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Determination of key residues 
in MRGPRX2 to enhance 
pseudo‑allergic reactions induced 
by fluoroquinolones
Eri Hamamura‑Yasuno 1, Junya Matsushita1, Seiji Sato2, Takashi Shimada3, 
Yoshimi Tsuchiya1, Kazunori Fujimoto1* & Kazuhiko Mori4

MAS‑related G protein‑coupled receptor X2 (MRGPRX2), expressed in human mast cells, is associated 
with drug‑induced pseudo‑allergic reactions. Dogs are highly sensitive to the anaphylactoid reactions 
induced by certain drugs including fluoroquinolones. Recently, dog MRGPRX2 was identified as 
a functional ortholog of human MRGPRX2, with dog MRGPRX2 being particularly sensitive to 
fluoroquinolones. The aim of this study was to determine key residues responsible for the enhanced 
activity of fluoroquinolone‑induced histamine release associated with MRGPRX2. Firstly, a structure 
model of human and dog MRGPRX2 was built by homology modeling, and docking simulations 
with fluoroquinolones were conducted. This model indicated that E164 and D184, conserved 
between human and dog, are essential for the binding to fluoroquinolones. In contrast, F78 (dog: 
Y) and M109 (dog: W) are unconserved residues, to which the species difference in fluoroquinolone 
sensitivity is attributable. Intracellular calcium mobilisation assay with human MRGPRX2 mutants, 
in which residues at positions 78 and 109 were substituted to those of dog MRGPRX2, revealed that 
M109 and F78 of human MRGPRX2 are crucial residues for enhancing the fluoroquinolone‑induced 
histamine release. In conclusion, these key residues have important clinical implications for revealing 
the mechanisms and predicting the risks of fluoroquinolone‑mediated pseudo‑allergic reactions in 
humans.

Drug-induced pseudo-allergic reaction is an IgE-independent adverse effect frequently observed upon the 
administration of drugs including antibacterial agents and peptidergic drugs, leading to histamine release, inflam-
mation, pruritus, and airway  constriction1,2. In severe cases, hypotension and shock-like syndrome are  observed3.

MAS-related G protein-coupled receptor X2 (MRGPRX2), one of the class A GPCRs, has been identified as 
an essential receptor for pseudo-allergic reactions, and various drugs including fluoroquinolones activate Gi or 
Gq proteins via MRGPRX2 and induce mast cell  degranulation4. Recently, the binding sites of ligands such as 
substance P, hemokinin-1, and icatibant in MRGPRX2 were reported by several research  groups5–7. However, 
fluoroquinolone-binding sites of MRGPRX2 have not been comprehensively determined.

MRGPRX2 and its orthologs have been detected in not only humans but also rodents, primates, and  dogs4,8,9. 
In rodents, Mrgprb2 and Mrgprb3 have been identified as the mouse and rat orthologs of human MRGPRX2, 
 respectively10,11. However, the Mrgprb2 mutant mouse may not be a suitable model to screen drugs with pseudo-
allergic potential for human use because the responses of Mrgprb2-expressing cells against substance P or fluo-
roquinolones are markedly weaker than those of human MRGPRX2-expressing  cells4. Dogs, one of the most 
frequently used laboratory animals in drug development, are known to be highly sensitive to the anaphylactoid 
reactions induced by certain drugs including  fluoroquinolones12–15. In fact, treatment with neuromuscular block-
ing agents or fluoroquinolones induces severe hypotension or shock-like syndrome accompanied by elevation 
of blood histamine concentrations in  dogs16–19. On the other hand, a 30- to 100-fold higher dose of the drugs 
is needed to induce these symptoms in  rats14. Therefore, dogs would be a suitable animal model to identify 
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the risks or investigate the mechanisms of drug-induced anaphylactoid reactions. Recently, we identified that 
dog MRGPRX2 is a functional ortholog of human MRGPRX2, with dog MRGPRX2 being highly sensitive 
to  fluoroquinolones20. However, the mechanism underlying its enhanced activity in fluoroquinolone-induced 
histamine release has not been clarified.

The present study was designed to identify key residues associated with fluoroquinolone-induced histamine 
release inducing the above-mentioned species difference in fluoroquinolone sensitivity. Firstly, a docking simula-
tion with fluoroquinolones was conducted using a structure model of human and dog MRGPRX2 established by 
homology modeling. Comparison of amino acids around the predicted ligand binding pocket between human 
and dog indicated that two residues, F78 and M109, might play an important role in fluoroquinolone sensitivity. 
Then, HEK293 cells transfected with human MRGPRX2 mutants, in which amino acids at positions 78 and 109 
were replaced by those in dog MRGPRX2 (F78Y, M109W, and F78Y/M109W), were treated with fluoroquinolo-
nes [ciprofloxacin (CPFX), gatifloxacin (GFLX), levofloxacin (LVFX), and pazufloxacin (PZFX)] and subjected 
to an intracellular calcium mobilisation assay, to assess Gq-coupled receptor activity. Determination of key resi-
dues associated with fluoroquinolone-induced histamine release would be clinically valuable for elucidating the 
mechanisms and predicting the risks of drug-induced pseudo-allergic reactions to fluoroquinolones in humans.

Results
Homology modeling of human MRGPRX2 and docking of fluoroquinolones. To perform dock-
ing simulations with fluoroquinolones, a homology model of human MRGPRX2 was built because no crystal 
structure information was available. As one of the closest homologs in the Protein Data Bank (https:// www. 
rcsb. org), human KOR (PDB accession id: 6B73, agonist-bound form) was used as a template for the modeling 
(Fig. 1a). Next, a docking simulation incorporating the induced fit effect with fluoroquinolones was performed. 
In this simulation, fluoroquinolones binding to human MRGPRX2 were simulated at the same site of the agonist 
in PDB 6B73. The top-ranked pose is shown in Fig. 1b. In the docking model with CPFX, a fluoroquinolone that 
induces histamine release by mast  cells14,21, characteristic salt bridges were found between a basic substituent at 
the 7 position of CPFX and acidic side chains of E164 and D184 in human MRGPRX2. On the other hand, in the 
model with PZFX, a fluoroquinolone that does not induce histamine release by mast  cells22, a side chain at the 7 
position was located at a more distant location from E164 and D184 than in CPFX because of the difference in 
position of the terminal nitrogen between these two fluoroquinolones. Thus, E164 and D184 in human MRG-
PRX2 were considered as essential residues involved in molecular interactions associated with the activation of 
MRGPRX2 by fluoroquinolones.

Amino acid sequence alignment and comparison of human and dog MRGPRX2. The result of 
aligning human and dog MRGPRX2 is shown in Fig. 2a. Typical motifs of class A GPCRs such as DRY motif 
and cysteine in transmembrane (TM)-3 were conserved in KOR, while they were not conserved in both human 
and dog MRGPRX2. E164 (dog: 270) and D184 (dog: 290), which were thought to be involved in key molecu-
lar interactions with fluoroquinolones as mentioned above, were shared between human and dog MRGPRX2. 
Next, a dog MRGPRX2 structure model was built by swapping amino acids of human MRGPRX2 constructed 
as described above. To identify key residues associated with a species difference, residues around the predicted 
binding pocket of fluoroquinolones were compared between human and dog MRGPRX2. Among the 21 resi-
dues within 5  Å around CPFX docked in human and dog MRGPRX2, only three amino acids (F78, M109, 
and A189 in human MRGPRX2) were unconserved residues between human and dog (Fig. 2b); the remaining 
residues (86%) were conserved. Among these three residues, F78 (dog: Y185) and M109 (dog: W215) in human 
MRGPRX2 were predicted to play some roles in the interaction with its ligands because the side chains of these 
two residues are oriented towards CPFX, and likely to affect it. Therefore, we selected the residues F78 and M109, 
located in TM2 and TM3, and constructed human MRGPRX2 mutants in which “dog-type” mutations were 
introduced (Fig. 2c).

Functional assay of human MRGPRX2 mutants. To determine whether the dog-type human MRG-
PRX2 mutants were associated with increased responses, intracellular calcium mobilisation against fluoroqui-
nolones was evaluated. For this evaluation, three types of expression vector, F78Y and M109W (single muta-
tions), and F78Y/M109W (double mutation), were constructed. HEK293 cells were transiently transfected with 
these human MRGPRX2 mutants and evaluated for reactivity to compound 48/80, a typical histamine releasing 
agent, and fluoroquinolones (CPFX, GFLX, LVFX, and PZFX). In the mutant F78Y, slightly increased reactivity 
was observed against treatment with CPFX and LVFX compared with the case for wild type (WT) human MRG-
PRX2 (Fig. 3a). On the other hand, in the mutants M109W and F78Y/M109W, significantly increased responses 
to compound 48/80, CPFX, GFLX, and LVFX were observed from lower concentrations than for WT (Fig. 3a,b). 
In particular, the reactivity of the double mutant F78Y/M109W against CPFX was equal to or greater than that 
of dog MRGPRX2. The  EC50 of CPFX in F78Y/M109W was ca. one-eighth that of the WT (Table 1). The order of 
the  EC50 values was compound 48/80 < CPFX < LVFX < GFLX, which was the same for all of the mutants. PZFX, 
which does not induce histamine release by mast  cells22, did not induce intracellular calcium mobilisation in any 
of the cells.

Discussion
In the present study, we identified M109 and F78 in human MRGPRX2 as key residues associated with fluo-
roquinolone-induced histamine release inducing the difference in fluoroquinolone sensitivity between human 
and dog. Introducing dog-type mutations into human MRGPRX2 markedly enhanced responses to fluoroqui-
nolones. Our results provide important insights into the mechanism behind fluoroquinolone-induced histamine 
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release in dogs, which are highly sensitive to these drugs. Moreover, the results suggest the mechanisms behind 
MRGPRX2-related hypersensitivity in humans.

Reddy et al. and Lansu et al. identified E164 and D184 of human MRGPRX2 as essential residues for the 
activation of MRGPRX2 by substance P and  opioids5,6. These two amino acids are negatively charged residues 
that were found to interact with cationic opioid  ligands6. Additionally, it was demonstrated that replacing E164 
with a positively charged residue resulted in the loss of responses to substance  P6. In contrast, the response to 
LL-37 or dynorphin was not lost even in the same mutant, suggesting that different ligands might interact with 
different amino acids around the predicted ligand-binding  pocket6. In this study, our docking model suggested 
that E164 and D184 would be essential for MRGPRX2 activation associated with fluoroquinolones because of the 
characteristic interactions between CPFX and E164/D184. We previously reported that a basic substituent at the 
7 position of the fluoroquinolone ring may be associated with histamine  release14. Consistent with that report, a 
terminal basic nitrogen of piperazine at the 7 position of the fluoroquinolone ring, which is present in the three 
fluoroquinolones used in this study (CPFX, GFLX, and LVFX), was predicted to form interactions such as a salt 
bridge or a hydrogen bond with acidic side chains of E164 and D184. On the other hand, in PZFX, which does 
not induce histamine release by mast  cells22, no salt bridge or hydrogen bond was formed because of the greater 
distance between the nitrogen and E164/D184. The difference between CPFX and PZFX in our MRGPRX2 

Figure 1.  Homology modeling of human MRGPRX2 and docking simulation with fluoroquinolones. (a) 
Homology modeling of human MRGPRX2. A model of human MRGPRX2 was built with Prime version 4.5 
using the crystal structure of agonist-bound human kappa opioid receptor (KOR) as a template. (b) Docking 
model of human MRGPRX2 with ciprofloxacin (CPFX, green) or pazufloxacin (PZFX, gray). A basic substituent 
at the 7 position of CPFX is highlighted by a red circle. The docking study incorporating the induced fit effect 
was performed with the Induced Fit Docking (IFD) algorithm from Schrödinger. The docking model of PZFX 
was constructed by superimposition with CPFX.
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Figure 2.  Comparison of human and dog MRGPRX2. (a) Alignment of human kappa opioid receptor (KOR), 
human MRGPRX2, and dog MRGPRX2. Amino acid sequence alignment was carried out using GENETYX-SV/
RC Ver.13.1.1. Arrows indicate unconserved residues between human and dog MRGPRX2 around the estimated 
ligand binding pocket. (b) Homology modeling of human and dog MRGPRX2 bound with ciprofloxacin 
(CPFX, green). Unconserved residues between human and dog MRGPRX2 within 5 Å around CPFX are 
highlighted in cyan (human) and orange (dog). (c) Snake diagram of human MRGPRX2. The residues at which 
dog-type mutations were introduced are marked in yellow. Generated using tools of gpcrdb.org.
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docking model was consistent with their distinct histamine release potential in vivo/vitro17,22. However, these 
residues were not considered to be a key factor contributing to the enhanced activity to fluoroquinolones because 
they were conserved between human and dog.

Human MRGPRX2 is considered as “an atypical opioid receptor”5; many of the motifs conserved in class A 
GPCRs are not found in human and dog MRGPRX2. While the homology of amino acid sequences between 
human and dog MRGPRX2 was 62%20, residues around the predicted ligand-binding site were found to be well 
conserved; only three amino acids differed. In the functional assay with “dog-type” human MRGPRX2 mutants, 
M109W and F78W/M109W showed markedly increased responses compared with the WT. In particular, the 
double mutant F78Y/M109W appeared to demonstrate a greater response than dog MRGPRX2 against CPFX. 
These results clearly suggest that M109 (dog: W215) and F78 (dog: Y185) of human MRGPRX2 are key residues 
contributing to the enhanced responses to fluoroquinolones.

Introducing a mutation into a GPCR often affects its basal activity or ligand  sensitivity23,24. In this study, 
human MRGPRX2 mutants did not exhibit changes of basal activity compared with WT in the calcium mobi-
lisation assay, suggesting that these mutations did not affect the constitutive activity of MRGPRX2. In contrast, 
the mutants M109W and F78Y/M109W demonstrated a left shift of the dose–response curves and decreased 

Figure 3.  Effects of test articles on changes in intracellular calcium levels in cells expressing human MRGPRX2 
or its mutant. HEK293 cells transiently transfected with dog MRGPRX2, human MRGPX2, or a mutant of 
human MRGPRX2 exposed to compound 48/80 or fluoroquinolones [ciprofloxacin (CPFX), gatifloxacin 
(GFLX), levofloxacin (LVFX), and pazufloxacin (PZFX)]. (a) Dose-dependent responses of intracellular calcium 
levels. Data are presented as the mean ± S.D. of quadruplicate assays. The four-parameter sigmoidal model was 
used for curve-fitting. Untransfected HEK293 cells were used as a negative control. (b) Time-course changes of 
intracellular calcium levels in cells expressing human MRGPRX2 WT or its mutant. Traces show representative 
intracellular calcium fluctuation following exposure to CPFX (4.1 µg/mL). Test articles were perfused from 10 s. 
RLU relative light units, s second.
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 EC50 values compared with WT, indicating that the mutations evoked increases in interactions with its ligands 
or binding affinity. According to the Ballesteros-Weinstein GPCR numbering method, M109 and F78 in human 
MRGPRX2 are indicated as 3 × 32 and 2 × 53,  respectively25,26. Amino acids located at 3 × 32 in TM3 have been 
reported to be involved in interactions with ligands in some  GPCRs27,28, and are listed as being among the most 
important residues that frequently interact with  ligands29. In the human MRGPRX2 mutant M109W, the change 
to this bulky aromatic residue at position 3 × 32 might affect the size of the ligand binding pocket and result in 
different responses. In addition, marked enhancement was induced by co-mutation with F78Y compared with 
single mutant M109W. Phenylalanine is closely related to tyrosine, which just has an additional hydroxyl group. 
Therefore, as for the double mutant F78Y/M109W, the hydroxy group in tyrosine would generate a different 
interaction favorable to the fluoroquinolone binding and resulted in enhanced responses.

Among the fluoroquinolones used in this study, CPFX markedly induced an enhanced response to F78Y/
M109W compared with GFLX and LVFX. Although the chemical structures of CPFX and GFLX are almost the 
same, CPFX does not have a methoxy group at the 8 position of the fluoroquinolone ring. In addition, M109 is 
located adjacent to the 1 and 8 positions of the fluoroquinolone ring in the human MRGPRX2 docking model. 
Thus, the difference of chemical structure at the 8 position of the fluoroquinolone ring would have resulted in the 
different levels of enhancement in responses of F78Y/M109W. As for the order of  EC50, human MRGPRX2 WT 
and all of the mutants generated in this study showed the same order of fluoroquinolones: CPFX < GFLX < LVFX. 
In contrast, the  EC50 of LVFX was similar to or lower than that of GFLX in dog MRGPRX2 WT, suggesting that 
the ligand selectivity to these fluoroquinolones differs between human and dog MRGPRX2. Because the order 
did not change even in the mutants constructed in this study, the difference in ligand selectivity may arise from 
regions other than F78 and M109. Because the residues around the ligand binding pocket of MRGPRX2 are 
highly conserved between human and dog, comparison between human and dog MRGPRX2 including the site 
responsible for G-protein coupling, such as intracellular loops, may be needed to clarify the mechanism behind 
the different ligand selectivity between human and dog.

Non-synonymous single-nucleotide polymorphisms (SNPs) would affect the responses to ligands, associating 
with hypersensitivity against drugs in some  patients30,31. Although a number of naturally occurring missense 
variants of human MRGPRX2 have been reported, most of the variants showed similar or decreased responses 
compared with  WT32. On the other hand, Chompunud Na Ayudhya et al. have reported that human MRGPRX2 
mutants at the carbonyl terminus, which are associated with receptor phosphorylation and desensitisation, 
showed enhanced responses to substance  P33. In the present study, we constructed human MRGPRX2 mutants 
at the TM domain, which is associated with ligand binding, and these mutants demonstrated enhanced responses 
to fluoroquinolones compared with WT. Our results indicate that missense mutations in F78 or M109 of human 
MRGPRX2 would induce enhanced responses to certain fluoroquinolones including CPFX in humans. With 
regard to human MRGPRX2 variants, F78L and V108A are found in gnomAD as naturally occurring missense 
mutations located at or near positions F78 and M109, respectively. The mutant F78L was reported not to alter 
the activity against hemokinin-1, substance P, icatibant, and human β-defensin-37, generally consistent with the 
results of this study. However, it should be considered that the mutation at F78 may induce a greatly enhanced 
response when it is accompanied by mutation at M109. No reports have been published with regard to V108A’s 
function. Further analysis of SNPs located around F78 or M109 would provide important information to inves-
tigate MRGPRX2-related hypersensitivity.

In summary, we focused on dog MRGPRX2, which is sensitive to fluoroquinolones compared with human 
MRGPRX2, and identified key residues associated with fluoroquinolone-induced histamine release that explain 
this species difference. Our results have important clinical implications for revealing the mechanism behind 
fluoroquinolone-mediated pseudo-allergic reactions and assessing the risk of them in humans.

Table 1.  Half-maximum effective concentration  (EC50) values of test articles on changes in intracellular 
calcium levels in cells expressing MRGPRX2 or its mutant. Statistical significance was determined by unpaired 
t-test. Data are represented as mean ± S.D. of quadruplicate assays. CPFX ciprofloxacin, GFLX gatifloxacin, 
LVFX levofloxacin. *P < 0.05, **P < 0.01 vs. wild type human MRGPRX2.

Test article

EC50 (µg/mL) ± SD
(P value)

Human Dog

Wild type F78Y M109W F78Y/M109W Wild type

Compound 48/80 5.4 ± 0.57 4.8 ± 2.1
(P = 0.60)

2.6 ± 1.0**
(P = 0.0028)

1.3 ± 0.69**
(P < 0.001)

2.1 ± 0.93**
(P < 0.001)

CPFX 47 ± 6.1 33 ± 4.7*
(P = 0.010)

20 ± 8.4**
(P = 0.0018)

6.1 ± 1.8**
(P < 0.001)

12 ± 1.9**
(P < 0.001)

GFLX 360 ± 160 250 ± 69
(P = 0.24)

100 ± 16*
(P = 0.018)

74 ± 27*
(P = 0.013)

97 ± 37*
(P = 0.019)

LVFX 650 ± 330 500 ± 350
(P = 0.57)

210 ± 36*
(P = 0.038)

180 ± 140*
(P = 0.038)

90 ± 47*
(P = 0.015)
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Materials and methods
Homology modeling and docking simulation. A homology model of human MRGPRX2 (UniProt 
accession id: Q96LB1) was built with Prime version 4.5 (Schrödinger, LLC, New York,  NY34,35; using a crystal 
structure of agonist-bound human kappa opioid receptor (KOR, PDB accession id: 6B73) as a template. For the 
modeling, we used the same method of amino acid sequence alignment as in a previous  study5. A docking study 
with fluoroquinolones incorporating the induced fit effect was performed with the Induced Fit Docking (IFD) 
algorithm from Schrödinger36–38.

Amino acid sequence alignment. Amino acid sequence alignment of human MRGPRX2 (accession No. 
NP_001290544), dog MRGPRX2 (accession No. XP_005633869), and KOR (accession No. AAC50158) was car-
ried out using GENETYX-SV/RC Ver.13.1.1 (Genetyx Corporation, Tokyo, Japan).

Reagents. Compound 48/80 was purchased from Sigma-Aldrich Co. LLC (St. Louis, MO). CPFX and LVFX 
were obtained from Fujifilm Wako Pure Chemical Corporation (Osaka, Japan), and GFLX and PZFX were 
obtained from LKT Laboratories Inc. (St. Paul, MN).

Site‑directed mutagenesis of human MRGPRX2. The WT human MRGPRX2 gene in pcDNA3.1(+) 
was used as a template. Point mutations of F78Y, M109W, and F78Y/M109W were introduced with PrimeS-
TAR Max DNA Polymerase (Takara Bio Inc., Kusatsu, Japan) and primers (see Table 2). DH5α competent cells 
generated by Mix & Go E. coli Transformation kit (Zymo Research Corp., Irvine, CA) were transformed with 
the plasmids and cultured. The plasmids were extracted and sequenced by Daiichi Sankyo RD Novare Co., Ltd. 
(Tokyo, Japan).

Transfection of HEK293 cells with MRGPRX2 and its mutants. HEK293 cells obtained from the 
JCRB Cell Bank (Osaka, Japan) were transiently transfected with MRGPRX2 and its mutants. Lipofectamine 
2000 Reagent (Thermo Fisher Scientific Inc., Waltham, MA) and pcDNA3.1(+) containing each gene were 
diluted and mixed using Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific Inc.) to prepare lipid-
DNA complexes (final concentrations: lipofectamine 2.5 µL/mL and DNA 2500 ng/mL). HEK293 cells were 
detached using TrypLE Express (Thermo Fisher Scientific Inc.) and prepared to 7 ×  105 cells/mL with the lipid-
DNA complex. Thereafter, 25 µL of cells (1.75 ×  104 cells/well) were seeded per well in 384-well flat-bottomed 
plates (Corning Incorporated, Corning, NY) and incubated overnight at 37 °C under 5%  CO2 conditions. Cells 
treated with plasmid-free lipid solution were used as a negative control (untransfected cells).

Calcium mobilisation assay. Test articles were dissolved in Hanks’ balanced salt solution (HBSS, pH 7.4; 
Thermo Fisher Scientific Inc.) supplemented with 20  mM hydroxyethylpiperazine-N′-2 ethanesulfonic acid 
(HEPES; Sigma-Aldrich Co. LLC) and 0.05 vol% bovine serum albumin (BSA; Sigma-Aldrich Co. LLC). The 
highest concentration of fluoroquinolones was set at 1000 µg/mL based on previous reports, at which the test 
substances induced marked intracellular calcium mobilisation in MRGPRX2-expressing HEK293  cells10,20 or 
caused histamine release in rat or human mast  cells14,17,21. Intracellular calcium levels were analysed using Cal-
cium Kit II-iCellux (Dojindo Molecular Technologies, Inc., Kumamoto, Japan), in accordance with the manu-
facturer’s instructions. HEK293 cells (1.75 ×  104 cells/well) were loaded with 1.25 mM probenecid and calcium 
probe for 45 min at 25  °C. Changes in fluorescence intensities between before and after addition of the test 
articles were measured over time using FLIPR Tetra (Molecular Devices, LLC, Sunnyvale, CA) with excitation 
at 470–495 nm and emission at 515–575 nm. The test articles were added 10 s after beginning the measure-
ments. The data were analysed using ScreenWorks (Molecular Devices, LLC, Version 3.2.0.14) to determine 
the difference between maximal and minimal fluorescence intensity (max–min). As CPFX at 333 and 1000 µg/
mL induced nonspecific increases in intracellular calcium levels in untransfected cells, these data were excluded 
from the analysis. All experiments were performed in quadruplicate.

Statistical analysis. Data are presented as the mean ± S.D. for calcium mobilisation. Half-maximal effec-
tive concentration  (EC50) of each test article used in the calcium mobilisation assay was calculated from indi-
vidual Emax and E0 for each variant using the four-parameter sigmoidal model. Statistical significance (P < 0.05) 
was determined by unpaired t-test. These analyses were performed using GraphPad Prism 7.03 (GraphPad Soft-
ware, La Jolla, CA).

Data availability
All data generated or analysed during this study are included in this published article.

Table 2.  Primers used in construction of human MRGPRX2 mutants.

F78Y inversion FP: 5′-TTC CTG TAC CTT TGC TTC CAG ATA ATT-3′
RP: 5′-GCA AAG GTA CAG GAA ATC GGC GCC TGC-3′

M109W inversion FP: 5′-ACT GTT TGG ACC TGT GCA TAT CTG GCC-3′
RP: 5′-ACA GGT CCA AAC AGT AGT GAA AAA ACT-3′
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