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Abstract

Platelets are subcellular fragments which circulate in blood and have well established roles in thrombosis and haemostasis
in adults. Upon activation, platelets undergo granule exocytosis and express P-Selectin on the cell membrane which binds a
ligand on monocytes, leading to monocyte-platelet aggregation. Elevated circulating monocyte-platelet aggregates in
adults are linked to atherothrombosis, but have not been investigated in children where thrombosis is less common. This
study aimed to measure monocyte-platelet aggregate formation in children using whole blood flow cytometry. Monocyte-
platelet aggregates as well as activation and granule exocytosis of platelets were measured in healthy adults (n = 15, median
age 28 years) and healthy children (n = 28, median age 7 years). Monocyte-platelet aggregates in healthy children were
elevated compared to healthy adults (37.864.4% vs 15.561.9% respectively, p,0.01). However, this was not accompanied
by any difference in platelet activation (PAC-1 binding 6.861.5% vs 6.362.0% respectively, p = ns) or granule exocytosis (P-
selectin expression 4.460.5% vs 3.160.5% respectively, p = ns). Despite comparable numbers of platelets bound per
monocyte (GPIb MFI 117.3613.7 vs 130.9628.6 respectively, p = ns), surface P-selectin expression per platelet-bound
monocyte was lower in children compared to adults. We therefore provide the first data of elevated monocyte-platelet
aggregates in healthy children.
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Introduction

Platelets are small cell fragments of large importance in

medicine. Their role in haemostasis and the late stage thrombotic

complications of cardiovascular disease are well characterised [1].

However, platelets also play an important and central role in

inflammation [2], with recently discovered antigen presenting

capacity [3] and ability to influence the phenotype of other blood

and vascular cells through cell-cell signalling [4,5]. Monocyte-

platelet aggregate (MPA) formation is a sensitive marker of platelet

activation in adults and is an early marker of acute atherothrom-

botic events [6,7]. The mechanism by which MPAs form in adults

has been well characterized, where activated platelets which have

undergone exocytosis express a-granule P-selectin (CD62P) on the

cell surface. The platelet P-selectin then interacts with P-selectin

glycoprotein ligand-1 (PSGL-1), which is constitutively expressed

on the surface of circulating monocytes [8]. Following this initial

tethering, the b2 integrin Mac-1 (CD11b/18), and to a lesser

extent LFA-1 on the monocyte stabilise the adhesion [9].

However, these interactions do not develop if PSGL-1 is blocked,

or CD62P is not expressed on the platelet [10,11].

In addition to acting as a marker of platelet activation, the

heterotypic cellular association between monocytes and platelets

triggers an adhesive and pro-inflammatory monocyte phenotype

[5,12]. Although incompletely characterised, this is thought to

arise both through outside-in signalling of the adhesion receptors

interacting with the platelet surface, and through in situ delivery of

pro-inflammatory platelet granule contents to the monocyte

[5,12–19]. Monocyte-platelet aggregates promote a pro-throm-

botic milieu at the site of platelet activation, and are suggested to

contribute to atherogenesis and progression of coronary artery

disease (CAD) [5,20,21]. A potential role for sub-clinical platelet

activation as a contributor to cardiovascular risk is emerging

[12,14].

Important age-related quantitative changes have been reported

in haemostatic factors [22,23] platelet count [24,25] and reactivity

[26,27] among children, including decreasing soluble P-selectin in

serum with age [28]. These age-related changes in haemostasis

have important implications in the clinical management of

children [23]. Measurement of monocyte-platelet aggregates is

used as a surrogate marker of early platelet activation in paediatric

research for many thromboinflammatory diseases, including acute

myocardial infarction, cystic fibrosis and thrombocytopenia

[14,29,30]. However, the formation of MPAs in children and

their circulating levels has not been systematically investigated in

healthy children. We therefore sought to measure formation of

MPAs in healthy children, and compare them with adults.

Results

Circulating MPAs were increased in children compared to

adults as shown in Figure 1A (37.864.4% vs. 15.561.9%
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respectively, p,0.01). However, when circulating platelets were

examined for surface markers of activation with no addition of

agonists ex vivo, there was no corresponding increase in activation

of the GPIIb/IIIa receptor as measured by PAC-1 binding

(6.861.5% vs. 6.362.0% respectively, p= ns) (Figure 1B); or

platelet granule exocytosis, as measured by P-selectin expression

(4.460.5% vs. 3.160.5% respectively, p = ns) (Figure 1C).

In order to determine whether circulating monocyte-platelet

aggregates in children formed as a result of the P-Selectin/PSGL-1

adhesion mechanism known to be responsible for this process in

adults, the relative MFI of P-selectin on platelet-bound and –

unbound monocyte events was examined. P-selectin expression of

platelets bound to circulating monocytes in blood from children

have significantly lower P-selectin expression compared to platelets

bound to monocytes in circulating blood from adults (17.863.5 vs.

58.5615.8 MFI respectively, p,0.05) (Figure 2). However, ex vivo

chemical stimulation of whole blood to with 50 mM TRAP-6, a

specific agonist of the platelet protease activated receptor, resulted

in equal expression of P-selectin on monocyte-platelet aggregates

between adults and children.

In order to compare the relative number of platelets bound per

monocyte without ex vivo chemical stimulation, the expression of

platelet-specific GPIX (CD42a) was compared. Mean fluorescent

intensity of CD42a from children (117.3613.7 MFI) was not

different to adults (130.9628.6 MFI, p = ns), indicating similar

number of platelets bound per monocyte.

Discussion

We provide the first evidence of elevated MPAs without ex vivo

chemical stimulation in children. Platelets bound to monocytes in

children did not show the elevation of P-selectin expression

associated with MPA formation in adults. These results suggest

that circulating MPAs in children are not a result of increased

platelet activation and granule exocytosis, and that a P-selectin

independent mechanism of MPA formation may be more

important in MPA formation in children. These findings are very

different to what has been described in adults. This is the first

report of such age-specific differences in monocytes platelet

interaction and it is consistent with our previous findings of age-

dependent changes in other haemostatic and platelet parameters.

The lower P-selectin expression on circulating MPAs in children

was not associated with a corresponding decrease in CD42a

expression, indicating similar numbers of platelets bound per

monocyte in MPAs from children and adults. Further testing by

stimulation with a supra-maximal concentration of the chemical

platelet agonist TRAP-6 demonstrated that platelets bound to

monocytes from both children and adult blood could be induced

to a similar maximal expression of P-selectin. Therefore, while the

majority of circulating MPAs form in the absence of platelet

activation in children, there is the capacity for both platelet

activation-dependent and -independent formation of monocyte-

platelet aggregates. This also confirms that the binding of anti-

CD62P monoclonal antibodies to platelets that are already bound

through P-Selectin/PSGL-1 mechanisms is not impaired in our

assay.

Age related differences in relative abundance of monocytes and

platelets [24,25,31] might potentially contribute to the observed

differences in the level of MPAs in blood from children. In order to

test this hypothesis, we collected and analysed full blood counts

and MPAs on a subset of samples from 5 adults and 6 children

(data not shown). No correlation (Spearman’s rank test) of MPAs

with either absolute platelet count, monocyte count or the ratio of

platelet to monocyte count was observed.

Figure 1. Elevated circulating monocyte-platelet aggregates (MPAs) in children with no increase in platelet activation or
exocytosis. Monocytes were identified by characteristic forward and side laser scatter and differential expression of CD14, while MPAs were
determined by co-expression of platelet-specific GPIX (CD42a) on monocyte events and gates were determined by appropriate isotypic control. The
percentage of monocyte-platelet aggregates as a function of overall monocytes was recorded (Panel A) Platelets were identified by characteristic
forward and side laser scatter and expression of platelet-specific GPIba, with a threshold discriminator on CD42b-PC5. The percentage of platelets
with PAC-1 FITC fluorescence above the eptifibatide-blocked control (panel B) or P-selectin expression above isotype control was recorded (panel C).
Data shown are mean +/2 SEM (adults n = 15, children n= 28).
doi:10.1371/journal.pone.0067416.g001

Figure 2. Expression of P-selectin (CD62P) mean fluorescence
intensity (MFI) of monocytes with and without platelets bound,
with and without the chemical platelet agonist TRAP-6
(positive control) in children and adults. Circulating MPAs in
children had lower P-selectin expression than adults, but could be
induced to express P-selectin by chemical stimulation. Data shown are
mean MFI +/2 SEM (adults n = 4 and children n= 4).
doi:10.1371/journal.pone.0067416.g002
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Pre-analytical variables, especially with relation to blood

collection, are known to affect parameters of platelet function,

including MPAs. We performed preliminary experiments using

different sample collection methods using direct venipuncture

compared with blood drawn through indwelling catheter. This

confirmed the need for blood collection procedures to be

consistent, and so blood from healthy adult volunteers was drawn

through an indwelling catheter to match routine paediatrics

collection in this setting. Bloods were collected using the same

peripheral cannula type and size into the same type of

anticoagulant tubes. With this stringent standardization, difference

in MPAs formation we reported here is unlikely attributed by the

pre-analytical variables.

While not routinely used as a diagnostic assay in clinical

medicine, whole blood flow cytometric measurement of monocyte-

platelet aggregates is considered an early and sensitive marker of

in vivo platelet activation and atherothrombosis in adults [6,9], and

proposed as a potential diagnostic tool in the assessment of acute

coronary syndromes [9]. Monocyte-platelet aggregates have also

been used as a sensitive marker of platelet activation in the context

of thromboinflammatory disease state of relevance to paediatric

populations, such as cystic fibrosis [29]. However, in the current

study circulating monocyte-platelet aggregates observed in healthy

children were not associated with platelet activation, and the

adherent platelets had not undergone exocytosis. Therefore care

must be taken in the use of MPAs as a marker of platelet activation

in children.

While MPAs in adults are thought to contribute to atherogen-

esis through promotion of an inflammatory phenotype and by

localizing monocytes to the endothelium, circulating MPAs in

children are unlikely to play a role in this process in the absence of

P-selectin and platelet activation. Further research should be

directed at understanding the different mechanisms and phyisio-

logical consequences of monocytes-platelets interaction in chil-

dren. The potential role for this physiological adhesion between

unactivated platelets and monocytes in the protection of children

from a number of clinically significant platelet mediated diseases

such as heparin induced thrombocytopenia [32] deserves further

exploration.

It is well established in adult blood that following initial

tethering to activated platelets by P-selectin/PSGL-1 interaction,

firm adhesion via bridging fibrinogen bound to the activated

GPIIb-IIIa integrin [33] and via direct interaction with GPIba
[34]. Our finding of elevated monocyte-platelet tethering in

children without elevated P-Selectin expression therefore warrants

further investigation into the role and relative importance of other

adhesion molecules, such as Mac-1, LFA-1 and ICAM-2, which

may have a role in the in the observed formation of circulating

monocyte-platelet aggregates in the absence of P-selectin.

Following granule exocytosis and exposure of P-selectin on

activated platelets, P-selectin is rapidly cleaved while activated

platelets continue to circulate and function [35]. It is therefore

possible that the elevated circulating MPAs in children represent

platelets that are initially bound to monocytes in vivo through P-

selectin expression and that subsequently, but prior to blood

collection, P-selectin is cleaved off with the platelet remaining

tethered to the monocyte through other adhesion molecules.

In summary, this is the first observation of increased monocyte-

platelet aggregation occurs in healthy children compared to

healthy adults. This interaction occurs without the increased

expression of P-selectin seen with MPA formation in adults,

suggesting a different physiological monocyte-platelet interaction

in this young population. This interaction could contribute to the

thromboprotective mechanism observed in children. Further

investigation of the phenotypic consequences of platelet adhesion

to monocytes in the absence of P-selectin is warranted.

Materials and Methods

Participants and Blood Collection
Institutional human research ethics approval (RMIT University

Human Research Ethics Committee reference 55/11 and Royal

Children’s Hospital Melbourne Human Research Ethics Com-

mittee reference 20031) was obtained for the research and the

procedure of gaining consent. For adults, written informed consent

was obtained, while for children both verbal assent from the child

and written consent from a parent were obtained. Blood from

healthy volunteer adults (n = 15, age 20–43 years old, median age

28 years old) and healthy children of either gender (n = 28, age 1–

14 years old, median age 7 years old) scheduled for minor day

surgery (e.g. trigger thumb release) was collected. Subjects did not

receive any antiplatelet medication and had no family history of

haematological disorders. Whole blood was collected from

peripheral cannula into S-Monovette tubes (Sarstedt, Australia),

containing 1 volume of citrate per 9 volumes of blood according to

protocols previously described [22]. In order to minimise pre-

analytical variables, blood collection procedures and blood

handling for adults and children were identical.

Assays
Flow cytometer setup and calibration. All analyses were

performed on a FACS Calibur flow cytometer (Becton Dickinson,

Australia). Fluorophores were excited by a 30 mW 488 nm argon

sapphire laser. Fluorescein isothiocyanate (FITC) emission was

collected in the wavelength range 515–545 nm (530/30 band

pass), phycoerythrin (PE) emission was collected in the wavelength

range 564–606 nm (585/42 band pass) and tandem phycoery-

thrin-cy5 (PE-Cy5) emission was collected in the wavelength

.670 nm (670 long pass). Voltages to photomultiplier tubes

(PMTs) collecting each wavelength range were established to

ensure emission peaks for unstained and positively stained cells fell

within the linear range of the instrument (i.e. between first and

third decades of MFI). Voltages were individually calibrated for

platelet and monocyte-platelet parameters against hard-dyed

broad spectrum 3.0–3.4 mm 8 peak calibration particles of known

concentration of molecules of equivalent soluble fluorochrome

(MESF) (Spherotech, USA) as previously described [36]. Briefly,

for each day in which samples were analysed, 8 peak rainbow

beads were first analysed and PMT voltages adjusted such that

each peak of fluorochrome labelled beads of known MESF appear

in the appropriate channel for each bandwidth range. Compen-

sation for spectral overlap between all fluorophores was deter-

mined using platelets and monocytes with high and low expression

individually single stained with antibody. A mixed population of

high and low expressing cells was created by partial activation of

platelets using 2 mM TRAP-6. Effective compensation was verified

by antibody titration on high expressing cells (Figure 3).

Measurement of platelet activation and

exocytosis. Platelet activation was measured by whole blood

flow cytometric determination of PAC-1 binding, a monoclonal

antibody which recognizes integrin aIIbb3 in its high affinity

activated conformation, indicating activation dependent inside-out

signalling has occurred. Granule exocytosis was measured by

expression of P-selectin, an a-granule component not normally

expressed on the surface of resting platelets but expressed following

fusion of granule and cell membranes. Briefly, within 30 min of

collection whole blood was diluted 1:5 with HEPES saline (10 mM

HEPES, 0.15 M NaCl, pH 7.3–7.4) and incubated with an

Monocyte-Platelet Aggregates in Children
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antibody cocktail containing 1.0 mg.mL21 PC5 conjugated anti-

CD42b monoclonal antibody (clone HIP1, Becton Dickinson

Pharmingen, USA), 6.25 mg.mL21 FITC conjugated PAC-1

(Becton Dickinson, Australia) with or without blockade by

5 mg.mL21 eptifibatide (Schering-Plough, Australia), and PE

conjugated anti-CD62P monoclonal antibody (clone AK4, Becton

Dickinson, Australia) or 1 mg.mL21 PE conjugated mouse IgG1k
isotypic control (clone MOPC-21, Becton Dickinson, Australia).

After 15 min of incubation the reaction was stopped with addition

of 800 mL of 1% formaldehyde (Sigma Aldrich, USA) in HEPES-

Saline. Platelets activated with 50 mM of thrombin receptor

activating peptide, TRAP-6 (Sigma Aldrich, Australia) were

analysed with each sample as a positive control. Platelets were

identified by characteristic forward and side laser scatter and

expression of platelet-specific GPIba (CD42b). The percentage of

platelets with fluorescence above the eptifibatide-blocked or

isotype controls was recorded.
Measurement of Monocyte-Platelet Aggregate (MPA)

formation. Circulating MPAs were measured by whole blood

flow cytometry with previously described methods [1]. Briefly,

within 20 minutes of collection whole blood was incubated with an

antibody cocktail containing 1.0 mg.mL21 FITC conjugated anti-

CD42a monoclonal antibody (clone ALMA.16, Becton Dickinson,

Australia) or 1.67 mg.mL21 FITC conjugated mouse IgG1k
isotypic control and 0.5 mg.mL21 PC5 conjugated anti-CD14

monocloncal antibody (clone RMO52, Beckman Coulter Im-

munotech, Australia) with or without TRAP-6. After 15 minutes of

incubation, the reaction mixture was stopped with 800 mL of

FACS Lysing solution (Becton Dickinson, Australia) and stored at

2–8uC in the dark until analysis.

Monocytes were identified by characteristic forward and side

laser scatter and differential expression of CD14, while MPAs were

determined by co-expression of platelet-specific GPIX (CD42a) on

monocyte events. Gates were determined by appropriate isotypic

control. In a subset of samples, P-selectin expression of monocyte-

bound platelets was quantified by addition of CD62P-PE (clone

AK-4) to the antibody cocktail, with sequential gating and

fluorochrome compensation as previously described [5].

Statistical Analysis
Data shown are mean +/2 SEM. Results for children and

adults were compared using the non-parametric Wilcoxon rank

sum test.
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