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Purpose: Mutations in the myocilin gene (MYOC) are associated with primary open-angle glaucoma (POAG) in many
different populations. This study represents the first large survey of MYOC mutations in an African American population.
Methods: We recruited 529 African American subjects with POAG and 270 African American control subjects in this
study. A complete eye examination and blood collection was performed in all study subjects. Genomic DNA was extracted.
The entire coding sequence of MYOC was amplified and sequenced using the Sanger method. Identified MYOC variants
were compared with previously reported MYOC mutations.
Results: We identified a total of 29 MYOC variants including six potential MYOC mutations. Two mutations (Thr209Asn
and Leu215Gln) are novel and are found only in cases and no controls. We also identified four previously reported
MYOC mutations in cases and no controls (Tyr453MetfsX11, Gln368X, Thr377Met, and Ser393Arg). The overall
frequency of glaucoma-causing MYOC mutations in our African American population with POAG was 1.4%.
Conclusions: We identified two novel probable glaucoma-causing MYOC mutations (Thr209Asn and Leu215Gln). This
study indicates that, despite the high prevalence of POAG, MYOC mutations are rare in the African American population.

Glaucoma is the leading cause of irreversible blindness
in the world and the second most common cause of permanent
blindness in the USA [1-3]. Glaucoma is a heterogeneous
group of disorders characterized by optic nerve damage,
progressive loss of retinal ganglion cells, and specific visual
field defects [4,5]. Of the many types of glaucoma, primary
open-angle glaucoma (POAG) is the most common [5]. The
prevalence of POAG differs among populations. African-
Americans are four to five times more likely to be affected by
POAG than Caucasian Americans [6].

Genetic defects have been shown to contribute to the
pathogenesis of POAG through family linkage analysis and
case-control based association studies [5,7-9]. At least 14
chromosomal loci for POAG have been reported [4,5]. To
date, several causative genes for POAG from these 14 POAG-
associated loci have been identified, including myocilin
(MYOC) [10,11], optineurin (OPTN) [12], WD repeat domain
36 (WDR36) [13], cytochrome P450 1B1 (CYP1B1) [14], and
TANK-binding kinase 1 (TBK1) [15,16] (Human Genome
Organization). Among these genes, MYOC  has been found to
harbor the greatest number of glaucoma-causing mutations
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with over 80 mutations identified in different populations
[17,18].

MYOC is composed of 3 exons. Its protein product
MYOC is broadly expressed [18-20]. The first exon encodes
a peptide sequence similar to muscle protein myosin and the
third exon encodes a peptide sequence homologous to
olfactomedin [21]. The majority of myocilin mutations are
missense variants located in the third exon that are thought to
affect the solubility and disrupt the secretion of the protein
[22,23]. Despite extensive research, it remains unclear how
myocilin mutations lead to glaucoma [4,8,20,24,25].

Myocilin mutations have been found with an overall
frequency of 2%–4% in all populations worldwide [5,8,18,
24,26]. In African populations, probable disease-causing
myocilin mutations were found in 1.75% of Moroccan POAG
subjects and 4.4% of Ghanaian and South African POAG
subjects [27-29]. Caucasian populations have been studied
extensively and the frequency of myocilin mutations in adult-
onset POAG subjects has been found to be 2 to 5% [30-35].
Thus far, only one study has looked at the frequency of
myocilin mutations in an African American population and
found 2.6% of 312 African American POAG patients
harbored probable disease-causing mutations [30]. Our study
represents the largest survey of African American POAG and
control subjects for myocilin mutations in all 3 exons of the
myocilin gene.
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METHODS

Study subjects: The study adhered to the tenets of the
Declaration of Helsinki. Informed consent was obtained from
all study participants. The research was reviewed and
approved by the Institutional Review Board from all
participating institutions, including both Duke University
Medical Center (Durham, NC) and the Massachusetts Eye and
Ear Infirmary (Boston, MA). Study subjects were recruited
from the Duke University Eye Center (Durham, NC) and the
Massachusetts Eye and Ear Infirmary (Boston, MA) for a total
of 529 African American subjects with POAG and 270
African American control subjects. Subjects with POAG were
unrelated and met the following inclusion criteria: 1) age of
onset greater than 18 years; 2) glaucomatous optic neuropathy
in both eyes; and 3) visual field loss consistent with optic
nerve damage in at least one eye. Glaucomatous optic
neuropathy was defined as a cup-to-disc ratio greater than 0.7
or focal loss of the nerve fiber layer resulting in a notch,
associated with a glaucomatous visual field defect. Visual
fields were performed using standard automated perimetry or
frequency doubling test. An open anterior chamber angle has
been found in all the POAG cases. IOP was not used as an
inclusion criterion. The exclusion criteria for POAG subjects
included the diagnosis of a secondary form of glaucoma or a
history of ocular trauma. The control subjects were examined
by a board-certified ophthalmologist. The control subjects
were unrelated and met the following criteria: 1) no first-
degree relative with glaucoma; 2) IOP less than 21 mmHg in
both eyes without treatment; 3) no evidence of glaucomatous
optic neuropathy in either eye; and 4) normal visual field in
both eyes. The normal controls were recruited specifically for
this study and visual field was included in the eye exam.

Genomic DNA sequencing: Genomic DNA was extracted
using standard methodology as previously described [36-38].
Briefly, genomic DNA was purified using a modified salting-
out method. Primers flanking the entire coding sequence of
MYOC were designed with Primer3 software [39]. Primer
sequences are provided in Table 1. The amplified region

covered at least 50 base pairs into each intron to screen for
potential mutations affecting exon splicing. Platinum Taq
DNA polymerase (Invitrogen, Carlsbad, CA) was used for all
of the polymerase-chain reactions (PCR). The PCR
amplifications were performed in TherymoHybaid MBS PCR
machines (Thermo Scientific, Waltham, MA). Completed
PCR reactions were purified and sequenced in the forward
direction using BigDye chemistry (Applied Biosystems,
Carlsbad, CA). Potential mutations were confirmed by
additional sequencing in the reverse direction. All the
sequences were analyzed using the Sequencher 4.9 software
package (Gene Codes, Ann Arbor, MI). The Fisher’s exact
test was used to test the association of all variants with POAG.

RESULTS
The study data set was composed of 529 African American
subjects with POAG and 270 African American control
subjects. The mean age of diagnosis in the subjects with
POAG was 54.8 years and 42.5% of these subjects were
female. In comparison, the mean age of the control subjects
was 57.5 years (ranging from 40 to 85 years) and 53.3% of
the control subjects were female.

We identified a total of 29 sequence variants, including
28 coding variants. Of these 29 variants, we identified four
known myocilin mutations (Table 2), including two nonsense
mutations (Tyr453MetfsX11 and Gln368X) and two missense
mutations (Thr377Met and Ser393Arg). These 4 mutations
are all located in exon 3. Each mutation was found in 1 POAG
patient and no controls. They have all been previously
reported as glaucoma-causing mutations [17]. We also
identified two novel missense mutations: Thr209Asn in one
POAG patient and Leu215Gln in two POAG patients, but not
in controls (Table 2). Both of these novel mutations are located
in exon 2. Combining all the patients with myocilin mutations,
we have identified six different myocilin mutations in 7
African American POAG patients and no controls, accounting
for approximately 1.4% of all the POAG patients. These
African American patients carrying myocilin mutations tend

TABLE 1. LIST OF PCR PRIMERS FOR MYOC (MYOCILIN) EXON SEQUENCING IN AFRICAN AMERICAN POAG SUBJECTS AND CONTROLS.

MYOC
exon

Forward primer sequence Reverse primer sequence Amplicon size
(bp)

Covered Genomic
Region*

Exon1a ATCTTGCTGGCAGCGTGAA TCTCTGGTTTGGGTTTCC 614 chr1:171,621,342–
171,621,955

Exon1b GACAGCTCAGCTCAGGAAGG GAAGGTGATCGCTGTGCTTT 663 chr1:171,620,991–
171,621,653

Exon2 AGCAAAGACAGGGTTTCACC AGGGCTTTGTTAGGGAAAGG 554 chr1:171,607,517–
171,608,071

Exon3a CCCAGACGATTTGTCTCCAG TCCCAGGTTTGTTCGAGTTC 648 chr1:171,605,327–
171,605,974

Exon3b GAGAAGGAAATCCCTGGAGC TGGTGACCATGTTCATCCTTC 598 chr1:171,604,914–
171,605,511

        * The covered genomic regions were based on the February 2009 human reference sequence (GRCh37). POAG is for primary
        open-angle glaucoma. bp is for base pair.
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to have advanced glaucoma with high IOP and large cup-to-
disc ratio (Table 2).

We also identified an additional twelve non-synonymous
coding variants (Table 3), which appear to be neutral
polymorphisms. Four of them (Arg76Lys, Val329Met,
Glu352Lys, Lys398Arg) were previously reported as neutral
polymorphisms [17]. All of the variants except for Val329Met
were identified in both cases and controls. Val329Met was
found in 2 cases but no control subjects. Two of the variants
in exon 3, Thr353Ile and Lys500Arg, were previously
reported with uncertain pathogenicity [17]. We identified
Thr353Ile in only 1 control and the Lys500Arg variant in 4
cases and 2 controls. The remaining six variants were novel,
including Ala108Gly, Arg126Gln, Arg226Gln, Gly244Ser,
Ser333Cys, and Asp446Tyr [17]. Each of these novel variants
was found in only 1 control subject, except for Ser333Cys,
which was found in 1 case and 1 control.

In addition, we also identified 10 synonymous coding
variants and one variant in the 5′-untranslated region (5′-UTR;
Table 4). None of these silent variants were found to have a
significant association with POAG. The 5′ UTR variant has

not been previously reported and was only found in 1 control
subject.

Overall, the frequency of non-synonymous changes was
not significantly different between cases and controls. Only
one control subject was found to carry multiple non-
synonymous variants of Asp446Tyr and Lys500Arg. The
Asp446Tyr variant has not been previously reported and the
Lys500Arg variant is considered to be of uncertain
pathogenicity [17]. All other individuals had no more than 1
non-synonymous coding variant. Multiple synonymous
variants did occur together frequently, more commonly in
cases than in controls. These multiple synonymous variants
were found in 10.8% of cases and 5.6% of controls, which was
significantly different (Fisher’s exact test, p=0.02).

DISCUSSION
This study is the largest survey of myocilin mutations in
African American subjects with and without POAG. We
identified six myocilin mutations in seven POAG patients.
The overall frequency of glaucoma-causing mutations in
POAG subjects was 1.4%. Our finding is very similar with
those in the Moroccan population [29], but is significantly

TABLE 2. LIST OF PROBABLE GLAUCOMA-CAUSING MUTATIONS IDENTIFIED FROM MYOC EXON SEQUENCING IN 529 AFRICAN AMERICAN POAG SUBJECTS AND 270
CONTROLS.

Exon
location

Amino acid change Nucleotide
change*

Number of
cases

Number of
controls

Age at
diagnosis

Maximal
IOP

Cup to disc
ratio

Exon 2 Thr209Asn 626G>T 1 (0.2%) 0 65 50 0.9
Exon 2 Leu215Gln 644A>T 2 (0.4%) 0 73, 72 23, 16 0.9, 0.9
Exon 3 Gln368X 1102G>A 1 (0.2%) 0 56 25 1.0
Exon 3 Thr377Met 1130G>A 1 (0.2%) 0 47 15 1.0
Exon 3 Ser393Arg 1179G>C 1 (0.2%) 0 75 31 1.0
Exon 3 Tyr453MetfsX11  1 (0.2%) 0 80 25 0.45

        *Nucleotides numbered as in Ensembl accession number ENSG00000034971 (transcript ID ENST00000037502). IOP is for
        intraocular pressure. POAG is for primary open-angle glaucoma.

TABLE 3. LIST OF NON-SYNONYMOUS VARIANTS IDENTIFIED FROM MYOC EXON SEQUENCING IN 529 AFRICAN AMERICAN POAG SUBJECTS AND 270
CONTROLS.

Exon location Amino acid
change

Nucleotide
change*

dbSNP ID Number of cases Number of
controls

p-value†

Exon 1 Arg76Lys 227C>T rs2234926 31 (5.9%) 14 (5.2%) 0.75
Exon 1 Ala108Gly 323G>C  0 (0.0%) 1 (0.4%) 0.34
Exon 1 Arg126Gln 377C>T  0 (0.0%) 1 (0.4%) 0.34
Exon 2 Arg226Gln 677C>T  0 (0.0%) 1 (0.4%) 0.34
Exon 2 Gly244Ser 730C>T  0 (0.0%) 1 (0.4%) 0.34
Exon 3 Val329Met 985C>T  2 (0.4%) 0 (0.0%) 0.55
Exon 3 Ser333Cys 997T>A  1 (0.2%) 1 (0.4%) 1.0
Exon 3 Glu352Lys 1054C>T rs61745146 13 (2.5%) 5 (1.9%) 0.80
Exon 3 Thr353Ile 1058G>A  0 (0.0%) 1 (0.4%) 0.34
Exon 3 Lys398Arg 1193T>C rs56314834 1 (0.2%) 1 (0.4%) 1.0
Exon 3 Asp446Tyr 1336C>A  0 (0.0%) 1 (0.4%) 0.34
Exon 3 Lys500Arg 1499T>C  4 (0.8%) 2 (0.7%) 1.0

        *Nucleotides numbered as in Ensembl accession number ENSG00000034971 (transcript ID ENST00000037502). † Fisher’s
        exact test two-tailed p value.

Molecular Vision 2012; 18:2241-2246 <http://www.molvis.org/molvis/v18/a237> © 2012 Molecular Vision

2243

http://www.ensembl.org
http://www.ncbi.nlm.nih.gov/snp?term=rs2234926
http://www.ncbi.nlm.nih.gov/snp?term=rs61745146
http://www.ncbi.nlm.nih.gov/snp?term=rs56314834
http://www.ensembl.org
http://www.molvis.org/molvis/v18/a237


lower than those in the Ghana and South African populations
as well as in a prior study of an African American population
[27,28,30]. Although our initial sequencing was done only in
the forward direction, the high sequence quality and the
complete coverage of the coding region minimized the
possibility of missing any additional potential mutations. This
should not contribute to the low prevalence of myocilin
mutations in our study.

We identified two novel myocilin mutations located in
exon 2. Up to date, only neutral polymorphisms and
polymorphisms of uncertain pathogenicity have been reported
in exon 2 [17]. The Thr209Asn mutation was found in 1
heterozygous POAG subject and in no controls. The
Leu215Gln mutation was found in 2 heterozygous POAG
subjects and in no controls. The 2 POAG subjects with the
Leu215Gln variant were also heterozygous for either of the
synonymous polymorphisms of Leu159Leu or Thr325Thr.
According to the SIFT and Polyphen databases that predict
effects of amino acid substitutions on MYOC structure and
function [40,41], the Thr209Asn variant was determined to be
benign while the Leu215Gln variant was determined to be
probably damaging. More evidence is needed to determine
whether the Thr209Asn mutation contributes to the
development of glaucoma but current evidence suggests that
the Leu215Gln variant is a novel glaucoma-causing mutation.

Two other non-synonymous variants that have not been
previously reported are found only in controls. Each of the
Asp446Tyr variant and the1515+4C>G variant in the 5′UTR
are found in 1 heterozygous control. The difference in
prevalence of these two variants between POAG subjects and
controls is not statistically significant by the Fisher Exact Test
(p>0.05). It is unclear why these two variants are
overrepresented in controls but it is conceivable that they may
have a protective role against the development of POAG.
However, further studies are needed to replicate these

findings. Although the frequency of several sequence variants
differed between cases and controls, these differences were
not statistically significant (Fisher’s exact test, p>0.05).

Comparing to the previous screen of myocilin mutations
in African American POAG subjects and controls [30], our
larger study not only corroborated their findings for three of
the probable glaucoma-causing mutations (Gln368X,
Ser393Arg, and Tyr453FS), but also identified one POAG
subject with the Thr377Met mutation. This mutation is one of
the most commonly found POAG-causing mutations and has
been previously identified in populations from Australia,
United States of America, Greece, the former Yugoslavian
Republic of Macedonia, India, Finland, and Morocco [29,33,
34,42-45]. Although the previous African American study
found Glu352Lys variant in 2 POAG patients and no controls
[30], we found this variant in 13 POAG patients and 5 controls
that were heterozygous for the variant. The frequency in cases
and controls was not statistically different by the Fisher’s
Exact Test (p>0.05). Our data supported the reclassification
of this variant as a polymorphism (dbSNP; rs61745146).

In summary, we have performed the largest screening of
myocilin mutations in the African American population. The
overall frequency of probable glaucoma-causing mutations in
myocilin was lower in our data set of African American
POAG subjects compared to prior reported frequencies of
2%–4% in many different populations [18]. This difference
could be due to ascertainment bias due to recruitment of
prevalent cases from glaucoma clinics compared with incident
cases in a population-based study. Our study not only
confirms the contribution of myocilin mutations in the African
American population, but also suggests the greater genetic
heterogeneity of POAG in this admixed population.
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