas gate electrode length is 20mm. (c) ID�VG (top gate)

characteristics of the ferroelectric PZT-gated transistor at VG (back gate)¼0. The counter-clockwise hysteresis and two order of abrupt current

change in the ID�VG characteristics demonstrates the control of the channel charge by the polarization of the transferred PZT layer.
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elusive17. All of the ID�VG loops are repeatable (Supplementary
Figs 11 and 12).

Discussion
Our work is a fundamental advancement over prior transfer
methods that have been explored before for ferroelectrics (such as
the smart-cut techniques where only microns thick films have
been transferred and a typical surface RMS roughness of
11–70 nm is observed22–25 due to ion damage. By contrast,
we have integrated films with thickness much smaller than this
roughness ranges down to a single unit cell. The generality of our
approach paves the way to integrate complex oxides on not only
Si but also other semiconductors such as GaN where the
polarization of a single-crystalline ferroelectric could be used to
counteract the built-in polarization. Epitaxially transferred
semiconductors is a commercial technology26. This indicates
that the reported technique should be scalable to commercially
relevant sizes, thereby enabling many novel applications in
electronics and multiferroic spintronics26–31.

Methods
SOI transistor with FE gate. We start with SOI wafer with a highly doped Si
handle, a SiO2 box and a p-type Si with a thickness ofB100 nm as the active region.
The Si handle is used as a back gate. First a mesa was defined and the source and
drain regions were patterned giving a channel length of 5 mm and width of 10 mm.
After that the source and drain regions were doped nþ . Next, the Si mesa was
covered by a 3 nm thick, thermally grown SiO2 layer. This provides excellent
interface with the Si. Then a PZT flake was transferred onto the channel region.
Finally the top gate was patterned (see also Supplementary Note 8).
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24. Alexe, M. & Gösele, U. Wafer Bonding Applications and Technology (Springer,
2004).

25. Young-Bae, P., Bumki, M., Vahala, K. J. & Atwater, H. A. Integration of
single-crystal LiNbO3 thin film on silicon by laser irradiation and ion
implantation–induced layer transfer. Adv. Mater. 18, 1533–1536 (2006).

26. Kayes, B. M. et al. 27.6% Conversion efficiency, a new record for single-junction
solar cells under 1 sun illumination. 37th IEEE Photovoltaic Specialists
Conference, 4–8 (2011).

27. Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting
devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336
(2011).

28. Zhirnov, V. V. & Cavin, R. K. Negative capacitance to the rescue? Nat.
Nanotechnol. 3, 77–78 (2008).

29. Li, L. et al. Very large capacitance enhancement in a two-dimensional electron
system. Science 332, 825–828 (2011).

30. Heron, J. T. et al. Deterministic switching of ferromagnetism at room
temperature using an electric field. Nature 516, 370–373 (2014).

31. Aguado-Puente, P. et al. Interplay of couplings between antiferrodistortive,
ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3

superlattices. Phys. Rev. Lett. 107, 217601 (2011).

Acknowledgements
This work was supported in part by the ONR, ARO YIP award, the AFOSR YIP award,
the STARNET LEAST Center, the NSF E3S Center and the IRICE Program at Berkeley.
We acknowledge discussion with Dr Guneeta Singh Bhalla who first brought our
attention to wet etching of manganite films. All additional data are available in the
supplementary materials.

Author contributions
S.R.B. and S.S. designed the experiments. S.R.B. performed epitaxial transfer and
electronic transport measurement. S.R.B. and C.W.Y. fabricated the transistor. C.R.S.,
S.R.B., A.Y., L.D., L.Y., M.L. and J.D.C. deposited the materials. S.R.B., C.R.S., A.I.K. and
S.H. measured electromechanical and structural characteristics. S.R.B., S.S. and R.R.
wrote the manuscript. All authors helped by providing suggestions.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Bakaul, S. R. et al. Single crystal functional oxides on silicon.
Nat. Commun. 7:10547 doi: 10.1038/ncomms10547 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10547 ARTICLE

NATURE COMMUNICATIONS | 7:10547 | DOI: 10.1038/ncomms10547 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Structural characteristics of complex oxides on silicon

	Figure™1Epitaxial ferroelectric films on silicon.(a) Transfer process. Epitaxial thin films (one unit cell -100thinspnm) of ferroelectric oxides are grown on lattice-matched substrates with a thin (10-20thinspnm) sacrificial layer using pulsed laser depos
	Switching in single crystal Pb0.2Zr0.8TiO3 on silicon
	Electronic transport properties of Pb0.2Zr0.8TiO3 on silicon

	Figure™2Structural characterization of the as-grown Pb(Zr0.2Ti0.8)O3 (PZT) and the transferred PZT on silicon.(a,b) Atomic force microscopy images of the top and bottom surfaces of transferred PZT. The top surface is probed when PZT is sitting on Si and t
	Single-crystal Pb0.2Zr0.8TiO3-gated Si transistor

	Figure™3Piezoelectric and ferroelectric properties of the transferred PZT on Si.(a) Piezoforce microscopy of the transferred layer. The ferroelectric domains can be reversibly poled and the states are very stable. (b) The d33 coefficient of the transferre
	Figure™4Single-crystal Pb(Zr0.2Ti0.8)O3 (PZT) gated silicon channel transistor.(a) Frequency-dependent capacitance of SisolSiO2 and SisolSiO2soltransferred Pb(Zr0.2Ti0.8)O3. The capacitor size is 22times22thinspmgrm2. (b) Cross-sectional schematic diagram
	Discussion
	Methods
	SOI transistor with FE gate

	DawberM.RabeK. M.ScottJ. F.Physics of thin-film ferroelectric oxidesRev. Mod. Phys.77108311302005MasatoshiI.FujimoriA.TokuraY.Metal-insulator transitionsRev. Mod. Phys.70103912631998Ma.T. P.HanJ. P.Why is nonvolatile ferroelectric memory field-effect tran
	This work was supported in part by the ONR, ARO YIP award, the AFOSR YIP award, the STARNET LEAST Center, the NSF E3S Center and the IRICE Program at Berkeley. We acknowledge discussion with Dr Guneeta Singh Bhalla who first brought our attention to wet e
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




