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monoclonal antibody induction
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To combat the threat of many emerging infectious diseases, DNA immunization offers a unique and powerful approach to the

production of high-quality monoclonal antibodies (mAbs) against various pathogens. Compared with traditional protein-based

immunization approaches, DNA immunization is efficient for testing novel immunogen designs, does not require the production or

purification of proteins from a pathogen or the use of recombinant protein technology and is effective at generating mAbs against

conformation-sensitive targets. Although significant progress in the use of DNA immunization to generate mAbs has been made

over the last two decades, the literature does not contain an updated summary of this experience. The current review provides a

comprehensive analysis of the literature, including our own work, describing the use of DNA immunization to produce highly

functional mAbs, in particular, those against emerging infectious diseases. Critical factors such as immunogen design, delivery

approach, immunization schedule, use of immune modulators and the role of final boost immunization are discussed in detail.
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INTRODUCTION

The recent successful use of protective monoclonal antibodies as
a life-saving treatment in Ebola virus-infected humans1 highlights the
need for the development of new technologies that are fast and
efficient in eliciting functional monoclonal antibodies (mAbs) to
control emerging infectious diseases.
DNA immunization as it exists today was pioneered in the early

1990s. Its initial use as a vaccination platform generated great
excitement due to the overall simplicity of using DNA plasmids
to deliver immunogens.2–5 One particularly attractive feature of DNA
vaccines is that immunogens are produced in vivo, giving them the
ability to induce T-cell immune responses through endogenous antigen
processing and presentation pathways. However, the application
of DNA immunization for human vaccine development has encoun-
tered challenges, specifically the low immunogenicity identified in early
clinical studies, in which DNA vaccines were delivered via traditional
needle injection without the use of adjuvants or other types of delivery
instruments.
In recent years, significant progress has been made in the application

of DNA vaccines in humans via two strategies: (i) the use of physical
delivery methods, such as a gene gun or electroporation, which have
greatly improved the immunogenicity of DNA vaccines in human
volunteers,6,7 and (ii) the development of a heterologous prime-boost
scheme,8 in which the hosts are first immunized with a DNA vaccine,
followed by boost immunizations with either recombinant protein
antigens or traditional killed or live attenuated vaccines,9–11 which
are more effective than homologous prime-boost immunizations using
multiple doses of the same recombinant proteins or traditional
vaccines.12–16

At the same time, it is generally agreed that DNA immunization is
effective in small animal models, which can be useful for the
production of high-quality mAbs. However, early animal model studies
have focused mainly on T-cell immune responses, given the unique
advantage of DNA immunization to induce such a response.17,18 Little
attention has been paid to the value of DNA immunization to elicit
high-quality antibody responses, and much less has been given to the
potential of DNA immunization to induce high-quality B-cell
responses, which can be useful for the production of functional mAbs.
The current review provides a comprehensive summary of the

literature that has accumulated over the past two decades, including
our own work, in using DNA immunization to produce highly
functional mAbs, in particular, against emerging infectious diseases.
DNA immunization is more useful than traditional approaches
to generating mAbs against more difficult targets, especially membrane
proteins.

DESIGN OF DNA VACCINES FOR MONOCLONAL ANTIBODY

INDUCTION

DNA vaccines are constructed as mammalian expression vectors.
Both the choice of expression vector and the design of immunogen
inserts are important for the final antibody response, including the
production of mAbs against the desired antigenic structures, but their
roles are different in the process of DNA immunization.

Optimal design of immunogen inserts
The in vivo immunogen expression feature of DNA vaccines offers
a number of benefits.
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Traditional protein-based immunization approaches have difficulty
producing full-length protein immunogens by the recombinant protein
method if the proteins are naturally expressed in a membrane-
associated format, such as the multi-transmembrane G-protein
coupled receptors (GPCRs) and ion channels. The DNA immunization
approach can circumvent these problems because full-length proteins
can be expressed in vivo when they are delivered in the form of DNA
vaccines. Furthermore, it is well known that the structural integrity of
proteins is critical for the induction of functional mAbs, yet these
sensitive structures tend to be lost during the in vitro protein
production process, regardless of whether they are produced as
recombinant proteins or are extracted directly from cells or other
sources in which the proteins are naturally expressed. Production of
functionally active mAbs is highly dependent on the conformation
of the proteins. Expressing intact immunogens in vivo by DNA
immunization appears to have the best chance of inducing mAbs with
the desired biological activities.
DNA vaccines possess the unique advantage of immunogen design

flexibility. Immunogen inserts expressing the full-length sequences of
target proteins are commonly used for all types of proteins, especially
transmembrane proteins, with good success.19–30 For intracellular
proteins, one may assume that it is necessary to re-direct intracellular
proteins into secretory pathways by adding a signal peptide to elicit
a better antibody response. However, in a number of mAb production
studies, native proteins have been used as DNA vaccine immunogen

inserts without any sequence modifications.25,28,31,32 On the other
hand, the gene sequences of immunogen inserts for DNA vaccines
can be easily edited to express ‘designer proteins.’ For a single-
transmembrane protein, the extracellular domain of a secretory protein
can be selectively cloned as the immunogen insert when the objective is
to generate mAbs against epitopes on the extracellular domain.33–37

Such an approach has also been applied to bacterial toxins. For
example, a truncated fragment can be used for immunization in place
of a full-length potentially lethal toxin protein, thereby avoiding the
introduction of unwanted biological activity during the production of
DNA vaccines, as well as during animal immunization.38,39 Additional
immunogen manipulations include the production of a ‘mini-gene
insert’ to express a short peptide sequence to cover a receptor-binding
domain.40 In this case, antigenic determinants in the angiotensin-
converting enzyme 2 binding domain of the severe acute respiratory
syndrome spike protein, which does not closely match other corona-
viruses, were predicted using software PROTEAN to induce anti-spike
protein antibodies. Alternatively, a transmembrane anchor sequence
can be added to non-membrane-associated antigens.41 As a simple
and flexible immunogen design approach, DNA immunization offers
a wide range of options to produce novel immunogen inserts for the
induction of mAbs against even the most challenging targets (Table 1).
One unique feature of DNA immunization is the convenience of

using the same DNA vaccine constructs to express antigens for mAb
screening. The choice of reagents and methods depends on the
original type of protein (Table 2). Cell-associated antigen-based
screening has been widely and successfully used for mAbs targeting
transmembrane proteins, viral envelope proteins and intracellular
proteins. In these cases, cells expressing the immunogens were
used without the need for protein purification to screen the binding
activity of mAbs by either fluorescence-activated cell sorting
analysis,19–21,23,24,26,27,29,30,34,35 whole cell enzyme-linked immuno-
sorbent assay (ELISA),33,43,48,49 or immunohistochemistry (IHC)
methods.25,31,32 In one study, a novel in-cell Western screening
method was developed and optimized to generate monoclonal anti-
bodies against nuclear, cytoplasmic and transmembrane proteins.28

Role of expression vectors
After two decades of effort by many research groups, the design
of commonly used DNA vaccine vectors has been significantly
optimized. It has been established that the promoter region of these
DNA vaccine vectors is their most critical element and that the
function of promoters can be further enhanced by other associated
regulatory components. For example, the intron A sequence

Table 2 Screening methods

Screening reagent Original type of protein Screening method References

Proteins Secretory ELISA 37–40,42,44–47,50,51,54–56

Intracellular ELISA 36,57,58

Single transmembrane ELISA 21,22

Cells expressing immunogens Transmembrane FACS 19–21,23,24,26,27,29,30,34,35

Whole cell ELISA 33,43

Viral envelope Whole cell ELISA 48,49

Immunostaining 53

Intracellular In-cell western 28

IHC 25,31,32

Viral particles Viral Dot enzyme immunoassay 41

ELISA 52

Abbreviation: enzyme-linked immunosorbent assay, ELISA; fluorescence-activated cell sorting, FACS; immunohistochemistry, IHC.

Table 1 Types of DNA vaccine immunogens used for mAb induction

Immunogen inserts

Original types of proteins

References

Full length Transmembrane 19–30

Extracellular matrix 42

GPI anchor 43

Intracellular 25,28,31,32

Secretory 25,44–47

Viral 25,48–53

Bacteria 54

Extracellular domain Single transmembrane 33–37

Fragment/subunit Any type 25,38,39,55

Mini-gene insert Any type 40

Novel format, vaccibody Secretory 56

Immunogen-transmembrane domain fusion Viral non-structure 41

Immunogen-Fc fusion Intracellular 57,58

Abbreviation: glycophosphatidylinositol, GPI.
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associated with the cytomegalovirus (CMV) promoter can signifi-
cantly enhance the function of CMV promoter.59 The selection of
poly-A tail is also important, as is optimized codon usage, which is
particularly important for DNA vaccines expressing genes from
infectious pathogens that often employ different codon usage than
mammalian proteins.
One area that is less studied is whether sustained immunogen

expression in vivo has a major impact on the induction of high-quality
mAbs. In one study of antibody generation via intravenous delivery
of plasmid DNA,25 the relative efficacy of CMV promoter and the
human ubiquitin C promoter was compared using luciferase as the
model immunogen. Using the ubiquitin promoter, which can lead to
sustained antigen expression in the liver, resulted in significant levels
of antibody titers seven weeks after a single hydrodynamic tail vein
(HTV) delivery. In contrast, a single HTV delivery of the CMV
promoter, which results in only short-term antigen expression,
produced very low antibody titers over the same time frame. Never-
theless, both promoters enabled high antibody titers when delivered
repeatedly. Thus, the study authors concluded that the choice of
expression vector may reduce the number of genetic immunizations
while still promoting the induction of high-titer antigen-specific
antibodies.
Similarly, immune responses were compared after employing DNA

vaccine plasmids encoding multi-drug resistant protein 4 (MRP4),
a 12-transmembrane transporter, but with different promoters: the
CMV early enhancer/chicken beta actin promoter, which is a strong
synthetic promoter frequently used to constitutively drive high levels
of gene expression in mammalian expression vectors, and the classical
CMV promoter for transient expression.30 The immunogenicity
results showed that the chicken beta actin promoter induced a higher
antigen-specific immune response with HTV delivery, even when the
plasmid was injected less frequently, compared with the use of a CMV
promoter-containing plasmid.

DELIVERY APPROACH AND SCHEDULE

Physical versus chemical delivery approaches
Since the early discovery of DNA immunization, a wide range of
delivery approaches has been studied. These approaches can be
divided into two main categories. One is traditional needle injection
of DNA plasmids in various solutions. Additional facilitating agents
such as lipids and nanoparticles can be included in the solution to
enhance delivery efficacy, and the composition of the chemical
solution determines the uptake efficacy of the DNA vaccine plasmid.
The second delivery type is based on physical forces. The most
representative approach is the use of a gene gun, which uses a ‘ballistic’
force to deliver the DNA plasmids. First, the DNA plasmids are
coupled with gold particles, which are then delivered by the ballistic
force to penetrate the cells of the targeted tissues. Early generation
gene guns created ballistic forces by adding high-voltage electricity
to a drop of water.60 More recent generation gene guns are based on
the release of compressed gas.61,62 Another physical method of DNA
delivery is the use of electroporation. In this approach, DNA vaccines
are first delivered by needle injection, followed by the application of an
electrical current at the DNA injection site.
The relative immunogenicity of chemical and physical delivery

approaches has been well analyzed. In one study, it was shown that
electroporation delivery following intradermal needle injection was
effective in delivering DNA vaccines to multiple intracellular compart-
ments (that is, transmembrane, cytoplasm and nucleus), leading
to the successful induction of mAbs.28 Another study showed that
electroporation followed by intramuscular needle injection generated

higher antibody responses than intramuscular needle injection alone.
This approach was also more effective than intramuscular needle
injection alone when the DNA vaccine was formulated with a chemical
polymer and protein immunogen.63 In a more complete analysis
comparing the delivery of DNA vaccines by intramuscular needle
injection, electroporation following intramuscular needle injection, and
gene gun alone, it was shown that both gene gun and electroporation
delivery were more effective than the traditional intramuscular needle
injection at eliciting higher antibody response levels.64 Both the gene
gun and electroporation approaches are effective, but the gene gun
approach requires only a few micrograms of DNA plasmid to achieve
the same level of immune response elicited by the electroporation
approach, which requires at least 100 μg of DNA plasmid at the first
step of intramuscular injection, even in mice.
One interesting finding from literature is that although the delivery

approach may be critical for the induction of high-level immune
responses for human vaccine development, different DNA delivery
approaches have been similarly successful in producing mAbs against
a wide range of target antigens. Table 3 lists the mAbs
elicited by the gene gun approach;22,24,31–34,37,43,55,57,58 needle
injection, including intramuscular19,20,23,38,41,44–46,48–50 or
intradermal21,35,42 injection; and electroporation following intra-
muscular or intradermal injection.27,28,39,52,53,56

One unique but less-studied approach is hydrodynamic intravenous
delivery. One large study compared the relative immunogenicity of
HTV and hydrodynamic limb vein delivery methods with 18 different
antigens, including different types of target antigens (that is, intracel-
lular, transmembrane, and secretory). Both methods were successful,
but the hydrodynamic limb vein delivery method was especially potent
for generating antibodies against a wide range of targets.25 However,
the hydrodynamic intravenous method may be more suitable for
larger animals, such as rats and rabbits, given the larger vein size in
these hosts compared with that in mice. The HTV method was also
used successfully to generate a mAb against a 12-transmembrane
transporter, which is a very challenging target for mAb induction.30

There have also been reports of producing mAbs with a single
intrasplenic injection.40,54 The author generated hybridomas by fusing
spleen cells at 2, 3, 5, 10 and 25 days after a single intrasplenic injection
of DNA vaccine plasmids. The highest number of specific hybridomas
was generated at day 5 after a single initial injection.54 However,
these mAbs appeared to be useful only for immunoblotting, and no
additional studies were conducted to characterize their affinities.

Immunization schedule
The optimal delivery schedule for the induction of high-quality mAbs
by DNA immunization remains to be determined. The classical
vaccine literature would indicate that an extended time period with
long rest intervals may be more effective in eliciting high-quality
antibody responses than immunizations in quick succession. There
have been relatively few studies focusing solely on an optimal delivery
schedule rather than the delivery approach itself. For example, it is
not clear whether physical delivery approaches (that is, gene gun or
electroporation) can be used more frequently than chemical delivery
approaches (such as needle injection) because the former is more
effective than the latter.
In most animal studies, the generation of mAbs requires multiple

immunizations, usually every 2–3 weeks. However, a faster immuniza-
tion procedure has been reported, which delivered 3–5 immunizations
within 10–11 days at multiple sites by gene gun.33,57,58 In these studies,
lymph nodes were used for fusion 48 h after the last injection without
the need for a final boost. The mAbs generated were used for
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fluorescence-activated cell sorting, western blot analysis and enzyme-
linked immunosorbent assay.
More studies are needed to further optimize the DNA immuniza-

tion schedule to elicit high-quality mAbs. It is important to determine
whether different DNA delivery approaches are optimal with certain
delivery schedules and whether the same delivery schedule can be
applied to different animal species.

IMMUNE MODULATION

Molecular adjuvants
Due to the low immunogenicity of DNA vaccines in early human
studies, great effort has been devoted to the inclusion of various
adjuvants as part of DNA vaccine formulation or immunization. Such
studies have been widely reported in the literature, and the following
section will review the use of molecular adjuvants only in the context
of mAb induction. Adjuvants identified for previous vaccine develop-
ment are likely to be useful for the induction of mAbs, but additional

dedicated studies are needed to confirm the actual incremental benefits,
particularly if DNA vaccine delivery is optimized, as discussed above.
Escherichia coli chaperone protein (GroEL) was demonstrated to act

as a potent molecular adjuvant for DNA immunization and has been
shown to enhance the Ab response against GPCRs, which are very
difficult targets for mAb induction.27,65 The authors reported that
DNA immunization in mice with a plasmid encoding the full-length
endothelin A receptor (ETAR) fused to GroEL at its C terminus
induced strong, specific antibody responses to native ETAR.
Co-injection of plasmids that expressed ETAR and GroEL (ETAR
+GroEL) induced lower antibody responses than the ETAR–GroEL
plasmid. In contrast, no specific antibody responses were produced in
mice that were immunized with ETAR.65 The authors also mentioned
that this strategy has been successfully applied to other GPCR targets
and suggested that GroEL will be capable of producing antibodies
against most GPCRs. One caution raised by the author is that in the
case of unstable GPCRs, co-immunization with GroEL may be
preferable to fusion with GroEL to induce an antibody response because
fusion of some carrier proteins decreases their expression. Functional
mAbs against a different GPCR target, the chemoCentryx chemokine
receptor (CCX-CKR), were generated by the co-immunization of a
plasmid encoding GroEL with a DNA vaccine plasmid-encoding target.27

In another study, a more complicated immunization strategy was
tested, in which a plasmid encoding fetal liver tyrosine kinase 3 ligand
was delivered as a priming dose, followed by the co-delivery of
a plasmid encoding granulocyte-macrophage colony-stimulating factor
and another plasmid encoding immunogen MRP4. This study
demonstrated that the addition of fetal liver tyrosine kinase 3 ligand
and granulocyte-macrophage colony-stimulating factor as immune
modulators significantly improved not only the overall immune
response in the mice but also the induction of antibodies capable
of recognizing native extra-cellular epitopes.30

DNA prime-protein boost
One approach that presents a great advantage for the induction
of high-titer and high-quality antibody responses is the heterologous
prime-boost approach. In this approach, the DNA vaccine is delivered
as the priming immunization, followed by a boost with protein
antigens as recombinant proteins, peptides, or traditional inactivated
or live attenuated vaccines. One unexpected finding regarding DNA
priming immunization is their ability to induce higher-level antigen-
specific B-cell responses.66 Our research group has shown that DNA
primer immunization was more effective than protein immunization
in activating germinal center B cells. Higher levels of antigen-specific B
cells set the stage for more robust antibody responses. Whether this
higher-level activation of B cells leads to better mAb cloning remains
to be determined.
The DNA prime-protein boost approach has been used to generate

mAbs in both mouse and rabbit models. This approach was effective
in generating a panel of mAbs that are protective against Clostridium
difficile toxin A challenge, as well as mAbs for use as sensitive reagents
to detect toxin A in various testing samples.39 We also reported the use
of DNA immunization to generate rabbit mAbs with a high affinity for
and a diverse epitope-binding profile to the human immunodeficiency
virus type 1 (HIV-1) envelope antigen.37 One unique rabbit mAb
targeted an area on the envelope protein of HIV-1, which blocks
the binding of CD4 and the HIV-1 receptor.67 Another research
group used a similar DNA prime-protein boost approach to generate
a higher antibody titer and higher quality mAbs than those observed
with protein immunization alone.36

Table 3 DNA vaccine delivery approaches used for mAb induction

Delivery

approaches

Original types of protein References

Gene gun Single transmembrane (Flt-3R) 33

Intracellular (PED/PEA-15) 57

Intracellular (annexin-V) 58

Single transmembrane (CAR) 22

Two- transmembrane (P2X7) 24

GPI anchored enzyme 43

Intracelluar (BCL-6) 31

Intracelluar (MALT1) 32

Single transmembrane (MHCI-related gene A) 34

Parasite lipoprotein 55

Viral envelop (HIV gp120) 37

IM Bacteria toxin (Helicobacter pylori vacuolating

cyto toxin)

38

Seven transmembrane, GPCR (TSHR) 19

Viral envelop (HGV E2) 48

Seven transmembrane, GPCR (TSHR) 20

Viral non-structure (Dengue NS1) 41

Viral envelop (H5N1) 49

Secretory protein, enzyme (prostate-specific

antigen)

45

Viral surface (HBV preS2/S) 50

Seven transmembrane, GPCR (TSHR) 23

Secretory protein, cytokine (CKLF1) 44

Secretory protein, cytokine (Interferon beta) 46

ID Single transmembrane (RET and CD30) 21

Extracellular matrix and plasma glycoprotein

(Fibulin-1)

42

Single transmembrane (CD2) 35

IM followed by EP Seven transmembrane, GPCR (CCX-CKR) 27

Viral envelop (H5N1) 52

Secretory (mCherry) 56

Viral envelop (H1) 53

Bacteria toxin (C. difficile toxin A) 39

ID followed by EP Multiple targets (transmembrane, intracellular) 28

Abbreviations: B-cell lymphoma 6 protein, BCL-6; coxsackievirus and adenovirus receptor, CAR;
cluster of differentiation 2, CD2; cluster of differentiation 30, CD30; chemokine-like factor 1,
CKLF1; electroporation, EP; fetal liver tyrosine kinase 3 receptor, Flt-3R; hepatitis B virus, HBV;
hepatitis G virus E2 protein, HGV E2; intradermal, ID; intramuscular, IM; mucosa-associated
lymphoid tissue lymphoma translocation gene 1, MALT1; P2X purinoceptor 7, P2X7;
phosphoprotein over expressed in diabetes/phosphoprotein enriched in astrocytes, PED/PEA-15;
rearranged during transfection, RET; thyroid stimulating hormone receptor, TSHR.
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ROLE OF FINAL BOOST IMMUNIZATION

Production of mAbs by the traditional hybridoma method requires
the availability of many activated antigen-specific B cells in lymphoid
organs for fusion. With the traditional protein immunization
approach, this is achieved by a final intravenous or intraperitoneal
injection 3–5 days before fusion. This same procedure may also be
needed for DNA immunization.
Hybridoma fusions using cells from DNA-immunized animal hosts

without a final boost have been reported by several groups.38,41,44,46,55

However, the overall fusion efficiency was low, and the resulting
antibodies had low binding affinity, with IgM as the dominant isotype.
One study compared the ability of a final protein boost with no final
protein boost with respect to hybridoma generation and concluded
that despite significant antibody responses in the immunized animals,
the fusion of mouse spleen cells yielded a low number of and low-
quality hybridomas unless the mice were given a boost 3–5 days before
fusion.21

Other studies included an additional DNA plasmid immunization by
intramuscular or intradermal injection 3–5 days before fusion as a final
boost.42,45,51 Although the numbers of mAbs generated were small (that
is, only a few mAbs from each fusion), mAbs with good binding affinity
and diversity were reported.45,51 The final DNA plasmid boost could
also be delivered by hydrodynamic injection five days before fusion,
and specific mAbs were successfully generated,25 including some against
very difficult targets, such as multi-transmembrane proteins.27,30

Proteins are commonly used as final boost reagents. Purified protein
has been used successfully for the final protein boost for both secretory
proteins47,56 and intracellular proteins.54,57,58 For single-transmembrane
proteins or glycophosphatidylinositol-anchored proteins, a purified
extracellular domain can be used for the final boost if it is confirmed
that the proteins retain a native conformation.34,37,43 Furthermore,
cells expressing antigen proteins have been used directly as the
final boost. This approach was successful for both membrane
proteins19–21,23,24,35,48,49 and intracellular proteins.25,28,31,32 The use
of cells as a boosting reagent can work for secretory proteins that are
difficult to purify by adding a glycophosphatidylinositol anchor. In the
case of viral antigens, inactive viral particles have been used success-
fully as the final boost.51–53 Table 4 provides a summary of final boost
immunization options.
DNA immunization can be used to generate mAbs by either

a traditional hybridoma approach or the single B-cell cloning
approach in different animal models. Our research group has recently
produced mAbs from human volunteers who were immunized via an
HIV vaccine DNA prime-protein boost regimen using a single B-cell
cloning method (paper in preparation). These results show that DNA

immunization can be used in a wide range of hosts to produce high-
quality mAbs.

SUMMARY

DNA immunization is a powerful approach to producing high-quality
mAbs and offers several unique advantages: (i) DNA immunization is
an efficient method of testing different immunogen designs; (ii) DNA
immunization does not require the production or purification of
proteins from a pathogen, which avoids any issues related to biosafety;
(iii) DNA immunization allows a rapid response to an emerging
infectious agent once the pathogen gene sequence is known; (iv) DNA
immunization is effective in generating mAbs against conformation-
sensitive targets; (v) DNA immunization can be used for mAb
induction in a wide range of hosts, including mouse, rabbit and human.
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