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Background: Colchicine is a traditional medication that is currently approved

to treat gout and familial Mediterranean fever (FMF). However, colchicine has a

wide range of anti-inflammatory activities, and several studies have indicated

that it may be useful in a variety of other conditions, such as rheumatic disease,

cardiac disease, and cancer. Osteosarcoma, the most common type of bone

sarcoma, is derived from primitive bone-forming mesenchymal cells. In this

study, we investigated whether colchicine could be used to treat osteosarcoma

through the regulation of cell cycle signaling.

Methods: Two human osteosarcoma cell lines, U2OS and Saos-2, were used. A

clonogenic assay was used to determine the antiproliferative effects of

colchicine on osteosarcoma cells. Reactive oxygen species (ROS) production

and apoptosis were measured by flow cytometry. Migration and invasion assays

were performed to investigate the inhibitory effects of colchicine. The signaling

pathways related to colchicine treatment were verified by GO biological

process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses.

Results: Colchicine was selected as the lead compound based on the results

of initial screening and cell viability assays conducted in Saos-2 and U2Os

cells. Colchicine reduced the viability of Saos-2 and U2OS cells in a

concentration-dependent manner. It also significantly inhibited colony-

forming ability and induced ROS production and apoptosis. It also inhibited

the migration and invasion of both Saos-2 and U2OS cells. GOBP and KEGG
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enrichment analyses indicated the involvement of microtubule-based

processes and cancer-related pathways.

Conclusions: These findings suggest that colchicine has therapeutic potential

in osteosarcoma.
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Introduction
Osteosarcoma is a relatively rare bone tumor with a global

incidence of 3.4 cases per million people per year (1). It is

typically diagnosed at a young age, with a second peak in

incidence seen in elderly individuals (2). While surgical

techniques and adjuvant chemotherapies have ameliorated

poor outcomes for deadly cancers, the 5-year survival rate of

osteosarcoma has plateaued over the past four decades (3).

Current chemotherapies used to treat osteosarcoma include

methotrexate, doxorubicin, cisplatin, carboplatin, ifosfamide,

cyclophosphamide, etoposide, and gemcitabine. Usually, two

or more drugs are administered in combination, and many

experts recommend that the drugs be administered at very

high doses when possible (4). Limiting factors associated with

current treatments include complications, fatal toxicity, and

resistance, which highlights the need to develop novel

therapeutics for osteosarcoma.

Drug repositioning is an efficient tool to identify new uses for

existing drugs in a cost-effective and time-saving manner (5).

Drug repositioning has recently emerged as a potential source of

new anticancer treatments. The heterogenic nature of

osteosarcoma can lead to the failure of anticancer treatment,

suggesting that approved drugs may be used to interfere with

diverse targets within cancer cells more effectively (6). Drug

repositioning has found that thalidomide, a sedative hypnotic

agent, is effective against multiple myeloma (7). In addition,

nonsteroidal anti-inflammatory drugs (NSAIDs) with

antiplatelet effects have been demonstrated to be effective

against colorectal cancer (8). Metformin, a drug for type 2

diabetes, is effective against endometrial cancer, and digoxin, a

cardiac glycoside, has efficacy against prostate cancer (9, 10).

Nonetheless, the development of novel therapeutics for

osteosarcoma through drug repositioning remains to be

explored. Thus, discovering a new pharmacological effect for a

drug in which human safety is already established and

expanding its therapeutic range to osteosarcoma would be

beneficial for developing new anticancer treatments

for osteosarcoma.
02
Colchicine is a first-line therapy for treatment of acute gout,

prophylaxis of gout, and familial Mediterranean fever (FMF)

(11). According to previous studies, colchicine inhibits

microtubule polymerization and stimulates cells to enter

mitosis and arrest with condensed chromosomes (12). Studies

have uncovered the benefits of colchicine and determined the

underlying mechanisms by which colchicine acts in a growing

variety of diseases. Colchicine has recently been demonstrated to

play a role in cardiac diseases such as pericarditis and coronary

artery disease (13), and it is also routinely used in other

rheumatic diseases, including for acute flares in calcium

pyrophosphate deposition disease (CPPD) (14). Thus,

colchicine may be effective in treating various diseases.

Therefore, we investigated the effects of colchicine on

osteosarcoma cell lines in the context of its contribution to cell

cycle signaling.
Materials and methods

Reagents and antibodies

SCREEN-WELL (FDA-approved drug library V2) was

purchased from Enzo Life Sciences (Enzo, NY, USA).

Dulbecco’s modified Eagle’s medium (DMEM) and Roswell

Park Memorial Institute (RPMI) 1640 medium were

purchased from Gibco BRL (Grand Island, NY). Fetal bovine

serum (FBS) was purchased from GenDEPOT (Barker, TX).

Primary antibodies for cleaved caspase 3 and cleaved PARP were

purchased from Cell Signaling Technology (Danvers, MA).

Antibodies against b-actin were purchased from Santa Cruz

Biotechnology (Dallas, TX). Bicinchoninic acid (BCA) protein

assay reagent was purchased from Pierce Biotechnology

(Rockford, IL).
Cell culture

Human osteosarcoma Saos-2 and U2OS cell lines, obtained

from the Korean Cell Line Bank (Seoul, Korea), were maintained
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at 37°C in a humid atmosphere of 5% CO2 and 95% air in RPMI

and DMEM, respectively. Each medium contained 10% FBS and

1% antibiotics.
Cologenic assay

Saos-2 and U2OS cells were plated in six-well plates at

densities of 500 and 300 cells per well, respectively. After 24 h,

they were treated with different concentrations of colchicine for

48 h. The medium was then changed, and the cells were

incubated for an additional 12 days in drug-free medium. The

colonies that formed were fixed with 3.7% formaldehyde at room

temperature for 10 min and then stained with 0.05% crystal

violet. Colonies with >10 cells were counted under a light

microscope. The experiments were carried out in triplicate.
Intracellular reactive oxygen species

Intracellular ROS levels were measured by staining the cells

with 2-7-dichlorofluorescein diacetate (DCF-DA; Molecular

Probes). Cells were treated with DMSO or colchicine for 48 h

and treated with 5 mM DCF-DA 37°C for 1 h. The fluorescence

intensity of the cells was monitored via flow cytometry using a

FACSCalibur apparatus (BD Biosciences, San Jose, CA).
Apoptosis analysis

Saos-2 and U2OS cells were collected, washed with phosphate-

buffered saline (PBS), and dissociated with Accutase solution

(Sigma-Aldrich, St. Louis, MO). The cells were then counted and

washed with PBS containing 2% FBS and 0.1% Tween-20.

Apoptosis in cultured cells was assessed by flow cytometry after

Annexin V-FITC/propidium iodide (PI) double staining using the

Annexin-V FITC Apoptosis Detection Kit I (BD Biosciences, San

Jose, CA) according to the manufacturer’s instructions.
Western blot analysis

The cells were washed with cold PBS, and the pellet was

collected. Cells were then suspended in 1× cell lysis buffer (Cell

Signaling Technology, Danvers, MA) enriched with 0.1 mM

PMSF and protease inhibitor (Roche, Basel, Switzerland) and

incubated on ice for 30 min. After centrifugation at 13,000 g for

15 min, the supernatant was collected as a whole cell lysate.

Lysates containing equal amounts of protein were prepared and

analyzed using sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS-PAGE). The blots were then blocked

with 5% fat-free dry milk–TBST (Tris-based saline buffer

containing 0.1% Tween-20) for 1 h at room temperature and
Frontiers in Oncology 03
probed overnight using the indicated primary antibody (1/5,000

dilution for b-actin and 1/1,000 dilution for the rest). The blots

were then washed three times with TBST buffer for 10 min each.

The washed blots were then incubated with 1:5,000 diluted

horseradish peroxidase-conjugated secondary antibodies

(Thermo Fisher Scientific, MA, USA). The blots were washed

three times with TBST buffer for 10 min each, and the

transferred proteins were detected after incubation with the

ECL substrate detection reagent.
Transwell assay

Transwell migration assays were used to determine the

migratory and invasive abilities of osteosarcoma cells after

colchicine treatment. Saos-2 cells (1 × 104 cells) and U2OS

cells (5 × 103 cells) were seeded into the apical side of the

transwell chamber with a non-coated membrane using an 8-mm
pore (Corning, NY, USA). For invasion assays, Saos-2 and U2OS

cells were plated at the same density as mentioned above with a

Matrigel-coated membrane (BD Biosciences, San Jose, CA,

USA). To create a chemotactic gradient, serum-free media

were added to the upper chamber, while 10% FBS was added

to the lower chamber media. After 48 h, the cells were fixed in

methanol for 5 min, stained with 0.05% crystal violet, washed

with PBS, and allowed to dry. Images of the cells that migrated

through the pores were taken with an optical microscope, and

the cells were counted. Migration and invasion assays were

carried out in sextuple and triplicate, respectively.
The GOBP and KEGG enrichment analyses

Library preparation and sequencing of control or colchicine-

treated total RNAs and library construction were performed

using the QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen,

Inc., Austria) according to the manufacturer’s instructions. In

brief, 500 ng of total RNA was prepared for each sample, an

oligo-dT primer containing an Illumina-compatible sequence at

its 5’ end was hybridized to the RNA, and reverse transcription

was performed. After degradation of the RNA template, second-

strand synthesis was initiated by a random primer containing an

Illumina-compatible linker sequence at its 5’ end. The double-

stranded library was purified using magnetic beads to remove all

reaction components. The library was amplified to add the

complete adapter sequences required for cluster generation.

The final library was purified from the PCR components.

High-throughput sequencing was performed as single-end 75

sequencing using a NextSeq 500 (Illumina, Inc., USA). Data

analysis of QuantSeq 3’ mRNA-Seq reads was aligned using

Bowtie2 (15). Bowtie2 indices were either generated from the

genome assembly sequence or the representative transcript

sequences for alignment to the genome and transcriptome.
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The alignment file was used for assembling transcripts,

estimating their abundance, and detecting the differential

expression of genes. Differentially expressed genes were

determined based on the counts from unique and multiple

alignments using coverage in Bedtools (16). The read count

(RC) data were processed based on the quantile normalization

method using EdgeR within R (R Development Core Team,

2016) using Bioconductor (17). Gene classification was based on

searches of the DAVID and Medline databases. Data mining and

graphic visualization were performed using ExDEGA (Ebiogen

Inc., Korea).
Cell viability assay

Cell viability was detected using a CCK-8 solution (Dojindo,

Kumamoto, Japan) according to the manufacturer’s protocol.

Briefly, the Saos-2 and U2OS cells were counted and seeded at a

density of 5 × 104 cells/well in 96-well plates. One day after

seeding, cells were incubated with different concentrations (0.01,

0.05, 0.1, 0.5, 1, and 5 mM) of colchicine. After 48 h of treatment,

10 ml of CCK-8 was added, and the plates were incubated at 37°C
for 2 h. The absorbance per well was measured at a wavelength of

450 nm. Each experiment was sextupled independently.
Animal study

All animal experiments were conducted in accordance with

the Guide for the Care and Use of Laboratory Animals. Five-

week-old BALB/c nude mice were acclimatized for 1 week under

standard temperature, humidity, and timed lighting conditions

at the animal care facility. Five mice were used for each group.

Saos-2 cells were injected subcutaneously into the flank at a

density of 5 × 106 cells/ml in PBS/Matrigel (7:3, v/v) in a total

volume of 100 µl. The mice were divided into control and

treatment groups once the tumor volume reached 150 mm3.

Vehicle (PBS) or colchicine (10 mM) was injected (i.t.) at 100 µl.

Tumor volumes were measured every 3–4 days from the day of

colchicine injection for 15 days. Tumor volumes were calculated

using the following formula: length × width × 0.52. The mice

were sacrificed 15 days after colchicine treatment.
Statistical analysis

Data were analyzed using the GraphPad Prism 6 software

and are expressed as mean ± standard deviation. A Mann–

Whitney U test was used to compare the means of two groups

and a Kruskal–Wallis test with Tukey’s post-hoc test was used

when the means of two or more variables (i.e., induction and

concentration) were compared. Results were considered

significant when p < 0.05.
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Results

Initial screening of an FDA-approved
library identified colchicine as a potential
drug for reducing the viability of
osteosarcoma cells

We assessed 772 compounds in an FDA-approved library for

their ability to reduce the viability of osteosarcoma cells. Two

human osteosarcoma cell lines (U2OS and Saos-2) were used to

select the lead compound (Figure 1A). Initially, osteosarcoma cell

lines were treated with each compound at a concentration of 10

mM for 48 h and screened using the CCK-8 assay. Compounds

that were originally developed as chemotherapeutics were

excluded. Thirty compounds that demonstrated the most

effective inhibitory effects were selected from both Saos-2 and

U2OS cell lines for a second screening. Subsequently, five

compounds were identified that inhibited the growth of both

Saos-2 and U2OS cells to below 50% compared to that of the

control (Figure 1B), and treated with different concentrations

(0.01, 0.05, 0.1, 0.5, 1, 5, and 10 mM) to confirm the dose-

dependent cytotoxic effect (Figure 1C). Based on previous

research and clinical use, colchicine was selected as the lead

compound (Figure 1D). Colchicine has been actively

investigated beyond the scope of its original use, including in

cancer (18–21). In line with these previous studies, colchicine was

of prime interest among all the candidates tested. We examined

the effects of colchicine on the viability of Saos-2 and U2OS cells.

Treatment of the cells with colchicine for 48 h resulted in

cytotoxic effects in both osteosarcoma cell lines (Figure 1E).
Colchicine inhibits proliferation and
induces ROS production and apoptosis in
osteosarcoma cells

Colony-forming assays characterize the ability of cancer cells

to grow into colonies through independent growth and clonal

expansion. Thus, we evaluated the effect of colchicine on the

clonogenic survival of osteosarcoma cells. As shown in Figure 2A,

different concentrations (20 and 30 nM) and 30 nM of colchicine

significantly reduced the colony formation of both Saos-2 and

U2OS cells in a dose-dependent manner, respectively. ROS has

been suggested to induce cancer cell cycle arrest and apoptosis

(22). The effect of colchicine on ROS production in colon cancer

(HT-29) cells has already been discussed (19). Therefore, we also

hypothesized that we would see a surge in ROS levels in

osteosarcoma cells after colchicine treatment. In the 2’,7’-

dichlorofluorescin diacetate (DCF-DA) ROS assay, colchicine

treatment (30 nM) induced a change in intracellular ROS levels

compared to the control (Figure 2B) in both Saos-2 and U2OS

cells. To examine whether apoptosis impairs cell viability via
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colchicine treatment, flow cytometry analysis with annexin V-

FITC/PI was used to assess the percentage of apoptotic cells.

Similar to the cell viability assay findings, colchicine significantly

reduced the percentage of live cells and increased total apoptosis

in both Saos-2 and U2OS cells at 10 and 30 nM (Figure 2C).

Similarly, treatment with colchicine increased the expression of

cleaved caspase 3 and cleaved PARP in Saos-2 and U2OS cells

(Figure 2D). These results indicated that colchicine exerts

anticancer effects by inhibiting proliferation and inducing

apoptosis in osteosarcoma cells.
Colchicine inhibits migration and
invasion of osteosarcoma cells

Enhanced cell mobility and invasiveness are hallmarks of

cancer (23). Cell migration and invasion are propelling factors

that provide a wide array of cellular mechanisms under the

metastatic cascade (24). Therefore, to investigate the role of

colchicine in cell migration and invasion, we performed

Transwell cell migration and Matrigel invasion assays.
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Colchicine treatment (10 or 30 nM) significantly inhibited cell

migration, as determined by transwell migration of both Saos-2

and U2OS cells (Figure 3A). We also found that colchicine

treatment (10 or 30 nM) dramatically inhibited the invasion of

Saos-2 and U2OS cells (Figure 3B). Overall, these results indicate

that colchicine inhibits the migration and invasion of

osteosarcoma cells in vitro.
Significantly enriched pathways included
microtubule-based process and cancer
related pathways

To explore relevant biological functions, GO biological

process (GOBP) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed on the

upregulated and downregulated genes after colchicine treatment

and analyzed using the DAVID bioinformatics tools. As shown

in Figure 4A, there was a significant involvement of gene related

to the cell cycle, including microtubule-based process and G2/M
B

C

D E

A

FIGURE 1

Initial screening of an FDA-approved library and colchicine as a potential drug for osteosarcoma treatment. (A) A schematic representation of
the workflow implemented to select colchicine. (B) The cell viability assessed by CCK-8 assay. Five compounds that showed below 50% of cell
viability (% of control) with a concentration of 10 mM in Saos-2 and U2OS cells. The results are presented as means ± SD (n = 2). **p < 0.01,
***p < 0.001. (C) Saos-2 and U2OS cells were treated with five compounds (0.01, 0.05, 0.1, 0.5, 1, 5, and 10 mM) or vehicle for 48 h. The data
are presented as means ± SD (n = 3) A., D., C., AI., and M. represent auranofin, digoxin, colchicine, albendazole, and mebendazole, respectively.
NS, not significant. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Chemical structure of colchicine. (E) Saos-2 and U2OS cells were treated with
colchicine (0.01, 0.05, 0.1, 0.5, 1, and 5 mM) or vehicle for 48 h. The data are presented as means ± SD (n = 6). NS, not significant. ***p < 0.001.
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transition of the mitotic cell cycle in Saos-2 cells. This finding

provides a plausible explanation for the anticancer effects of

colchicine through the regulation of microtubule-based

processes in osteosarcoma cells. KEGG analysis revealed that

the pathways involved in the colchicine-treated cells were related

to gap junctions and apoptosis. These data further support the

possibility that colchicine induces apoptosis and inhibits the

migration and invasion of osteosarcoma cells, as previously

described. The GOBP and KEGG analyses in U2OS cells

found that colchicine treatment significantly affected cancer-

related pathways compared to that of the control (Figure 4B).
Frontiers in Oncology 06
Colchicine inhibits osteosarcoma growth
in vivo

To verify the inhibitory effect of colchicine on osteosarcoma

cells in vivo, BALB/c nude mice were injected subcutaneously

with Saos-2 cells into the flank. Intraperitoneal administration of

colchicine (10 mM) significantly reduced tumor volume

compared to that in the vehicle-treated group (Figures 5A, B).

The inhibitory effect of colchicine on the growth of Saos-2 cells

was accompanied by a marked decrease in proliferating cell

nuclear antigen (PCNA) expression (Figure 5C).
B C D

A

FIGURE 2

Effects of colchicine on colony-forming ability, ROS production, and apoptosis in Saos-2 and U2OS cells. (A) Saos-2 and U2OS cells were
treated with three different concentrations of colchicine (10, 20, or 30 nM) or vehicle (DMSO) and were seeded in a six-well plate. The colony
size >100 mm was counted under a light microscope. Results are presented as means ± SD (n = 3). NS, not significant, ***p < 0.001. (B)
Measurement of ROS levels through flow cytometry with 2’7’-dichlorodihydrofluorescein diacetate assay after treatment with colchicine (30 nM)
or vehicle (DMSO) for 48 h on Saos-2 and U2OS cells. (C) Flow cytometric analyses of Saos-2 and U2OS treated with different concentrations
of colchicine (15 or 30 nM) or vehicle (DMSO) for 48 h carried out after staining with Annexin V-FITC/PI. Data shown are representative images
and dot plots are shown for the analyzed cells. (D) The expression of cleaved caspase 3 and cleaved PARP were determined after treatment with
colchicine (10 or 30 nM) for 48 h in both Saos-2 and U2OS cells. The whole lysates were subjected to Western blot analysis.
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Discussion

In recent decades, a considerable amount of research has

focused on developing new chemotherapeutics. Despite efforts in

drug discovery, the development of novel molecules for clinical

use has not significantly increased. Thus, recently, there has been

an increase in the repositioning of drugs in oncology. Drug

repositioning is particularly advantageous in rare tumors, such

as osteosarcoma. Based on the initial screening and cytotoxic

effects of the FDA-approved compounds, five compounds

(auranofin, digoxin, colchicine, albendazole, and mebendazole)

were selected as candidates. In this process, compounds that are

originally developed as chemotherapeutics for other cancer types

were excluded. Under the presumption that chemotherapeutics

would naturally exhibit anticancer effects in most of the cancer

types including osteosarcoma, they were eliminated for

identifying the novel cytotoxic effects of non-chemotherapeutic

agents. Auranofin is an oral agent used for the treatment of

rheumatoid arthritis. Several studies have reported its anticancer

effects in various types of cancers, including osteosarcoma (25–

27). Digoxin, an antiarrhythmic agent, has been reported to

enhance anticancer effects in non-small cell lung cancer (28).

Notwithstanding preclinical evidence demonstrating the

anticancer effects of cardiac glycosides, epidemiologic studies

have shown a potential risk of breast cancer in digoxin users

(29). In agreement with these findings, Chung et al.
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demonstrated that patients taking digoxin were more likely to

develop cancers, including breast, liver, and lung cancers, during

a 10-year follow-up period (30). Based on the advanced studies

on osteosarcoma and the increased risk of cancer respectively,

auranofin and digoxin were excluded as the lead compounds in

this study. It has been well demonstrated that colchicine binds to

soluble tubulin to form tubulin–colchicine complexes and block

mitotic cells in metaphase (31). In this manner, cancer cells are

more susceptible to colchicine because of their significantly

increased mitotic rate (32). Albendazole and mebendazole are

anthelmintics used to treat worm infections. According to our

research, albendazole and mebendazole displayed cytotoxic

effects similar to those of colchicine. Similarly, albendazole and

mebendazole act by binding to the colchicine-sensitive site on b-
tubulin, thus blocking its assembly into microtubules (33, 34).

These findings strongly support that the proposed underlying

mechanism has inhibitory effects on tubulin polymerization and

provide convincing evidence for the anticancer effects of

colchicine in osteosarcoma. Owing to a higher bioavailability,

long-term half-life and several advanced research reporting

anticancer effects of benzimidazoles in osteosarcoma cell lines,

albendazole, and mebendazole were also excluded (11, 33,

35–38).

Accumulating evidence suggests that cancer cells acquire

resistance mechanism to chemotherapy over time during

treatment, eventually leading to cancer recurrence and relapse
BA

FIGURE 3

Anti-migration and anti-invasion effects of colchicine in Saos-2 and U2OS cells. (A) Representative images of a transwell migration assay and
(B) a Matrigel-coated transwell invasion assay of Saos-2 and U2OS cells. Both cells were treated with different concentrations of colchicine (10
or 30 nM) or vehicle (DMSO) for 48 h and reseeded on the transwell insert for 48 h before fixation and crystal violet staining. Images of
migrated cells were taken under an optical microscope. The values are presented as means ± SD (n = 6 and n = 3, respectively). *p < 0.05, **p
< 0.01, ***p < 0.001.
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B

A

FIGURE 4

GO biological process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of genes modulated in Saos-2 and U2OS
cells upon colchicine treatment. GOBP (top) and KEGG (bottom) enrichment analysis on upregulated and downregulated proteins of (A) Saos-2
cells and (B) U2OS cells. The vertical axis represents the pathway category, and the horizontal axis represents the enrichment score [−log(p-
value)] of the pathway. Significantly enriched GOBP and KEGG pathways (p < 0.05) are presented. The data were analyzed using DAVID
bioinformatics tools.
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(39). This phenomenon accounts for a major problem in the

treatment of cancer. In osteosarcoma, about 15%–20% of

patients display evidence of metastases at initial diagnosis,

mostly in the lungs (40). Therefore, complete surgical

resection of all clinically detected tumor sites is mandatory,

and chemotherapy is required for most patients. However, the

overall survival rate remains stagnant. Therefore, it has been

suggested that the therapeutic effects of traditional surgical and

chemo/radiotherapy could be improved by employing new

or combinational treatments targeting osteosarcoma.

Combinations of gemcitabine and cisplatin with colchicine

derivative have demonstrated synergism in urothelial

carcinoma (41). In addition, colchicine induces autophagy and

senescence in lung cancer cells, suggesting that it may have

potential for use in combination with autophagy inhibitors for

cancer therapy (42). In this context, colchicine is a promising

candidate for use in combinat ion wi th synthe t ic

chemotherapeutic drugs.

Most cancers involve p53 mutations and genomic instability.

p53 is a critical tumor suppressor gene that modulates

checkpoint responses to DNA damage. p53 mutations are

reported to be significantly associated with considerable levels
Frontiers in Oncology 09
of genomic instability in osteosarcoma (43, 44). A meta-analysis

of small-sized studies suggested that p53 mutations in

osteosarcoma demonstrated an unfavorable outcome on 2-year

overall survival in comparison with that of the wild-type p53

(45). According to previous reports, p53 is a powerful prognostic

indicator of osteosarcoma. In addition, Tang et al. suggested that

mutant p53 is a promising target for osteosarcoma (46). To

validate the correlation between wild-type and mutant

osteosarcoma, we conducted experiments using Saos-2 p53-/-

cells and U2OS p53+/+ cells throughout the study. These results

indicated that colchicine exerted cytotoxicity in both p53-

deficient and wild-type osteosarcoma cells. Given that

preceding research suggests that the p53 mutation is a key

indicator and therapeutic target of osteosarcoma, the results

from our study demonstrate the anticancer effects of colchicine,

implying its clinical importance in osteosarcoma patients,

regardless of p53 mutation. However, whether colchicine is

superior to the current chemotherapeutics used to treat

osteosarcoma needs to be explored. The drugs used most often

to treat osteosarcoma include adriamycin, cisplatin,

methotrexate, ifosfamide, and epirubicin (47). Usually, two or

more drugs are given together before surgery in very high doses.
B

C

A

FIGURE 5

Inhibitory effects of colchicine on Saos-2 growth in vivo. Saos-2 cells were injected subcutaneously into the flank of BALB/c nude mice. After
tumor injection, colchicine (10 mM) was injected (i.t.) once. (A) The tumor volume was measured every 3–4 days from the day of colchicine
injection for 15 days. Tumor volume was measured with digital calipers and calculated using the formula 0.52 × length × width. The values are
presented as means ± SD (n = 5). *p < 0.05. (B) The representative photograph of saos-2 xenografts with an intratumoral dose of colchicine (10
mM). Mice were sacrificed after 15 days of the colchicine treatment. (C) The effect of colchicine treatment on the expression of proliferating cell
nuclear antigen (PCNA) was examined by immunohistochemical analysis. The values are presented as means ± SD (n = 3). **p < 0.01.
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In this manner, the anticancer and side effects of colchicine

compared to those of other drugs should be studied. In addition,

the underlying mechanism by which colchicine regulates the cell

cycle of osteosarcoma cell lines requires a further study. We have

demonstrated that colchicine induces apoptosis and inhibits the

cell cycle of osteosarcoma. The signaling pathways modulated by

colchicine and inter-cell line variation between Saos-2 and U2OS

cells with detailed mechanisms remain a task.
Conclusion

Our findings suggest that colchicine is a potential agent that

exerts cytotoxic effects against osteosarcoma. The anticancer

effects of colchicine outside the scope of its original medical

indication suggest that colchicine could be developed as a cost-

effective and timesaving chemotherapeutic agent. The

mechanism by which colchicine modulates the signal

transduction pathway involved in microtubule polymerization

requires further investigation.
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SUPPLEMENTARY FIGURE 1

Initial screening of 772 FDA-approved library compounds in graphical

visualization. The cell viability was assessed by CCK-8 assays in (A) Saos-2
and (B) U2OS cells with a concentration of 10 mM for 48 h. Arrows

represent the most effective 30 non-chemotherapeutics in each cell line.

SUPPLEMENTARY TABLE 1

Initial screening of 772 FDA-approved library compounds. The table
represents the number of FDA-approved drugs, name of the

compounds and the viability of Saos-2 and U2OS cells with colchicine
treatment of 10 mM for 48 h.

SUPPLEMENTARY TABLE 2

A list of the deferentially expressed genes between colchicine treated and

non-treated Saos-2 and U2OS cells.
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