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Linear mixed models (LMMs) and their extensions have recently become the method of choice in phenotype prediction

for complex traits. However, LMM use to date has typically been limited by assuming simple genetic architectures. Here,

we present multikernel linear mixed model (MKLMM), a predictive modeling framework that extends the standard

LMM using multiple-kernel machine learning approaches. MKLMM can model genetic interactions and is particularly

suitable for modeling complex local interactions between nearby variants. We additionally present MKLMM-Adapt, which

automatically infers interaction types across multiple genomic regions. In an analysis of eight case-control data sets from the

Wellcome Trust Case Control Consortium and more than a hundred mouse phenotypes, MKLMM-Adapt consistently

outperforms competing methods in phenotype prediction. MKLMM is as computationally efficient as standard LMMs

and does not require storage of genotypes, thus achieving state-of-the-art predictive power without compromising compu-

tational feasibility or genomic privacy.

[Supplemental material is available for this article.]

One of the principal aims of genetics research is accurate pheno-
type prediction. This goal has largely been achieved forMendelian
diseases with a small number of risk variants (Schrodi et al. 2014).
However, many genetic traits have a complex genetic architecture
that is not well understood (Golan et al. 2014). Phenotype predic-
tion for such traits remains a major challenge.

A key challenge in complex phenotype prediction is accurate
modeling of genetic interactions, commonly known as epistatic
effects (Cordell 2002). In recent years, there has been mounting
evidence that epistatic interactions are widespread throughout
biology (Moore and Williams 2009; Lehner 2011; Hemani et al.
2014; Buil et al. 2015). It is well accepted that epistatic interactions
are biologically plausible on the one hand (Zuk et al. 2012) and
are difficult to detect on the other (Cordell 2009), suggesting
that they may be highly influential in our limited success in mod-
eling complex heritable traits.

Linear mixed models (LMMs) have long been considered the
method of choice for modeling of complex phenotypes and have
gained tremendous interest in recent years (Yu et al. 2006; Kang
et al. 2008; Price et al. 2010; Yang et al. 2010; Zhang et al. 2010;
Lippert et al. 2011; Zhou and Stephens 2012; de Los Campos
et al. 2013). At their core, LMMs encode the assumption that
genetically similar individuals are more likely to share similar
phenotypes. Despite their popularity, LMM use to date has often
been limited by their restriction to relatively simple geneticmodels
that cannot capture interactions. The vast majority of studies to
use LMMs assume that genetic variants influence phenotypes in
an additive manner. A smaller number of studies investigated
LMMs that model dominance effects (Powell et al. 2013; Vitezica
et al. 2013; Da et al. 2014; Nishio and Satoh 2014; Zhu et al.
2015), multiplicative interactions between pairs or triples of vari-
ants (Henderson 1985; Su et al. 2012; Muñoz et al. 2014; Bloom
et al. 2015), gene-environment interactions (Wang et al. 1999;

Yang et al. 2007; Ferraudo and Perecin 2014), or LMMs that mea-
sure genetic similarity according to identity by state (Wu et al.
2011). Such LMM-based approaches had limited success in com-
plex phenotype prediction, possibly owing to the relatively simple
forms of considered interactions.

In recent years, LMMs that can model higher-order interac-
tions have also been investigated, typically under the name, repro-
ducing kernel Hilbert space regression (RKHS) (Liu et al. 2007,
2008; Ober et al. 2011; Gianola et al. 2014; Morota and Gianola
2014; Tusell et al. 2014; Akdemir and Jannink 2015; Jiang and
Reif 2015). These works demonstrated improved prediction per-
formance on several plant and animal species compared to simpler
methods (Perez-Rodriguez et al. 2012; Rutkoski et al. 2012; Crossa
et al. 2013). However, as we demonstrate here, these RKHS-based
LMMs are often insufficient to improve prediction performance
for complex traits in outbred populations.

Twopossible reasons for the limited success of RKHSmethods
are the extremely high dimensional search space of interacting
variants and the assumption of a homogeneous distributionof var-
iant effect sizes across the genome. In recent years, several studies
have demonstrated that modeling a heterogeneous effect-size dis-
tribution can improve phenotype prediction substantially (Zhou
et al. 2013;Moser et al. 2015). Namely, the recently proposed adap-
tiveMultiBLUP (AMB) (Speed and Balding 2014) obtained state-of-
the-art phenotype prediction results by grouping variants in close
proximity together and inferring different effect-size distributions
for different groups. A natural extension of this idea is to model
local epistatic interactions within each such group via RKHS, as
this restricts the search space for interacting variants considerably.
In recent years, there has been an increasing body of evidence for
such local genetic interactions between nearby variants (Dimas
et al. 2008; Bickel et al. 2011; Haig 2011; Lappalainen et al.
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2011). However, modeling of a heterogeneous effect-size distri-
bution combined with use of RKHS in a single unified model has
not been investigated to date.

Here, we present multikernel linear mixed model (MKLMM),
a flexiblemodeling framework that allows for both global and local
high-order interactionsmodeled via RKHS, as well asmodeling of a
heterogeneous effect-size distribution. Similarly to AMB, MKLMM
first divides the genome into a set of regions and then models the
genetic effects within each region via a covariancematrix of genet-
ic similarities between individuals, often called a kernel in the
machine learning literature (Rasmussen and Williams 2006).
MKLMM differs from AMB by allowing for both additive and
nonadditive genetic effects within each region, and differs from
previous RKHS methods by dividing the genome into regions
and efficiently inferring all model parameters for all kernels jointly
via restricted maximum likelihood (Kang et al. 2008). This enables
the construction of richmodels with a large number of parameters
without requiring manual fine tuning, allowing MKLMM to cap-
ture complex nonadditive genetic interactions.

In addition to describing the general MKLMM framework,
this work presents several specific contributions. First, we evaluate
several kernel types in terms of both their underlying assumptions
and their predictive performance on real data sets. In particular, we
present the saturating pathways kernel, whichmodels interactions
via saturation dynamics. The underlyingmodel of this kernel bears
similarity to the well-known limiting pathways model (Zuk et al.
2012), but assumes that pathways interact additively rather than
competitively. We further demonstrate that this kernel is often
superior to other state-of-the-art kernels.

Second, we present MKLMM-Adapt, an adaptive data-driven
approach that automatically infers interaction types across differ-
ent genomic regions and selects appropriate kernels. The resulting
model allows different genomic regions to have different interac-
tion patterns and effect-size distributions, leading to state-of-the-
art predictive power.

Finally, we demonstrate that MKLMM-based prediction can
be carried out without having to store genotypes of training indi-
viduals. Although this is a property shared by many predictive
methods, it is not trivially carried over to kernel-based methods,
because such methods require estimating genetic similarity be-
tween training and tested individuals. The storage of personal ge-
nomes raises security and privacy concerns that have recently
gained considerable attention both within and outside academia
(Im et al. 2012; Gymrek et al. 2013; Rodriguez et al. 2013; Erlich
and Narayanan 2014; Dove et al. 2015). We demonstrate that
MKLMM can approximate genetic similarity well without storing
genotypes and phenotypes, thus alleviating privacy and security
concerns.

Results

We evaluated MKLMM on synthetic and real data sets. All experi-
ments followed the same procedure of dividing the genome into
regions, evaluating models with 0,1,2,…,9 region-kernels, and se-
lecting the best model using cross validation. All models included
a genome-wide kernel spanning all genotyped variants.

The evaluated methods included (1) MKLMM-Adapt, which
automatically selects the kernel for each region; (2) MKLMM-
Poly2, which always uses a weighted combination of a linear and
a polynomial kernel of degree 2 for every region, used as a base-
line nonlinear method; (3) Adaptive MultiBLUP (AMB) (Speed
and Balding 2014), which uses a linear kernel for every region;

and (4) Genomic best linear unbiased prediction (GBLUP)
(Gianola 2013), which is equivalent to AMB with only one kernel
spanning the entire genome. AMB has recently been demonstra-
ted to be superior to other popular methods in several challenging
prediction tasks (Speed and Balding 2014).We note thatMKLMM-
Poly2 is equivalent to models that can capture both additive
and multiplicative interaction effects between pairs of variants
(Methods; Henderson 1985; Su et al. 2012; Muñoz et al. 2014;
Bloom et al. 2015).

The free parameters to infer for each method are the fixed
effects (the effects of risk factors such as smoking status or age as
well as an overall intercept, which was the only fixed effect used
in the simulations), the variance of the environmental component
of the phenotype, and the kernel parameters, whose number
depends on the number of selected regions. The number of kernel
parameters for AMB, MKLMM-Poly2, and MKLMM-Adapt is one
per region, two per region, and between one and three parameters
per region, respectively (Methods).

Simulation studies

We performed simulation studies by generating synthetic pheno-
types based on real genotypes from Chromosome 1 of 2801 indi-
viduals from the Wellcome Trust national blood service cohort
(TheWellcome Trust Case Control Consortium 2007). The pheno-
type of each individual was generated by a combination of linear
and nonlinear effects distributed across 2, 4, or 6 genomic regions
with amean length of 75 kb, where each region harbored both lin-
ear and interaction effects. These numbers were selected based on
the number and length of regions typically selected by AMB and
MKLMM-Adapt in the analysis of real data sets with similar sample
sizes. The effect of these numbers on prediction performance is
examined below. Unless otherwise stated, the genomic regions
jointly accounted for 25% of the phenotypic variance, another
25%was similarly explained by a global region spanning the entire
chromosome, and the remaining 50% was due to an independent
normally distributed environmental effect.

The use of Chromosome 1 rather than the entire genomewas
a choice of convenience and is unlikely to affect the validity of the
results, because the average linkage disequilibrium between two
variants in different regions for a chromosome of this size is effec-
tively zero, indicating statistical independence between different
regions, as would be obtained had the entire genomebeen utilized.
The effect of a chromosome-wide region is also effectively the
same as that of a genome-wide region, because in both cases, the
number of variants is substantially greater than the sample size,
leading to highly similar genetic covariance estimates.

Within each region, the linear effects accounted for 25% of
the phenotypic variance explained by the region, and interaction
effects accounted for the remaining 75%. Although these settings
mayexaggerate themagnitude of nonlinear effects expected in real
data, they enable investigating the dynamics of nonlinear inter-
actions at greater depth. The simulated interactions included
groupwise multiplicative interactions, which generalize pairwise
multiplicative interactions to higher orders, and saturating effects,
which bound the magnitude of linear effects (Methods). Every
simulated interaction involved randomly selected variants from
the same region, but this definition includes the chromosome-
wide region that spans all variants. A detailed description of the
simulation procedure is given in the Supplemental Material.

In the first experiment, we also evaluated two additional
MKLMM variants with predetermined kernel types: MKLMM-
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Radial Basis Function (MKLMM-RBF) and MKLMM-Saturating
Pathways (MKLMM-SP). Each of these variants uses a weighted
combination of a linear and a nonlinear kernel of the correspond-
ing type (RBF or SP) for every region (Methods). Briefly, the RBF
kernel is a widely used kernel in machine learning and statistical
genetics literature (Morota and Gianola 2014), which encodes
genetic similarity between individuals k and l in a region with m
variants as being proportional to
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Prediction performance was first evaluated using data with
various degrees of nonlinear interactions and either two or six
genomic regions harboring interacting variants. The advantage
of all MKLMMmethods over AMB increased with the degree of in-
teractions, and all methods substantially outperformed GBLUP
under all settings (Fig. 1). All MKLMMmethods performed similar-
ly to AMB when no genetic interactions were present, indicating
that themodels did not overfit the training data under this setting.
The advantage of AMB over GBLUP decreased with the degree of
genetic interactions because the high-dimensional effect of the
chromosome-wide region can be approximated relatively well by
a linear effect (a well-known property of high-dimensional hyper-
planes), unlike the lower-dimensional region-specific effects, ren-
dering AMB similar to GBLUP in highly nonlinear settings.

Figure 1 provides additional insight into two aspects of the
behavior of the MKLMM methods. First, MKLMM-Poly2 was less
powerful than the other MKLMM methods in the presence of
two genomic regions and was slightly more powerful under six
genomic regions. Second, MKLMM-Adapt performed as well as
or better than MKLMM-RBF and MKLMM-SP under all settings.
Both results demonstrate that prediction performance depends
on a trade-off between model expressiveness and complexity:
MKLMM-Poly2 estimates two parameters for every genomic re-
gion, whereas the other MKLMM models estimate three parame-
ters for every region. These richer MKLMM models can capture
diverse interaction types, but have a greater risk of overfitting
the training data when many parameters need to be estimated.
Since MKLMM-Adapt performs as well as or better than MKLMM-
RBF and MKLMM-SP in most settings, we do not consider these
two kernel types in the remainder of this section.

To further investigate the factors affecting prediction perfor-
mance, we generated data sets with various sample sizes and num-
bers of genomic regions. Both the advantage of MKLMMmethods
over AMB and the number of kernels selected by all methods
increased with sample size (Fig. 2). The advantage of AMB over
GBLUP increased with the number of genomic regions because
AMB can capture well the linear portion of the effects of multiple
genomic regions. The advantage ofMKLMM-Adapt overMKLMM-
Poly2 increased with sample size and decreased with the number
of regions, indicating that kernel selection improves with sample
size but deteriorates with the number of free parameters. Future ge-
netic studies with larger sampleswill therefore enable constructing
richer MKLMM-Adapt models that can capture diverse interaction
patterns, which cannot be expressed as simple pairwise multipli-
cative interactions.

To investigate additional factors affecting prediction per-
formance, we generated data sets with various ratios of explained
genetic variance to phenotypic variance (commonly known as
heritability when the entire genome is included in the analysis)

and various genomic region lengths.
The advantage of MKLMM models over
AMB increased with the ratio of ex-
plained genetic variance to phenotypic
variance (Supplemental Fig. S1) and de-
creased for region lengths larger than 75
kb, indicating that genetic interactions
can be better captured over short dis-
tances (Supplemental Fig. S2). This result
motivates the selection of short regions
used byMKLMM-Adapt. We also verified
that our results remain consistent in the
presence of binary phenotypes (Supple-
mental Fig. S3). Finally, we verified that
our results are highly unlikely to arise
due to implicit tagging of genotyped
variants (Supplemental Material).

To conclude, our simulations reveal
that the advantage of MKLMM-Adapt
over AMB increases with the magnitude
of genetic interactions within regions,
with sample size,with the ratio of genetic
to environmental phenotypic variance,
and with proximity between interacting
variants. We emphasize that these simu-
lations do not attempt to fully mimic re-
alistic genetic studies, because the types

Figure 1. Comparison of the evaluated methods on synthetic data sets with various levels of genetic
interactions and numbers of genomic regions harboring interacting variants. The box plots show the dif-
ference between the evaluated methods and Adaptive MultiBLUP (AMB), in terms of the root mean
square error (RMSE) between the predicted and observed phenotype. Larger values indicate a greater
advantage over AMB. The advantage of the MKLMMmethods over AMB increased with the percentage
of genetic interactions. MKLMM-Poly2 gains a slight advantage over the other MKLMMmethods in the
presence of six regions, because its simplermodel is less prone to overfittingwhenmany parameters need
to be estimated from the data.
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and magnitude of genetic interactions in real data are as yet
unknown. Rather, these simulations are intended to shed light
on the factors that can affect the prediction performance of
MKLMM-Adapt in real genetic studies.

Analysis of mouse phenotypes

We evaluated MKLMM on a data set of 1940 outbred mice mea-
sured for 133 quantitative phenotypes spanning several biochem-
ical, behavioral, and disease-related traits (Valdar et al. 2006).
The preprocessing procedure is described in the Supplemental
Material. Mice from the same cage were always assigned to the
same cross-validation fold to prevent leakage, as previously rec-
ommended (Speed and Balding 2014). AMB has recently been
demonstrated to perform as well as or better than several other
state-of-the-art methods on this data set (Speed and Balding
2014) and is thus used as a benchmark method.

MKLMM-Adapt outperformed AMB across 100, 96, and 83
phenotypes in terms of RMSE, out of sample log likelihood (OOS
LL), and Pearson correlation, respectively (Fig. 3; Supplemental
Figs. S4–S8). After accounting for multiple hypothesis testing,
the advantage was statistically significant across 43, 45, and 31
phenotypes, respectively, as computed via permutation testing

(Supplemental Material). In contrast,
AMB had a significant advantage over
MKLMM-Adapt across only four pheno-
types, according to RMSE, and across
no phenotypes according to the other
criteria. A disadvantage of the individual
hypothesis tests is that their power de-
creases with the number of phenotypes
due to the multiple testing correc-
tion. To assess the global advantage of
MKLMM-Adapt, we carried out a one-sid-
ed Wilcoxon signed rank test that dem-
onstrated its superiority over AMB in
terms of RMSE (P < 2.09 × 10−12), OOS
LL (P < 1.84 × 10−12), and Pearson corre-
lation (P < 6.4 × 10−4).

MKLMM-Poly2 results were com-
parable to those of MKLMM-Adapt, in
agreement with our simulation results
given the relatively small data set size
(Fig. 3; Supplemental Figs. S4–S8). For
completeness, we also verified that
MKLMM-SP andMKLMM-RBF yield sim-
ilar results (Supplemental Figs. S9–S11).
These results indicate that MKLMM can
be routinely exploited to improve predic-
tion performance.

Figure 3 additionally demonstrates
that the advantage of MKLMM-Adapt
over AMB is inversely correlated with
the advantage of GBLUP over AMB
(Pearson correlation of−0.26), indicating
that MKLMM-Adapt tends to outper-
form AMB when AMB outperforms
GBLUP, possibly indicating traits with
more complex and challenging genetic
architectures.

Analysis of human diseases

We evaluated MKLMM on seven ascertained human disease
data sets from the Wellcome Trust Case Control Consortium 1
(WTCCC1) (The Wellcome Trust Case Control Consortium
2007) and on a large Wellcome Trust Case Control Consortium 2
(WTCCC2) ulcerative colitis data set (Supplemental Material; UK
IBD Genetics Consortium et al. 2009). The controls group consist-
ed of individuals from the United Kingdom blood service control
group. A second control groupwas not included in themain exper-
iments to alleviate concerns that it helps the nonlinear methods
gain an unfair advantage because of exploitation of population
structure. To avoid spurious results owing to population structure,
the genotypes of each data set were regressed on the top 10 prin-
cipal components (PCs), and only the residuals were used for
prediction. Each of the WTCCC1 data sets contained approxi-
mately 1900 cases and 1600 controls, whereas the ulcerative colitis
data set contained 2697 cases and 2801 controls (Supplemental
Table S1).

The analysis of binary phenotypes in case-control studies is
challenging, because proper modeling requires taking the case-
control ascertainment scheme into account (Golan and Rosset
2014), where parameter inference is intractable (Supplemental
Material). Nevertheless, several recent works have demonstrated

Figure 2. Comparison of the evaluated methods on synthetic data sets with various sample sizes
and numbers of genomic regions harboring interacting variants. The values shown are the differences
in prediction accuracy compared to AMB (top), and the number of region-kernels selected by each
method (bottom). Larger samples allow using more expressive models with a larger number of kernels.
The advantage of MKLMM methods over AMB, and of MKLMM-Adapt over MKLMM-Poly2, increases
with sample size and decreases with the number of regions. The median lines in the bottom row are
sometimes not shown because they intersect with the other quartiles, owing to the discrete nature of
these data.
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that treating binary phenotypes as if they were quantitative in
LMMs can lead to effective predictions (Zhou et al. 2013; Speed
and Balding 2014;Moser et al. 2015). Themethodswere compared
according to the area under the receiver operating characteristic
curve (AUC), which presents the true positive rate (sensitivity)
on the y-axis plotted against the false positive rate (one minus
specificity) on the x-axis (Methods). This measure was selected
because it is insensitive to ascertainment bias. For completeness,
we report additional performance measures in the Supplemental
Material. AMB has recently been demonstrated to outperform sev-
eral other state-of-the-art methods on WTCCC1 data sets (Speed
and Balding 2014) and is thus used as a benchmark method.

MKLMM-Adapt held a statistically significant advantage
over AMB in prediction of Crohn’s disease (CD), type 1 diabetes
(T1D), and ulcerative colitis (UC), whereas AMB did not hold a
statistically significant advantage over MKLMM-Adapt in any
data set (Table 1; Supplemental Tables S2–S4). The large advantage
in prediction of UC, which is the largest data set by far, corrob-
orates the finding that the advantage of MKLMM-Adapt increases
with sample size. The results suggest that MKLMM-Adapt can
consistently be preferred over AMB because its added complexity
leads to greater accuracy in the presence of genetic interactions,

but is not likely to decrease accuracy
when this complexity is not used.

When excluding variants within
5 kb of the major histocompatibility
complex (MHC) in the analysis of auto-
immune diseases, prediction perfor-
mance for T1D and rheumatoid arthritis
decreased for all methods, whereas there
was no decrease for CD, and the advan-
tage of MKLMM-Adapt over AMB in the
analysis remained statistically significant
(Supplemental Table S2). The results also
remained similar when retaining the top
10 principal components, although the
linear methods became slightly more
powerful, owing to the well-known line-
ar effect of top principal components
on phenotypes (Supplemental Table S5;
Price et al. 2006). We also evaluated
results with a second control group and
observed that the advantage of the non-
linear methods over AMB became more
pronounced (Supplemental Table S6).
For completeness, we also evaluated pre-

dictive performance using MKLMM-SP and MKLMM-RBF
(Supplemental Table S7). Neither of the two kernel types was supe-
rior across all phenotypes, which reiterates the advantage of the
data-driven kernel selection of MKLMM-Adapt.

Although MKLMM-Adapt is intended for prediction rather
than estimation or hypothesis testing, its estimated parameters
can shed some light on the underlying genetic mechanism of
heritable traits. For example, in the analysis of T1D, a certain
genomic region spanning 119 single-nucleotide polymorphisms
(SNPs) in the MHC (Chromosome 6 positions 32,431,292–
33,218,180, hg18) was consistently estimated to be very well
modeled by a SP kernel across all training folds. Furthermore, the
advantage of MKLMM-Adapt over AMB in T1D was significant ac-
cording to both AUC and OOS LL (Supplemental Table S3). These
results indicate that the underlyingmechanism of the well-known
MHC effect on T1D may be strongly influenced by genetic
interactions.

Finally, we verified that the AUC obtained by each method
peaks at a certain number of region-kernels and then drops (Fig.
4). This demonstrates that prediction accuracy depends on a
trade-off between model complexity and expressiveness. Richer
models can capture more complex interaction patterns at the risk

Figure 3. Comparison of the evaluated methods in prediction of mouse phenotypes. Each dot repre-
sents the difference between the prediction performance of an evaluatedmethod and AMB across one of
the phenotypes, measured according to RMSE. Also shown is the average number of regions selected by
each method across the training folds (rounded to the closest integer). MKLMM-Adapt outperformed
AMB and GBLUP across 100 and 86 phenotypes, respectively.

Table 1. Prediction results on WTCCC data sets

Trait MKLMM-Adapt MKLMM-Poly2 AMB GBLUP P-value

CD 0.667 ± 0.010 0.650 ± 0.010 0.645 ± 0.011 0.582 ± 0.013 5.00 × 10−5

T1D 0.886 ± 0.004 0.885 ± 0.003 0.883 ± 0.004 0.601 ± 0.008 1.82 × 10−2

BD 0.563 ± 0.011 0.571 ± 0.012 0.568 ± 0.011 0.578 ± 0.011 9.11 × 10−1

RA 0.750 ± 0.009 0.749 ± 0.009 0.752 ± 0.010 0.671 ± 0.009 7.30 × 10−1

T2D 0.634 ± 0.007 0.632 ± 0.008 0.634 ± 0.007 0.598 ± 0.009 3.47 × 10−1

CAD 0.698 ± 0.014 0.697 ± 0.014 0.699 ± 0.013 0.701 ± 0.015 5.16 × 10−1

HT 0.611 ± 0.003 0.610 ± 0.003 0.611 ± 0.003 0.576 ± 0.005 9.26 × 10−1

UC 0.601 ± 0.007 0.590 ± 0.003 0.585 ± 0.002 0.583 ± 0.004 1.20 × 10−4

The reported values are the AUCs obtained across a fivefold cross validation, and the P-value of the hypothesis that MKLMM-Adapt obtains a higher
AUC than Adaptive MultiBLUP (AMB), as determined via permutation testing. Standard errors were computed by comparing results across the five
training folds. Results in bold have a statistically significant advantage over AMB at a 5% false discovery rate.
(CD) Crohn’s disease; (T1D) type 1 diabetes; (BD) bipolar disorder; (RA) rheumatoid arthritis; (T2D) type 2 diabetes; (CAD) coronary artery disease;
(HT) hypertension; (UC) ulcerative colitis.
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of overfitting the training data, suggesting that larger data sets will
enable using richer models for improved prediction. Figure 4 addi-
tionally demonstrates the aforementioned advantage of MKLMM-
Adapt over AMB in prediction of CD, T1D, and UC at the optimal
number of regions, which can be found via cross validation.
Figure 4 further demonstrates that the additional complexity pro-
vided by MKLMM-Adapt does not appear to come at the price of
lower accuracies when the extra complexity is not utilized.

Discussion

Thiswork describes theMKLMMphenotype prediction framework
that extends the standard LMM to model both linear effects
and nonlinear interactions. Our work generalizes and improves
upon several recent phenotype prediction approaches and yields
state-of-the-art prediction results on several data sets. MKLMM is
rich and flexible, yet computationally tractable. The likelihood
can be evaluated analytically, and the model only has a single
tunable hyperparameter that determines the number of region-
specific kernels and serves to balance between model complexity

and expressiveness. Our simulations demonstrate that although
larger sample sizes lead to greater prediction accuracy, substantial
gains in accuracy over alternative methods can be obtained even
with samples as small as 250 individuals in the presence of strong
genetic interactions between nearby variants.

The MKLMM framework allows incorporating prior knowl-
edge about interaction types via the choice of kernels and their
parameters. Alternatively, MKLMM-Adapt can automatically
select kernels in a data-driven manner. Compared to AMB,
MKLMM-Adapt incurs a small additional computational cost and
a small additional statistical cost in estimating more parameters.
Our experiments demonstrate that MKLMM-Adapt can be consis-
tently preferred over AMBas it provides greater prediction accuracy
in the presence of genetic interactions, but does not appear to
harm prediction accuracy when there are no genetic interactions
to exploit.

In addition tomodeling interactionswithin genomic regions,
MKLMM can potentially use additional sources of information
other than SNPs for phenotype prediction, such as gene expression
or methylation. MKLMM can naturally be adapted to model

Figure 4. Evaluation of prediction performance in WTCCC data sets as a function of the number of selected regions: (CD) Crohn’s disease; (T1D) type 1
diabetes; (BD) bipolar disorder; (RA) rheumatoid arthritis; (T2D) type 2 diabetes; (CAD) coronary artery disease; (HT) hypertension; (UC) ulcerative colitis.
The AUC for T1Dwith zero regions is 0.589 for all methods and is omitted for clarity. GBLUP is not shown explicitly, because AMBwith no selected regions is
equivalent to GBLUP. MKLMM-Adapt performed as well as or better than AMB across all data sets (evaluated at the number of regions at which prediction
performance peaked). Prediction performance always peaked at a certain number of regions and then dropped, indicating that the models may overfit the
data when an overly large number of regions is selected. The phenotypes where MKLMM-Adapt performed significantly better than AMB (CD, T1D, UC)
appear to be those in which many regions are required for good performance, implying a complex genetic architecture.
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diverse sources of information, by assigning designated kernels for
different data sources.

In this study, MKLMM-Adapt is configured to select one of
four possible kernel types for each region, one of which is the
Poly2 kernel often used in genetic studies to model pairwise
multiplicative interactions (Henderson 1985). However, there is
a wide range of additional relevant kernels described in both
the machine learning literature (Rasmussen and Williams 2006)
and statistical genetics literature, such as the dominance kernel
(Vitezica et al. 2013) and identity by state kernel (Wu et al.
2011). Such kernels are not considered here because themore com-
plex kernels used here have proven to provide greater prediction
accuracy under a wide variety of settings (Morota and Gianola
2014), but they can be incorporated within the MKLMM frame-
work in a straightforward manner.

MKLMM-Adapt is especially suitable for capturing inter-
actions between nearby variants in the same region. Although
MKLMM-Adapt can potentially capture interactions between dis-
tant variants by using a nonlinear kernel for the genome-wide
region, in practice, a linear kernel was always selected for this re-
gion in the human disease data sets. A possible reason is that add-
ing an additional genome-wide kernel can improve prediction
performance if there are a large number of genome-wide interact-
ing variants, but can also harm prediction performance due to the
additional variance introduced into the model. It is likely that the
latter alternative was more dominant given the relatively small
sample sizes of these data sets. If a researcher is aware of potential
interactions between distant variants, it is possible to manually
define a nonconsecutive region encompassing these variants,
which would enable MKLMM to exploit these interactions for im-
proved prediction.

In addition to presenting MKLMM, we describe a privacy-
preserving scheme that enables MKLMM to be used without
storing genotypes and phenotypes of training individuals. This
property is common to many predictive modeling methods,
but is not trivially carried over to kernel-based methods that re-
quire genetic similarity between test and training individuals.
Although exact recovery of genotypes and phenotypes is impossi-
ble in the general case, it may be possible to perform approximate
recovery by exploiting domain knowledge, such as specific prop-
erties of SNPs. Additional work is required to investigate such
approximations.

MKLMM is based on LMM, similarly to many other popular
methods for complex trait prediction (Meuwissen et al. 2001;
Habier et al. 2011; Zhou et al. 2013; Golan and Rosset 2014;
Morota and Gianola 2014; Speed and Balding 2014; Moser et al.
2015). Alternative methods such as decision tree ensembles,
support vector machines, and regularized regression techniques
(Hastie et al. 2009) are also potential candidates for complex
trait prediction. Nevertheless, LMMs share several properties that
render them particularly suitable for this task. First, LMMs and
their extensions gracefully handle very high-dimensional data,
because all data is represented in the covariance matrix, which
scales quadratically in the sample size regardless of the data dimen-
sionality. A second advantage is thatmodel parameters such as ker-
nel weights and fixed effects can be inferred analytically because
LMMs constitute a full likelihood model. This property is not
naturally shared by the aforementioned methods, wherein more
expensive grid search methods are typically used (Rasmussen
and Williams 2006). This limitation becomes especially severe
when dozens of parameters are inferred simultaneously, as in the
present study.

A potential concern with kernel-based prediction is that pre-
diction performance may be improved due to better tagging
of nongenotyped variants, rather than modeling of true genetic
interactions. This can occur when nongenotyped causal variants
with a linear effect are accurately imputed in a nonlinear manner
by neighboring variants. Our simulation studies indicate that this
is highly unlikely to be the reason for the success of MKLMM-
Adapt. Nevertheless, improvement in prediction performance
due to implicit tagging of nongenotyped variants is legitimate
and could remain useful even under whole-genome sequencing
due to stringent filtering of low quality variants.

A second potential concern with kernel-based prediction is
that population structure may be exploited to improve prediction
performance. However, it is generally thought that population
structure in the disease data sets investigated here can be accurately
captured via principal components (Golan et al. 2014), whichwere
excluded from the analysis. Moreover, in all the disease data sets,
the genome-wide kernel was selected to be linear across all folds,
indicating that MKLMM-Adapt did not capture global population
structure signals that could not be captured by AMB. We further
note that exploitation of population structure to improve predic-
tion performance is legitimate, provided that structure in the study
reflects the true underlying structure in the population.

One limitation ofMKLMM-Adapt is that the null distribution
of the statistical test used for kernel selection may differ from the
expected theoretical distribution (Lippert et al. 2014). Addition-
ally,MKLMM-Adapt uses a greedy data-driven scheme to construct
a composite kernel. It may be possible to circumvent the kernel
selection problem by adopting a fully Bayesian framework, where-
in the kernel is a mixture of region-specific kernels whose pa-
rameters have a prior distribution. Similar formulations have
recently been explored in the machine learning literature (Láz-
aro-Gredilla and Titsias 2011; Gönen 2012). Importantly, such a
Bayesian model could encapsulate MultiBLUP and several recent
Bayesian LMM extensions (Zhou et al. 2013; Moser et al. 2015)
in a unified framework.

In this work, we treat all phenotypes as if they were normally
distributed. Quantitative non-normal phenotypes can potentially
be transformed to follow a normal distribution via a warping
function (Fusi et al. 2014). However, binary phenotypes present
a greater challenge. Although MKLMM can be adapted to model
binary distributions, accurate parameter inference is intractable
in such cases (Supplemental Material). Our extensive simulations
demonstrate that adapting MKLMM for binary phenotypes in-
creases prediction performance when the true model parameters
are known, but decreases prediction performance otherwise
(results not shown). An efficient parameter inference scheme
for ascertained case-control studies therefore remains an open
problem.

Finally, our work investigates phenotype prediction. Other
common tasks in genetic studies include association testing,
heritability estimation, and modeling of population structure.
However, such statistical analyses intimately depend on the valid-
ity of the assumptions underlying themodel, unlike prediction, in
which performance can be measured empirically. Adapting the
MKLMM framework for such tasks remains a potential avenue
for future work.

Methods

MKLMM is a probabilistic model that extends LMMs via kerneli-
zation of its covariance matrix. Here, we briefly review LMMs,
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describe kernelization of the covariance matrix, present a data-
driven method for automatic kernel construction, and describe
a privacy-preserving scheme for MKLMM-based predictions.
Further details are provided in the Supplemental Material.

The linear mixed model

LMMs model the distribution of a normally distributed trait y.
Under LMMs, every individual i is associated with a genotype
vector Xi and a covariates vector Ci (typically defined as major
risk factors, such as smoking status or age). Given a sample of indi-
viduals with a genotyped variants matrixX = [X1 X2 . . . Xn]T and
a covariates matrix C = [C1 C2 . . . Cn]T , the phenotypes vector
y = (y1, y2, . . . , yn)T follows a multivariate normal distribution:

y|X,C � N(Cb,G(X;u) + s2
e I). (1)

Here, β is a vector of covariate coefficients (denoted as fixed effects);
I is the n × n identitymatrix; s2

e is the variance of the environmen-
tal effect; and G(X;θ) is an n × n matrix encoding genotypic co-
variance. This covariance is governed by the parameter vector θ,
whose dimension depends on the kernel type used to represent
G(X;θ). Kernelization amounts to defining a functional form for
G(X;θ), as detailed below.

Given a sample of individuals with an observed phenotype
vector y, the posterior (conditional) phenotype distribution for
a tested individual with genotypeX∗ and covariatesC∗ is a normal
distribution, y∗|X,C, y,C∗,X∗ � N(m∗,s

2
∗ + s2

e ), whose parame-
ters are given by (Rasmussen and Williams 2006):

m∗ = CT
∗ b+ gT

∗ (u)(G(X;u) + s2
e I)−1( y − Cb)

s∗2 = g∗∗(u) − gT
∗ (u)(G(X;u) + s2

e I)−1 g∗(u),
(2)

where g∗(u) is a vector of genotypic covariances between the tested
individual and all training individuals; and g∗ ∗(u) is the prior geno-
typic variance of the tested individual. The quantities g∗(u) and
g∗ ∗(u) are computed according to the selected kernels, as detailed
below. Parameter inference can be carried out efficiently via conju-
gate gradient ascent (Supplemental Material).

LMMs can be extended to handle binary phenotypes by as-
suming the existence of a latent normally distributed variable
and treating the observed phenotype as a threshold indicator for
the latent variable (Nickisch and Rasmussen 2008; Golan and
Rosset 2014). However, parameter inference under such models
is intractable (Supplemental Material).

LMM kernelization

The LMM covariance matrix G(X; θ) encodes assumptions
about the effects of the variants on the phenotype. Standard
genomic best linear unbiased prediction (GBLUP) (Gianola 2013)
uses a scaled kinship matrix, wherein the entry for indivi-
duals k and l is given by the normalized dot product of their
(standardized and centered) genotype vectors, scaled by a con-
stant θ:

G(X; u)k,l = u
1
m

∑
i

Xi
kX

i
l = u

1���
m

√ Xk

( )T 1���
m

√ Xl

( )
, (3)

wherem is the number of genotyped variants;Xi
k is the genotype of

individual k at variant i; andXk is the genotype vector of individual
k. We refer to this covariance matrix as the linear kernel. The
scaling parameter θ is often termed s2

g in LMM literature. We
now consider more complex types of kernels.

The recently proposed MultiBLUP (Speed and Balding 2014)
model can be seen as a type of LMM kernelization, in which the
covariancematrix is given by a sum of R region-specific covariance
matrices, each using a linear kernel:

G(X;u)k,l =
∑R
r=1

urGr (Xr )k,l =
∑R
r=1

ur
1����
mr

√ Xr
k

( )T 1����
mr

√ Xr
l

( )
. (4)

Here, θr is the magnitude of the linear effect of region r; X r is a n ×
mr matrix of the mr variants in a genomic region r; and Xr

k, X
r
l are

the genotype vectors of individuals k and l in region r, respectively.
Equation 4 reflects the assumption that certain genomic regions
can have larger effects on the phenotype than others.

The linear kernel encodes the assumption that variants affect
phenotypes linearly. Interactions can be encoded via more elabo-
rate kernels. For example, it is well known that pairwise multipli-
cative interactions can be encoded as follows (Henderson 1985;
Su et al. 2012; Bloom et al. 2015):

G(X; u)k,l = u
1
m2

∑
i

∑
j

(Xi
kX

j
k)(Xi

lX
j
l)

= u
1���
m

√ Xk

( )T 1���
m

√ Xl

( )( )2

. (5)

Equation 5 encodes the assumption that products of pairs of
variants have a linear effect on the phenotype, and is known
as a polynomial kernel of degree 2 (Poly2 kernel) in the
machine learning literature. Equation 5 can also be written as
G(X; u)k,l = up(Xk)Tp(Xl), where p(Xk) transforms the vector Xk

into a new vector with an entry for the product of every pair of var-
iants. However, the transformation π does not need to be com-
puted explicitly, because G(X; u)k,l can be more simply computed
as (u/m2)[(Xk)TXl]

2. It turns out that every kernel can be computed
implicitly in this manner, as stated by the Mercer theorem
that, in informal terms, states that every symmetric positive defi-
nite matrix G(X;θ) corresponds to a dot product between trans-
formed (possibly infinite-dimensional) genotype matrices π(X)
(Rasmussen andWilliams 2006). This allows us to define rich inter-
action patterns via kernels without explicitly computing the corre-
sponding genotype transformations.

Evaluated kernels

In this work, we consider two kernels corresponding to infinite-di-
mensional transformations: The first is thewell-known radial basis
function (RBF) kernel, which is very popular in both machine
learning literature and statistical genetics (Gianola et al. 2014;
Morota and Gianola 2014) given by

G(X; u1, u2)k,l = u1 exp − 1
2u2m

∑
i

(Xi
k −Xi

l)
2

( )
. (6)

The RBF kernel is governed by themagnitude parameter θ1 and the
bandwidth parameter θ2. The magnitude parameter determines
the magnitude of the variance explained by this kernel, similarly
to the parameter θ in Equation 3. The bandwidth parameter deter-
mines the rate of decay of genetic covariance. It can be shown that
the RBF kernel generalizes the polynomial kernel, because its
underlying transformation π(Xk) includes an infinite number of
entries, with one entry for every possible polynomial of the vector
Xk (Supplemental Material).

The second kernel we consider is the saturating pathways ker-
nel, also known as the neutral network kernel in the machine
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learning literature, given by

G(X;u1,u2)k,l=
u1
2p

sin−1

1
m
(Xk)TXl�����������������������������������������������

u2+
∑

i
(Xi

k)
2
/
m

( )
u2+

∑
i
(Xi

l)
2
/
m

( )√
⎛
⎜⎜⎝

⎞
⎟⎟⎠.

(7)

The SP kernel is determined by the magnitude parameter θ1 and
the bandwidth parameter θ2 that serve roles similar to those in
the RBF kernel. It can be shown that the SP kernel corresponds
to a neural network with an infinite number of hidden units and
a Gaussian prior on the network weights, or alternatively, to a
model with an infinite number of interacting biological pathways,
as defined in Zuk et al. (2012) (Supplemental Material).

MKLMM-Adapt

MKLMM-Adapt is an MKLMM formulation whose kernel consists
of a sum of region-specific kernels, in which the regions and
kernels are automatically selected in a data-driven manner. Each
region uses a weighted combination of a linear and at most one
nonlinear kernel. The resultingmodel can capture both diverse in-
teraction patterns and heterogeneous effect-size distributions
across different genomic regions.

Although models using more region-specific kernels can
potentially express richer interaction patterns, they run into risk
of overfitting the training data. Our proposed model selection
strategy evaluates several models of increasing complexity via a
fivefold cross validation and selects the one demonstrating the
best out of sample prediction capability. The model selection de-
tails follow, and a full algorithmic description is provided in the
Supplemental Material.

We begin by dividing the genome into a ranked list of regions,
similarly to the approach of adaptiveMultiBLUP (AMB) (Speed and
Balding 2014). The genome is first divided into many small over-
lapping subregions spanning ∼75 kb. Every subregion is evaluated
according to the likelihood obtained when constructing a linear
kernel using only its variants. Afterward, subregions whose likeli-
hood is among the bottom 95% are discarded, and every consecu-
tive range of nondiscarded subregions is merged into a region. The
regions are ranked in descending order, according to the maximal
likelihood obtained by a subregion in each region.

After obtaining a ranked list of regions, we evaluate
the performance of models with increasing complexity
M (0),M (1), . . . ,M (B) via a forward selection scheme, where B is a
user-defined parameter. Larger values of B enable evaluating
more expressive models at the price of a greater computational
cost. All experiments in this paper used B = 9, because no improve-
ment was observed for larger values.

Each model M(i) uses a kernel composed of a sum of region-
specific kernels for regions 0, …,i, in which region 0 corresponds
to a genome-wide region spanning all genotyped variants. Every
region-specific kernel is a weighted combination of a linear kernel
and at most one out of three additional kernel types: a Poly2
kernel, an RBF kernel, and an SP kernel. At each step i, the candi-
date models for region i are ranked according to a likelihood
ratio test in which the null hypothesis uses only a linear kernel
for region i, and the model with the smallest P-value is selected if
it is significant at the 5% level after accounting for multiple hy-
pothesis testing. The selected kernel type is also used in models
M (i+1), . . . ,M (B), but its parameters are re-estimated in subsequent
models.

The computational complexity of this procedure scales
cubically with the sample size, as in standard LMMs. The space
complexity scales quadratically with the sample size, owing to

the size of the kernel matrices. In our implementation, at most
four covariance matrices need to be held in memory simultane-
ously (two genome-wide kernels and two region-specific kernels),
because region-specific kernels can be computed efficiently only
when needed and then be discarded.

Privacy-preserving phenotype prediction

MKLMM can perform genetic similarity–based prediction without
having to store the genotypes and phenotypes of the training sam-
ple. This can be accomplished by using the Bayesian interpretation
of MKLMM, which shows that MKLMM is equivalent to a linear
regression model wherein all effect sizes have an independent
and identically distributed (iid) normal prior distribution (Sup-
plemental Material). It is therefore possible to perform phenotype
prediction by storing the parameters of the posterior distribution
of the effect sizes, thus alleviating the need to store genotypes
and phenotypes of training individuals (Supplemental Material).

Simulations and experiments procedure

We evaluated the performance of MKLMM and AMB on synthetic
and real data sets using a fivefold cross validation procedure. In
each fold, 80% of the individuals were used for training, and the
remaining 20% were used for evaluating prediction performance.
The evaluated measures included RMSE, out of sample log likeli-
hood (OOS LL), and Pearson correlation in experiments with
quantitative phenotypes, and the area under the receiving opera-
tor characteristic curve (AUC) in experiments with binary pheno-
types. The AUCwas computed by iterating over all test individuals
and computing the false and true positive rates obtained when
treating the estimated posteriormean of the phenotype of each in-
dividual as the affection threshold, such that individuals with esti-
mated posterior mean greater than this value are considered cases,
and the others are considered controls. The phenotype was stan-
dardized to have a unit variancewhen it was quantitative to obtain
comparable results in different experiments. Each result was com-
puted separately under each fold and then averaged.

All methods were evaluated with varying numbers of kernels.
In each fold, one-third of the 20% held-out individuals were used
to select the best number of kernels, and the evaluation measure
was then computed using the remaining two-thirds. We note
that this kernel selection procedure is different from the one
used by the authors of AMB (Speed and Balding 2014), that was
more conservative and would thus place AMB at a disadvantage
relative to the other methods. The statistical significance of the
results was evaluated via permutation testing, which takes this pro-
cedure into account (Supplemental Material).

Synthetic data sets were created by generating synthetic
phenotypes based on real genotypes from Chromosome 1 of
2801 individuals from the WTCCC national blood service cohort.
Unless otherwise stated, 25% of the phenotypic variance was ex-
plained by either two or six randomly selected genomic regions
with amean length of 75 kb, another 25%was explained by a poly-
genic term spanning the entire chromosome, and the remaining
50% was explained by an iid normally distributed environmental
effect.

All regions (including the chromosome-wide region) exerted
both an additive and a nonadditive interaction effect on the phe-
notype. Nonlinear effects consisted of either a groupwise multipli-
cative effect, which generalizes pairwise multiplicative effects to
also include higher-order interactions, or a saturating effect, which
bounds the magnitude of linear effects (Supplemental Material).
Each simulated interaction consisted of randomly selected variants
in the same region, but we note that one of the regions was a
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chromosome-wide region spanning all variants. Ten phenotypes
were generated for each unique combination of settings. A detailed
description is given in the Supplemental Material.

To evaluate the methods in the presence of binary pheno-
types, we created quantitative phenotypes as described above
and then dichotomized them at the empiricalmedian. To evaluate
performance for ascertained binary phenotypes, we generated
synthetic ascertained genotypes and phenotypes by first generat-
ing a large number of individuals and then selecting the ones
with the most extreme phenotypes as cases. Parameter inference
and prediction for binary phenotypes were carried out by treating
the phenotype as a normally distributed variable, as is commonly
practiced (Zhou et al. 2013; Speed and Balding 2014; Moser et al.
2015). The SupplementalMaterial contains a discussion of alterna-
tive approaches.

Software and code availability

The MKLMM source code is available as Supplemental Material.
Updated versions will be available at https://github.com/omerwe/
MKLMM. MKLMM is computationally efficient. On a Linux
workstation with a single 2-GHz CPU, it can fit an MKLMM
model for a data set of 2800 individuals with five linear and five
SP kernels in ∼1 h.
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